Revised Final Year B. Tech. (Instrumentation Engineering) Curriculum Academic Year 2021-22

SGGS INSTITUTE OF ENGINEERING & TECHNOLOGY, VISHNUPURI, NANDED

Shri Guru Gobind Singhji Institute of Engineering and Technology, Vishnupuri, Nanded

DEPARTMENT OF INSTRUMENTATION ENGINEERING

Curriculum Structure of B. Tech. (With effective from 2021-2022)

	Semester I							
Course Code								
PCC-IN401	Modern Control Theory	03		02	03	01		
PCC-IN402	Chemical and Analytical Instrumentation	03			03			
PCC-IN403	Biomedical Instrumentation	03		02	03	01		
PEC-IN4**	Elective-III	03			03			
PEC-IN4** / OEC-**4**	Elective-IV	03			03	-		
SII-IN417	Seminar on Industrial Training			02		01		
PRJ-IN418	Mini Project			10		05		
	Total	15	15 - 16 23					
	Semester II (Scheme-A)							
Course Code	Name of the course	L	Т	P	Cred Th			
PCC-IN421	Instrumentation Project Management	03		02	03	01		
PEC-IN4**	Elective-V	03			03			
PEC-IN4**	Elective-VI	03			03			
PRJ-IN434	Project (In house)	ŀ		14		07		
	Total	09		16	1	7		
	Semester II (Scheme-B)							
PRJ-IN435	Project (In Industry/Research Institute)			34		17		
	Total			34	1	7		

L – No. of Lecture Hours/week, T – No. of Tutorial Hours/week, P – No. of Practical Hours/week

<u> </u>		
B.Tech.(INST)	Contact Hours	Credits
TOTAL (Scheme-A)	56	40
TOTAL (Scheme-B)	65	40

Stream	Elective-III		Elective-IV		
Control	PEC-IN404	Process modeling & Optimization	PEC-IN411	Digital Control Systems	
Control PEC-IN405		Optimal and Robust Control	PEC-IN412	Advanced Control Systems	
Industrial	PEC-IN406	Building Automation System	PEC-IN413	Cyber Security	
illuusti iai	PEC-IN407	Industrial Safety & Hazards	PEC-IN414	Industrial Automation and Robotics	
	PEC-IN408	Virtual Instrumentation			
Instrumentation	PEC-IN409	SMART and Wireless	PEC-IN415	Embedded System Design	
	PEC-IN409	Instrumentation			
Signal	PEC-IN410	Advanced Digital Signal	PEC-IN416	Digital Image Processing	
Processing	PEC-IN410	Processing	PEC-IN410	Digital image Processing	
			OEC-**4**	Any one from list of Open Elective offered by department/Institute	
Stream	Elective-V		Elective-VI		
Control	PEC-IN422	System Identification	PEC-IN429	AI Based Control System	
Control	PEC-IN423	Non-linear Control Systems	PEC-IN429	At based Collifor System	
Industrial	PEC-IN424	Batch Process Control	PEC-IN430	Product Design and Development	
Industrial	PEC-IN425	Industrial Internet of Things(IIoT)	PEC-IN431	Automobile Instrumentation	

LICCUIVC-V		LICCUIVC VI		
PEC-IN422	System Identification	DEC IN420	AI Based Control System	
PEC-IN423	Non-linear Control Systems	PEC-IN429		
PEC-IN424	Batch Process Control	PEC-IN430	Product Design and Development	
PEC-IN425	Industrial Internet of Things(IIoT)	PEC-IN431	Automobile Instrumentation	
PEC-IN426	Agricultural Instrumentation	DEC IN422	Intelligent Sensors	
PEC-IN427	Energy Harvesting	PEC-IN432		
PEC-IN428	Digital Signal Processors and Applications	PEC-IN433	Biomedical Signal Processing	
	PEC-IN422 PEC-IN423 PEC-IN424 PEC-IN425 PEC-IN426 PEC-IN427	PEC-IN422 System Identification PEC-IN423 Non-linear Control Systems PEC-IN424 Batch Process Control PEC-IN425 Industrial Internet of Things(IIoT) PEC-IN426 Agricultural Instrumentation PEC-IN427 Energy Harvesting Digital Signal Processors and	PEC-IN422 System Identification PEC-IN423 Non-linear Control Systems PEC-IN424 Batch Process Control PEC-IN430 PEC-IN425 Industrial Internet of Things(IIoT) PEC-IN431 PEC-IN426 Agricultural Instrumentation PEC-IN427 Energy Harvesting PEC-IN428 Digital Signal Processors and PEC-IN433	

[❖] Open Elective/s offered by department: 1) OEC-IN436 Introduction to MEMS

CONTENTS

Sr. No.	Course Code	Course Title	Page No.
		Semester-VII	
1.	PCC-IN401	Modern Control Theory	5
2.	PCC-IN402	Chemical and Analytical Instrumentation	6
3.	PCC-IN403	Biomedical Instrumentation	8
		Elective – III	
4.	PEC-IN404	Process modeling & Optimization	10
5.	PEC-IN405	Optimal and Robust Control	12
6.	PEC-IN406	Building Automation System	13
7.	PEC-IN407	Industrial Safety & Hazards	15
8.	PEC-IN408	Virtual Instrumentation	17
9.	PEC-IN409	SMART and Wireless Instrumentation	18
10.	PEC-IN410	Advanced Digital Signal Processing	20
		Elective – IV	
11.	PEC-IN411	Digital Control Systems	21
12.	PEC-IN412	Advanced Control Systems	23
13.	PEC-IN413	Cyber Security	25
14.	PEC-IN414	Industrial Automation and Robotics	27
15.	PEC-IN415	Embedded System Design	29
16.	PEC-IN416	Digital Image Processing	31
17.	SII-IN417	Seminar on Industrial Training	32
18.	PRJ-IN418	Mini Project	33
		Semester-VIII (Scheme-A)	
19.	PCC-IN421	Instrumentation Project Management	35
		Elective – V	
20.	PEC-IN422	System Identification	37
21.	PEC-IN423	Non-linear Control Systems	38
22.	PEC-IN424	Batch Process Control	40
23.	PEC-IN425	Industrial Internet of Things (IIoT)	41
24.	PEC-IN426	Agricultural Instrumentation	43

25.	PEC-IN427	Energy Harvesting	45			
26.	PEC-IN428	Digital Signal Processors and Applications	46			
Elective - VI						
27.	PEC-IN429	AI Based Control System	48			
28.	PEC-IN430	Product Design and Development	50			
29.	PEC-IN431	Automobile Instrumentation	51			
30.	PEC-IN432	Intelligent Sensors	52			
31.	PEC-IN433	Biomedical Signal Processing	54			
32.	PRJ-IN434	Project (In house)	56			
		Semester-VIII (Scheme-B)				
33.	PRJ-IN435	Project (In Industry/Research Institute)	57			
34.	OEC-IN436	Introduction to MEMS	58			

Semester-VII

PCC-IN	401 N	Mode	rn Control	Theory	
Teaching	Teaching scheme:			Examination scheme:	
Lectures		3	hrs/week	Theory	
Tutorials		0	hrs/week	In Semester Evaluation : 20 Marks	
Practical		2	hrs/week	Mid Semester Examination : 30 marks	
Credits		4		End Semester Examination : 50 marks	
Course ob	jectiv	es:			
1.	To de	evelop p	roblem solving	g skills and understanding of control system	
2.	To de	evelop u	nderstanding	of optimal control system	
3.	To develop ability to apply knowledge of control system for nonlinear system analysis				
Course Ou	ıtcom	es: Afte	successfully o	completing the course students will be able to,	
1.			-	state variable, state model and state space representation of	
	physi	ical syst	ems.		
2.				ability and observability of a system.	
3.				l theory for practical implementations in engineering and	
		ork ana			
4.	Analyze dynamics of a linear system by solving system model/equation or applying				
	domain transformation.				
5.			-	stem and evaluate various techniques for finding stability of	
	nonlinear system.				
6.			nd solve deter	ministic optimal control problems in terms of performance	
	indice	es.			

PO/PSO → ↓ CO	P01	PO2	PO3	PO4	PO5	P06	P07	P08	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
PCC-IN401.1	3	2	3	2	-	-	-	-	-	-	-	2	3	2	2	3
PCC-IN401.2	3	2	2	2	3	-	-	-	-	-	-	1	3	2	2	2
PCC-IN401.3	3	3	2	3	2	-	-	-	-	-	-	2	3	2	2	2
PCC-IN401.4	3	3	-	2	2	-	-	-	-	-	-	2	3	2	3	2
PCC-IN401.5	3	3	2	3	1	-	-	-	-	-	-	2	3	2	2	2
PCC-IN401.6	3	3	2	2	2	-	-	-	-	-	-	2	3	2	2	1
PCC-IN401	3	2	2	2	2	-	-	-	-	-	-	2	3	2	2	2

Syllabus:	
Unit 1	State variable method
	Modeling and Analysis Concept of state, state variable, and state model, state space representation using physical, phase and canonical variables and their block diagram representation, state model and transfer function, diagonalization, solution of state equation, state transition matrix its properties and computation, concept of controllability and Observability and their test criterion.
Unit 2	State feedback Controllers Design
	Designpole placement design using state feedback, state observer, reduced order and
	full orderobserver design, Design of control systems with observers, Design of servo
	system, Study of some physical plant like inverted pendulum for analysis and

	Design.
Unit 3	Introduction to Optimal Control systems, Linear Quadratic regulator (LQR)
	Theory and Design: LQR solution using the minimum principle, Generalization of
	LQR; LQR properties with classical interpretations; Optimal observer design-
	Kalman-Bucy filter: Problem formulation and Solution, The Linear Quadratic
	Gaussian (LQG) problem: Introduction, LQG problem formulation and solution,
	Performance and Robustness of optimal state feedback.
Unit 4	Non-linear system analysis
	Behavior of nonlinear systems, common physical nonlinearities, describing function
	method, Concept and derivation of describing function method, phase plane method,
** ** **	singular points, stability of nonlinear system.
Unit 5	Fundamentals of Lyapunov Theory
	Equilibrium points, concept of stability, linearization and local stability, Lyapunov's
	Direct method: positive definite functions and Lyapunov functions, equilibrium point
	theorems, System Analysis based on Lyapunov's Direct Method: Lyapunov analysis of
	LTI systems, Krasovski's method, the variable gradient method, physically motivated Lyapunov functions, Performance analysis.
Toyt /Dofe	erence Books:
1.	K. Ogata, "Modern Control Engineering", Fourth Edition, Prentice Hall of India,
	2002.
2.	G. Franklin, J. D. Powell and A. E. Naeini, "Feedback Control of Dynamic Systems", Fourth Edition, Pearson Education, 2002.
3.	J. Nagrath and M. Gopal, "Control System Engineering", Second Edition, Wiley Eastern
	Limited, Sixteenth reprint 1990.
4.	M. Gopal, "Control Systems, Principles and Design", Second Edition, TMH, New Delhi, 2002.
5.	B. C. Kuo, "Automatic Control Systems", Seventh Edition, Prentice Hall of India, New Delhi, 2002.
6.	J. E. Slotine and W. Li, "Applied Nonlinear Control", Prentice Hall International, 1991.
7.	A. Tewari, "Modern Control Design with MATLAB and SIMULINK", John Wiley and
	Sons, Ltd., 2002.
8.	B. Friedland, "Control System Design: An Introduction to State-space
	Methods",McGraw Hill International Edition, Singapore, 1987.
Term Wo	
It will cons	sist of at least eight experiments/assignments/programs based on above syllabus.
	3 1 , 3 , 1 3

PCC-IN4	PCC-IN402 Chemical and Analytical Instrumentation				
Teaching	schen	ne:		Examination scheme:	
Lectures		3	hrs/week	Theory	
Tutorials		0	hrs/week	In Semester Evaluation : 20 Marks	
Practical		0	hrs/week	Mid Semester Examination : 30 marks	
Credits		3	-	End Semester Examination : 50 marks	
Course ob	jectiv	es:			
1.	Iden	tify the	interferences	in chemical and instrumental analysis and assess the	
	sources of error.				
2.	Integrate a fundamental understanding of the underlining physics principles as they				
	relat	e to spe	cific instrumei	ntation used for atomic, molecular, and mass spectrometry,	

	magnetic resonance spectrometry and chromatography.
3.	Distinguish, compare and select methods for elemental and molecular analyses using
	qualitative and quantitative measurement techniques.
4.	Understand and be able to apply theory and operational principles of analytical
	instruments.
Course Ou	tcomes: After successfully completing the course students will be able to,
1.	Know the basics of Analytical Instruments like Chromatography, Gas Analyzers, and
	Spectrophotometers.
2.	Understand the use of appropriate methodology for different analytical techniques
	and recognize their advantages and limitations.
3.	Organize analytical techniques to accurately determine the elements present in the
	given sample.
4.	Analyze the theoretical principles of various separation techniques in
	chromatography and typical applications of chromatographic techniques.
5.	Evaluate the calculations related to quantitative aspects in Analytical Instruments.
6.	Create a modern library for scientific information about a topic like chemical and
	spectroscopic analysis.

PO/PSO → ↓ CO	P01	PO2	PO3	PO4	PO5	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2	PSO3	PSO4
PCC-IN402.1	3	-	1	2	-	2	2	-	-	2	2	2	3	3	3	1
PCC-IN402.2	3	2	2	2	2	2	3	ı	-	2	2	2	3	2	1	1
PCC-IN402.3	2	2	2	3	2	1	2	2	-	2	2	2	2	3	3	1
PCC-IN402.4	3	3	ı	3	3	2	1	•	1	1	2	2	3	2	2	1
PCC-IN402.5	2	1	3	3	2	1	ı	•	2	2	3	2	2	3	3	1
PCC-IN402.6	1	-	2	-	2	3	2	2	2	2	2	2	3	2	2	1
PCC-IN402	3	2	2	3	2	2	2	1	1	2	3	3	3	3	3	1

Syllabus:												
Unit 1	Introduction											
	Introduction to Chemical instrumental analysis, advantages over classical methods,											
	selection of instruments for application in industries. Classification of Instrumental											
	methods. Interaction of radiation with matter, concept of design of analytical											
	instrument.											
Unit 2	Chromatography											
	Introduction, definitions, classification, Gas chromatography apparatus, details of											
	different parts, applications, factors affecting separation. HPLC-Instrumentation,											
	Sample introduction, Separation Column, Detectors.											
Unit 3	Absorption and emission spectroscopy											
	Laws of Photometry, atomic energy levels, vibrational energy level, Raman Effect											
	nuclear spin behavior, electron spin behavior, Atomic Absorption Spectroscopy:											
	Principle and working of absorption spectroscopy, hollow cathode lamp, atomizer,											
	back-ground correction. Atomic Emission Spectroscopy: Principle, types, Flame											
	photometer, DC arc and AC arc excitation, plasma excitation.											
Unit 4	Ultraviolet and Visible Spectrometry											
	Instrumentation radiation sources, detectors, Readout module filters,											

	Managhramatara Managhramatar performance Crating Managhramatar gyatama
	Monochromators, Monochromator performance, Grating Monochromator systems, Instruments for absorption Photometry.
IIi. F	i i
Unit 5	X-ray Spectroscopy
	A. X-ray spectroscopy: production of X-rays spectra. Instrumental methods, detectors,
	direct absorption, fluorescence methods, X-ray diffraction. Bragg's law, Auger
	emission spectroscopy.
	B. Radiation detectors: Ionization chamber, Geiger-Muller counter, proportional
	counter, scintillation counters.
Unit 6	Mass Spectrometry
	Mass Spectrometry: Components of mass spectrometers, Resolution, Mass
	spectrometers, Interfacing Chromatography and Mass spectrometry, Quantitative
	analysis of mixtures, use of stable isotopes, leak detection correlation of mass spectra
	with molecular structure
Text/Ref	erence Books:
1.	Instrumental Methods of Analysis, Willard, Merritt, Dean, Settle, CBS Publishers &
	Distributors, New Delhi, Seventh edition.
2.	Instrumental Methods of Chemical Analysis, Galen W. Ewing, McGraw-Hill Book
	Company, Fifth edition
3.	Principles of Instrumental Analysis, Skoog, Holler, Nieman, Saunders College
	Publishing, 1998.
4.	Handbook of Analytical Instruments, Khandpur R. S., Tata McGraw-Hill Publication
	1989.
5.	Instrumental Methods of Chemical Analysis By Chatwal G. R. and Anand S, Himalya
	Publishing House 1998.
6.	Undergraduate Instrumental Analysis by James W. Robinson et.al., CRC Press Seventh
0.	Edition 2014.
	Lution 2011.

PCC-IN4	103	Biome	edical Insti	rumentation								
Teaching	schen	ne:		Examination scheme:								
Lectures		3	hrs/week	Theory								
Tutorials		0	hrs/week	In Semester Evaluation : 20 Marks								
Practical		2	hrs/week	Mid Semester Examination : 30 marks								
Credits		4		End Semester Examination : 50 marks								
Course ob	jectiv	es:										
1.	With widespread use and requirements of medical instruments, this course gives											
		knowledge of the principle of operation and design of biomedical instruments.										
2.	It att	It attempts to render a broad and modern account of biomedical instruments.										
3.	It giv	es the ir	itroductory ide	ea about human physiology system which is very								
	impo	ortant wi	th respect to d	esign consideration.								
Course Ou	ıtcom	es: After	successfully c	ompleting the course students will be able to,								
1.	Und	erstand l	oiomedical inst	rumentation, with transducer, electrode used.								
2.	Stud	y Electro	graphs, Physic	ological pressure measurements, Respiratory system.								
3.	Stud	y Instrui	nentation for r	neasuring Brain parameters.								
4.	The	Students	will have a cle	ar knowledge about human physiology system.								
5.	They	will hav	ve knowledge o	of the principle operation and design and the background.								
6.	Knov	wledge	of biomedical	instruments and specific applications of biomedical								
	engi	neering.										

PO/PSO → ↓ CO	PO1	PO2	PO3	PO4	PO5	P06	P07	P08	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
PCC-IN403.1	2	2	3	2	2	1	-	1	2	3	2	2	3	3	2	2
PCC-IN403.2	3	3	3	1	3	ı	-	2	2	3	3	2	3	2	2	2
PCC-IN403.3	3	-	-	2	2	•	-	•	2	-	3	2	3	2	2	1
PCC-IN403.4	3	3	3	2	3	•	-	1	3	2	2	1	3	1	1	1
PCC-IN403.5	3	2	3	2	3	•	-	2	2	1	2	2	3	1	3	1
PCC-IN403.6	3	3	2	3	3	-	-	3	3	2	3	2	3	1	3	1
PCC-IN403	3	3	3	2	3	-	-	2	3	2	3	2	3	2	3	2

Syllabus:	
Unit 1	Introduction, Electrodes and Transducers for Biomedical measurements
	Biomedical instrumentation, Introduction to human body systems, Cell, Electrophysiology, Biomedical signals and their ratings and features, The body as a control system. Types of Electrodes for Biophysical sensing, Transducers used in Biomedical Instrumentation.
Unit 2	Bioelectric Amplifiers
	Operational amplifiers, High-impedance PH probe amplifier, Circuit for driving large capacitive loads, Low-droop positive peak detector, Multiple input amplifier, Differential amplifier, Instrumentation amplifier with NPN and FET inputs, PH probe electrometer instrumentation amplifier, Bridge amplifier with 1 Hz low pass filter, Hot wire anemometer thermistor circuit, 4 ma to 20 ma current loop bridge transmitter, load cell weighing scale instrumentation amplifier, Input protection circuit, signal processing circuits, Offset null methods, Auto-zero amplifier, Isolation amplifier.
Unit 3	Bioelectrical Signals ECG, EEG, EMG
	The heart as a potential source, the ECG waveform, standard lead system, ECG preamplifier, Defibrillator protection circuit, Electrosurgery unit interference filter, multichannel physiological monitoring system, five patient electrode (6-lead) ECG system, QRS and pacer pulse detector system, ECG mechanism, patient cables, ECG machine maintenance, ECG faults and trouble shooting. Organization of the nervoussystem, the neuron, cerebral angiography, computerized axial tomography (CAT), EEG, EEG electrodes and the 10-20 system, EEG amplitude and frequency bands, EEG diagnostic uses, EEG amplifiers, EEG telemetry systems.EMG.
Unit 4	Physiological pressure measurements&Cardiovascular Measurements
	Pressure measurements, blood pressure measurements, Oscillometric and ultrasonic Noninvasive pressure measurements, Direct methods (H2o manometers), pressure transducers, pressure amplifiers Calibration methods, systolic, diastolic and mean detector circuits, pressure differentiation (dp/dt) circuits. Automatic zero circuits, practical problems in pressure monitoring. Cardiac output measurement, Dilution methods, Input circuit for a thermos dilution cardiac output computer, Right side heart pressures, Plethysmography, Blood flow measurements, phonocardiography, Vectorcardiogaphy (VCG). Defibrillator, Defibrillator circuits, Cardioversion, Testing Defibrillators, Pacemakers, Heart lung machines, Audiometers, Hearing aids, Artificial kidney, endoscope,
	Different therapetic instruments (electronic pain killer, ultrasound therapy)

Unit 5	Respiratory system
	Human respiratory system, Gas laws, internal (cellular) respiration, External (Lung) respiration, Organs of respiration, Mechanics of breathing, parameters of respiration, regulation of respiration, Unbalanced and diseased stages, Major measurements of pulmonary functions, Respiratory Instrumentation: Respiratory transducers and instruments, spirometers, Respiratory therapy equipment, oxygen therapy, artificial mechanical ventilator.
Unit 6	Radiology and nuclear Medicine equipment's
	Physics of sound waves, Ultrasound energy, ultrasound transducer, Types and uses of
	X-Ray and Nuclear Medicine equipment's. Generation of X-Ray in an X-Ray tube, Block
II	diagram and operation of X-Ray machine.
Unit 7	Electrical safety in the Medical environment
	Definition of electrical safety, Macro shock and micro shock, Design considerations for reducing electric hazards, Line isolation system, Equipotential grounding systems, Ground fault interrupters, Proper power wiring, Distribution and ground systems, specialized electric safety test equipment's.
Text/Refe	erence Books:
1.	Biomedical Instrumentation by Joseph J. Carr and John M. Brown.
2.	Handbook of Biomedical Instrumentation by R.S. Khandpur.
3.	Biomedical Instrumentation and Measurements by Leslie Cromwell, Weibell and Pfoeiffer.
4.	Medical physics and physiological measurements by B. H. Brown and R.A.Smallwood.
5.	Introduction to biomedical instrumentation by S.G. Kahalekar.
Term Wor	rk:
It will cons	sist of at least eight experiments/assignments/programs based on above syllabus.

			E	lective-III								
			Con	trol Stream								
PEC-IN	404 Proces	ss M	lodeling a	nd Optimization								
Teaching	Teaching scheme: Examination scheme:											
Lectures		3	hrs/week	Theory								
Tutorials		0	hrs/week	In Semester Evaluation : 20 Marks								
Practical 0 hrs/week Mid Semester Examination : 30 marks												
Credits 3 End Semester Examination : 50 marks												
Course objectives:												
1.												
2.	To understand	d nun	nerical metho	ds for solving algebraic and differential equations and								
	curve fitting.											
3.	To understand	d bas	ic concepts of	optimization and unconstrained optimization.								
Course O	utcome: After s	succe	ssfully comple	eting the course students will be able to,								
1.	Understand w	hat n	nathematical i	nodeling is and how it is related to physical problems.								
2.	Recognize the	need	l for modeling	, estimate necessary model complexity.								
3.	Understand ho	ow m	odels are buil	t from balances and constitutive equations.								
4.	Understand th	ie bas	sis of rate laws	s and adjustable parameters in them.								
5.	Understand N	umei	rical methods	and their applications.								
6.	Develop abilit	y to c	lo Linear and	nonlinear programming.								

PO/PSO → ↓ CO	P01	PO2	P03	PO4	P05	P06	P07	P08	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
PEC-IN404.1	3	2	3	3	3	-	-	-	-	2	-	2	3	3	3	2
PEC-IN404.2	3	3	2	3	3	-	ı	-	-	-	1	2	3	2	2	2
PEC-IN404.3	3	2	2	2	2	-	ı	-	-	2	•	2	3	1	2	1
PEC-IN404.4	3	2	2	2	3	1	ı	-	-	2	•	2	3	3	3	3
PEC-IN404.5	3	2	2	3	3	2	ı	-	-	1	•	2	3	3	3	3
PEC-IN404.6	-	-	-	-	ı	-	•	-	-	-	-	-	-	-	-	-
PEC-IN404	3	2	2	3	3	2	•	-	-	2	•	2	3	2	3	2

Syllabus:	
Unit 1	Mathematical models of Physical and Chemical systems
	Principles of formulation and applications of mathematical models. Different types of models: White box model (using fundamental physical and chemical laws), Black box model (using input-output data), Gray box model. Fundamental laws: Continuity equations, Energy equation, Equations of motion, Equations of state, Equilibrium, Chemical kinetics. Examples of models: Modeling of CSTR's isothermal, non-isothermal, constant holdup, variable holdup), Batch reactor, Ideal binary distillation column, Stirred tank heater (mixing tank), Field controlled and Armature controlled D.C. Motors.
Unit 2	Solution of algebraic equations
	Interval halving method, Newton Raphson method. Solution of differential equations: Euler method, Modified Euler method, Runge-Kutta methods (2 nd and 4 th order), Adom Bashforth method. Curve fitting: Lagrange interpolation method, Least squares method.
Unit 3	Computer simulation of chemical and physical systems
	Gravity flow tank, three isothermal CSTR's in series, non-isothermal CSTR, Batch reactor, Ideal binary distillation column.
Unit 4	Basic concepts of optimization and unconstrained optimization
	Basic concept of optimization: Continuity of functions, Concave and convex functions, Unimodal and Multimodal functions, Necessary and sufficiency condition for an extremum of an unconstrained function. Unconstrained single-variable optimization: scanning and bracketing procedures. Numerical methods: Newton, Quasi Newton and Secant methods. Unconstrained Multivariable optimization, Direct methods. Conjugate search directions, Powell's method. Indirect methods: Gradient methods, Conjugate gradient method, Newton's method. Constrained optimization: Linear and nonlinear programming. Linear programming: Degeneracies, Graphical method, Simplex method, Karmarkar algorithm. Nonlinear programming: Lagrange multiplier method, Quadratic programming.
Text/Refere	
1.	W. L. Luyben, "Process, Modeling, Simulation and Control for Chemical Engineers", McGraw Hill Publications.
2.	T. F. Edgar, D. M. Himmelblau, "Optimization of Chemical Processes", McGraw Hill Publications.
3.	B. S. Grewal, "Higher Engineering Mathematics", Khanna Publications.

			Con	trol Stream							
PEC-IN	405 Opt	timal a	nd Robus	t Control							
Teaching	g scheme:			Examination scheme:							
Lectures		3	hrs/week	Theory							
Tutorials		0	hrs/week	In Semester Evaluation : 20 Marks							
Practical		0	hrs/week	Mid Semester Examination : 30 marks							
Credits		3	·	End Semester Examination : 50 marks							
Course o	bjectives:			,							
1.	To provide a basic knowledge of the theoretical foundations of optimal control.										
2.	To develo	op the s	kill needed to	design controllers using available optimal control							
	Theory an	ıd softwa	re.								
Course O	utcome: Af	ter succe	essfully comple	eting the course students will be able to,							
1.	Design an	d implen	nent system id	entification experiments.							
2.	Use input models.	t-output	experimental	data for identification of mathematical dynamical							
3.	Use singu	lar value	techniques to	analyze the robustness of control systems.							
4.	Incorpora control sy	_	-	based robustness specifications into multivariable							
5.	Use H-infi	nity met	hods to design	robust controllers.							
6.	Explain th		ages and disac	dvantages of robust control relative to other control							

PO/PSO → ↓ CO	P01	PO2	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2	PSO3	PSO4
PEC-IN405.1	3	2	3	2	_	_	_	_	2	1	2	2	3	2	2	3
PEC-IN405.2	3	2	2	2	3	1	-	-	1	1	2	1	3	2	2	2
PEC-IN405.3	3	3	2	3	2	2	-	-	-	-	-	2	3	2	2	2
PEC-IN405.4	3	3	-	2	2	2	-	-	2	-	1	2	3	2	3	2
PEC-IN405.5	3	3	2	3	1	-	-	-	•	2	ı	2	3	2	2	2
PEC-IN405.6	3	3	2	2	2	-	-	-	3	2	1	2	3	2	2	1
PEC-IN405	3	2	2	2	2	2	-	-	2	2	2	2	3	2	2	2

Syllabus:	
Unit 1	Linear Quadratic Control
	The Linear Quadratic Regulator (LQR) problem: LQR solution using the minimum principle, Generalization of LQR; LQR properties with classical interpretations; Optimal observer design- Kalman-Bucy filter: Problem formulation and Solution, The Linear Quadratic Gaussian (LQG) problem: Introduction, LQG problem formulation and solution, Performance and Robustness of optimal state feedback, Loop Transfer Recovery (LTR).
Unit 2	Robust H-infinity Control
	Introduction, Critique of LQG, Performance specification and robustness: Nominal performance of feedback system; Nominal performance:Multivariable case, Novel problem formulation of classical problem, Modeling uncertainty, Robust stability, Mathematical background: Singular Value Decomposition. (SVD); Singular values and matrix norms; The supremum of functions, Norms and spaces

Unit 3	H2 Optimization and Loop Transfer Recovery (LTR) Control
02200	A brief history, Notation and terminology, The two-port formulation of control
	problems; controlproblem formulation and assumptions; Problem solution,
	Weights in control problems, Design example.
Unit 4	Robust Control
	The Parametric Approach: Stability theory via the boundary crossingtheorem, The stability of a line segment, Interval polynomials: Kharitonov's theorem for real and complex polynomials, Interlacing and Image set interpretations, Extremal properties of the Kharitonov polynomial, Robust-state feedback stabilization, Schurstability of interval polynomials, The Edge theorem, The Generalized Kharitonov theorem, State space parameter perturbations, Robust stability of Interval matrices, Robustness using the Lyapunov approach, Robust parametric stabilization.
Text/Refere	
1.	J. M. Maciejowski, Multivariable Feedback Design, Addison-Wesley Publishing
1.	Company, 1989.
2.	H. Kwakernaak and R. Sivan, Linear Optimal Control Systems, Wiley-Interscience,1972.
3.	B. D. O. Anderson and J. B. Moore, Linear Optimal Control, Prentice-Hall, 1990.
4.	S. P. Bhattacharya, H. Chapellat and L. H. Keel, Robust Control: The Parametric Approach, Prentice-Hall, PTR, NJ07458, 1995.
5.	K. Zhou, J. C. Doyle and K. Glover, Robust and Optimal Control, Prentice-Hall, NJ07458, 1996.
6.	J. Ackermann, Robust Control: Systems with Uncertain Physical Parameters, Springer-Verlag, London, 1993.
7.	F. L. Lewis and V. L. Syrmos, Optimal Control, Second Edition, John Wiley and Sons,Inc. 1995.

			Ir	ndustrial Stream							
PEC-IN	PEC-IN406 Building Automation System										
Teaching	scher	ne:		Examination scheme:							
Lectures		3	hrs/week	Theory							
Tutorials		0	hrs/week	In Semester Evaluation : 20 Marks							
Practical		0	hrs/week	Mid Semester Examination : 30 marks							
Credits		3		End Semester Examination : 50 marks							
Course ob	jectiv	ves:									
1.			and about the bation protocols f	ouilding automation and its management system, different or BAS.							
2.	Stud	y about	the security an	id safety system in smart building.							
3.	Sugg build	•	able possibiliti	es to integrate systems and its managements for intelligent							
4.	Stud	y of ligh	ting control sy	stem, PA system and EPBX systems.							
Course ou	tcom	es: Afte	r successfully c	completing the course students will be able to:							
1.	Get syste		wledge of basi	ic fundamentals of Building Automation and management							
2.	Desc	cribe B	AS Communica	ation standards, Internet technologies used in building							

	automation such as BACnet, LonWorks, Modbus, PROFIBUS and EIB.
3.	Employ different kinds of systems to develop optimized way of air- conditioning, ventilation, heating, cooling and central chilling.
4.	Devise Lighting- control system using standard lighting control protocols, common automation protocols for energy management and lighting control so as to achieve typical benefits of BAS.
5.	Support building management function by providing security and safety systems to people and equipment.
6.	Design a total building management system to provide a individual a highly efficient, comfortable, convenient and safe environment by satisfying four fundamental demands Structure, System, Service and management and optimizing their interrelationship.

PO/PSO → ↓ CO	P01	PO2	P03	PO4	P05	P06	PO7	P08	P09	PO10	P011	PO12	PSO1	PSO2	PSO3	PSO4
PEC-IN406.1	3	-	-	-	-	2	1	-	-	-	-	2	3	3	2	2
PEC-IN406.2	3	1	-	-	1	2	1	-	ı	-	ı	2	3	3	1	2
PEC-IN406.3	3	-	1	-	2	3	2	-	ı	-	ı	2	3	2	2	2
PEC-IN406.4	3	-	2	1	1	3	1	-	ı	ı	•	2	3	1	1	1
PEC-IN406.5	3	1	1	1	2	2	-	1	ı	ı	ı	2	2	2	2	1
PEC-IN406.6	2	-	3	-	ı	2	1	1	ı	ı	ı	2	2	1	2	1
PEC-IN406	3	1	2	1	2	2	1	-	-		-	2	3	2	2	2

Syllabus:	
Unit 1	Introduction to intelligent buildings
	Introduction to intelligent buildings Definitions of intelligent building, Intelligent architecture and structure, Facilities management vs. intelligent buildings, Technology systems and evolution of intelligent buildings, What is BAS? The progress of BAS, Programming and monitoring platforms and environment, Building management functions.
Unit 2	BAS communication standards
	BAS communication standards, Internet technology and their applications in BAS Background and problems, BACnet and its features, LonWorks and its features, Modbus and its features, PROFIBUS and its features, EIB and its features, Compatibility of different open protocol standards, Integration at management level, An overview of applications of Internet technologies in BAS, Use of Internet technologies at automation level, Use of Internet technologies at management level, Convergence networks and total integration.
Unit 3	Control and optimization of air- conditioning systems
	Control and optimization of air- conditioning systems and central chilling systems Typical control loops of the air- conditioning process, Control of CAV systems, Control of VAV systems, Outdoor air ventilation control and optimization, An overview of optimal control methods used for HVAC systems, Optimal control of air- side systems, Basic knowledge of chillers, Chiller capacity control and safety interlocks, Chillers and central chilling system configurations, Chiller performance and optimal control, Optimal control of heat- rejection systems, Optimal set- point reset of chilled water supply temperature, Sequence control of multiple chiller plants, Pump speed and sequence control of chilled water systems.

Unit 4	Lighting- control systems& Lighting Protocols
	Lighting- control systems Purpose of lighting- control systems, Basic components of
	lighting and lighting- control systems, Systems based on standard lighting- control
	protocols, Systems based on common automation protocols, Strategies for energy
	management and lighting control.
Unit 5	Security and safety control systems
	Security and safety control systems CCTV systems, Access- control systems, Burglar
	alarm systems, Fire alarm systems, System integration and convergence. Biometrics,
	issues with biometrics, cabling, video door phone, intrusion detection system-sensors,
	working principles, access control system programming.
Unit 6	PA System
	PA System and EPBX System Components of public address system like speakers,
	indicators, control panels, switches. Design aspect of PA System, design consideration
	of EPBX System and its component. Integration of all above systems to design a total
	building management system.
Text/Refe	rence Books:
1.	Shengwei Wang, 'Intelligent buildings and automation system'.
2.	Reinhold A. Carlson, Robert A. Di Giandomenico, 'Understanding Building Automation
	system: Direct Digital Control, Energy Management, Life Safety, Security Access
	control, Lighting Building', First Edition.
3.	Jim Sinopoli, 'Smart Buildings', Fairmount Press, March 8, 2007.
4.	Barney Capehart, 'Web Based Enterprise Energy and Building Automation systems'
	C.E.M.
5.	Anto Budiardjo, 'Building Automation Beyond the simple web server', Clasma Evens,
	Inc.
6.	Paul Ehrlich, 'What is an Intelligent Building?', Building Intelligent Group.

			Indus	strial Stream
PEC-IN	407 Ind	ustria	l safety an	d Hazards
Teaching	scheme:			Examination scheme:
Lectures		3	hrs/week	Theory
Tutorials		0	hrs/week	In Semester Evaluation : 20 Marks
Practical		0	hrs/week	Mid Semester Examination : 30 marks
Credits		3	•	End Semester Examination : 50 marks
Course ol	bjectives:			
1.	To provid	e compre	ehensive know	rledge of safety and hazards aspects in industries and
	the mana	gement o	f hazards.	
2.	To analyz	e industr	ial hazards an	d its risk assessment.
Course O	utcome: Af	ter succe	essfully comple	eting the course students will be able to,
1.	Analyze tl	ne effect	of release of to	oxic substances.
2.	Understar	nd the ind	dustrial laws, r	egulations and source models.
3.	Apply the	methods	of prevention	of fire and explosions.
4.	Understar	nd the re	lief and its sizi	ng methods.
5.	Understa	nd the mo	ethods of haza	rd identification and preventive measures.
6.	Understa	nd Preve	ntive and prote	ective management.

PO/PSO → ↓ CO	P01	PO2	P03	PO4	P05	P06	P07	P08	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
PEC-IN407.1	3	2	2	1	2	3	2	-	-	2	2	2	3	2	3	1
PEC-IN407.2	3	1	2	2	2	3	1	2	ı	2	2	2	3	1	3	1
PEC-IN407.3	3	2	2	2	2	3	3	-	ı	2	2	2	3	2	3	1
PEC-IN407.4	3	1	2	-	1	3	-	1	1	1	2	2	3	1	2	1
PEC-IN407.5	3	2	2	2	2	3	2	-	2	2	3	2	3	3	2	1
PEC-IN407.6	3	1	2	2	2	3	-	-	2	2	2	2	3	2	2	1
PEC-IN407	3	2	3	2	2	3	2	1	1	2	3	3	3	2	3	1

Syllabus:	
Unit 1	Fire and Explosion
	Introduction, Industrial processes and hazards potential, mechanical electrical, thermal and process hazards. Safety and hazards regulations, Industrial hygiene. Factories Act, 1948 and Environment (Protection) Act, 1986 and rules thereof. Shock wave propagation, vapour cloud and boiling liquid expanding vapours explosion (VCE and BLEVE), mechanical and chemical explosion, multiphase reactions, transport effects and global rates.
Unit 2	Relief Systems
	Preventive and protective management from fires and explosion, inerting, static electricity, passivation, ventilation, and sprinkling, proofing, relief systems, relief valves, flares, scrubbers.
Unit 3	Toxicology and Hazards identification
	Hazards identification, toxicity, fire, static electricity, noise and dust concentration; Material safety data sheet, hazards indices, Dow and Mond indices, hazard operability (HAZOP) and hazard analysis (HAZAN).
Unit 4	Leaks and Leakages
	Spill and leakage of liquids, vapors, gases and their mixture from storage tanks and equipment; Estimation of leakage/spill rate through hole, pipes and vessel burst; Isothermal and adiabatic flows of gases, spillage and leakage of flashing liquids, pool evaporation and boiling; Release of toxics and dispersion. Naturally buoyant and dense gas dispersion models; Effects of momentum and buoyancy; Mitigation measures for leaks and releases.
Unit 5	Case Studies
	Flixborough, Bhopal, Texas, ONGC offshore, HPCL Vizag and Jaipur IOC oil storage depot incident; Oil, natural gas, chlorine and ammonia storage and transportation hazards.
Text/Refer	rence Books:
1.	Crowl D.A. and Louvar J.F., "Chemical Process Safety: Fundamentals with Applications", 2nd Ed., Prentice Hall.2001.
2.	Mannan S., "Lee's Loss Prevention In the Process Industries", Vol.I, 3 rd Ed., Butterworth Heinemann 2004.
3.	Mannan S., "Lee's Loss Prevention in the Process Industries",Vol.II, 3 rd Ed., Butterworth Heinemann 2005.
4.	Mannan S., "Lee's Loss Prevention in the Process Industries",Vol.III,3 rd Ed., Butterworth Heinemann 2005.

			Instrum	entation Stream
PEC-IN	408 Vir	tual In	strumenta	ation
Teaching	scheme:			Examination scheme:
Lectures		3	hrs/week	Theory
Tutorials		0	hrs/week	In Semester Evaluation : 20 Marks
Practical		0	hrs/week	Mid Semester Examination : 30 marks
Credits		3		End Semester Examination : 50 marks
Course of	bjectives:			
1.	To under	stand th	e principles o	of operation and limitations of common measuring
	instrumer	nts.		
2.	Tomodel	transduc	ers and their o	perating conditions.
3.	To design	systems	for the acquis	ition, analysis, and communication of data.
4.	To gain av	wareness	of economic a	and social aspects of instrumentation systems.
Course O	utcome: Af	fter succe	essfully comple	eting the course students will be able to,
1.	Apply the	knowled	lge of LabVIEV	V programming for simulating and analyzing the data.
2.	Create ap	plication	s that uses pl	ug in DAQ boards and built in analysis functions to
	process th	ie data.	•	-
3.	Build app	lications	that use gene	eral purpose interface bus and Serial communication
	Interface.		3	
4.	Design an	d analyz	e various appli	ications using signal Processing tool kit.
5.	Engage in	designir	ng, implementi	ng, analyzing and demonstrating an application using
	tools in av	zailable i	n LabVIEW thr	ough an open ended experiment.

PO/PSO → ↓ CO	PO1	PO2	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2	PSO3	PSO4
PEC-IN408.1	3	-	-	-	1	-	•	-	-	-	-	1	3	3	2	-
PEC-IN408.2	3	-	-	-	1	-	1	-	•	•	-	1	3	3	2	-
PEC-IN408.3	1	3	2	2	3	-	1	-	•	•	-	2	3	3	3	2
PEC-IN408.4	1	2	3	1	3	-	ı	-	ı	ı	-	2	3	3	3	2
PEC-IN408.5	3	2	3	2	3	-	ı	-	ı	ı	-	2	3	3	3	1
PEC-IN408.6	1	2	1	-	2	-	-	-	-	-	-	1	2	2	2	-
PEC-IN408	2	2	2	2	2	-	-	-	•	•	-	2	3	3	3	2

Syllabus:	
Unit 1	Virtual Instrumentation
	Historical perspective, advantages, Need of VI, Advantages of VI, Define VI, blocks diagram and architecture of a virtual instrument, data-flow techniques, graphical programming in data flow, and comparison with conventional programming. Development of Virtual Instrument using GUI, Real-time systems, Embedded Controller, OPC, HMI / SCADA software, Active X programming.
Unit 2	VI programming techniques
	VIs and sub-VIs, loops and charts, arrays, clusters and graphs, case and sequence structures, formula nodes, local and global variables, string and file I/O, Instrument Drivers, Publishing measurement data in the web.
Unit 3	Data acquisition basics

T	
	Introduction to data acquisition on PC, Sampling fundamentals, Input/output techniques and buses. ADC, DAC, Digital I/Ocounters and timers, DMA, Software and hardware installation, Calibration, Resolution, Data acquisition interface requirements.
Unit 4	VI Interface requirements
	Common Instrument Interfaces: Current loop, RS 232C/RS485, GPIB. Bus Interfaces: USB, PCMCIA, VXI, SCSI, PCI, PXI, Fire wire. PXI system controllers, Ethernet control of PXI. Networking basics for office and Industrial applications, VISA and IVI.
Unit 5	VI toolsets
	Distributed I/O modules. Application of Virtual Instrumentation: Instrument Control, Development of process database management system, Simulation of systems using VI, Development of Control system, Industrial Communication, Image acquisition and processing, Motion control.
Text/Refere	ence Books:
1.	Gary Johnson, "LabVIEW Graphical Programming", 2nd Edition, McGraw Hill, New York, 1997.
2.	Lisa K. wells & Jeffrey Travis, "LabVIEW for everyone", Prentice Hall, New Jersey, 1997.
3.	Jane W. S. Liu, "Real-time Systems", Pearson Education India, 2001.
4.	Jean J. Labrosse, "Embedded Systems Building Blocks:Complete and Readyto- use Modules in C", 2nd Edition, CMP Books, 1999.
5.	Kevin James, "PC Interfacing and Data Acquisition: Techniques for Measurement, Instrumentation and Control", Newnes, 2000.
6.	Jean J. Labrosse, "MicroC/OS-II. The Real-time Kernal", CMP Books, 2002.
7.	Robert H. Bishop, "Learning with LabVIEW 7 Express", Pearson Education, 2005 (Indian Edition).
8.	Sanjay Gupta and Joseph John, "Virtual Instrumentation using LabVIEW", Tata McGraw-Hill, New Delhi, 2005.

Instrumentation Stream							
PEC-IN409 SMART and Wireless Instrumentation							
Teaching scheme: Examination scheme:							
Lectures		3	hrs/week	Theory			
Tutorials		0	hrs/week	In Semester Evaluation : 20 Marks			
Practical		0	hrs/week	Mid Semester Examination : 30 marks			
Credits		3		End Semester Examination : 50 marks			
Course ol	bjectives:	l					
1.	To introd	uce the to	echnologies an	d applications for the emerging domain of wireless			
	sensor ne	tworks.					
2.	To impart	knowled	dge on the desi	ign and development of the various layers in the WSN			
	protocol s	tack.					
3.	To elabor	ate the v	arious issuesre	elated to WSN implementations.			
4.	To familia	To familiarize the students with the hardware and software platforms used in the					
design WSN.							
Course O	utcome: Af	ter succe	essfully comple	eting the course students will be able to,			

1.	Ability to analyze WSN with respect to various performance parameters in the protocol stack.
2.	Ability to understand MAC algorithms and Network protocols used for specific WSN
	applications.
3.	Design and develop a WSN for a given application.
4.	Design self-diagnosing instrumentation system.
5.	Understand the issues in power efficient systems.
6.	Design wireless instrumentation systems for the given requirement.

PO/PSO → ↓ CO	PO1	PO2	P03	P04	PO5	P06	P07	P08	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
PEC-IN409.1	3	-	1	-	-	-	-	-	•	-	•	2	3	3	2	1
PEC-IN409.2	3	2	2	-	1	-	-	-	•	-	•	2	3	3	2	1
PEC-IN409.3	3	3	ı	2	1	-	2	-	ı	-	ı	2	3	2	2	1
PEC-IN409.4	3	2	2	2	2	1	2	-	1	-	ı	2	3	3	2	2
PEC-IN409.5	3	2	3	2	3	1	2	-	1	-	ı	2	3	3	2	2
PEC-IN409.6	3	-	-	-	-	-	-	-	-	-	-	2	3	3	2	1
PEC-IN409	3	3	3	3	3	3	3		3			3	3	3	3	3

Syllabus:								
Unit 1	Sensor Classification-Thermal sensors							
	Humidity sensors-Capacitive Sensors-Planar Inter digital Sensors-Planar							
	Electromagnetic Sensors-Light Sensing Technology-Moisture Sensing Technology							
	Carbon Dioxide (CO2) sensing technology-Sensors Parameters.							
Unit 2	Frequency of Wireless communication							
	Development of Wireless Sensor Network based Project-Wireless sensor based on Microcontroller and communication device-Zigbee Communication device.							
Unit 3	Power sources							
	Energy Harvesting -Solar and Lead acid batteries-RF Energy /Harvesting-Energy							
	Harvesting from vibration-Thermal Energy Harvesting-Energy Management							
	Techniques-Calculation for Battery Selection.							
Unit 4	Tedes IEEE 1412							
	Brief description of API mode data transmission-Testing the communication							
	between coordinator and remote XBee-Design and development of graphical user							
	interface for receiving sensor data using C++; A brief review of signal processing							
	techniques for structural health monitoring.							
Unit 5	WSN based physiological parameters monitoring system							
	Intelligent sensing system for emotion recognition-WSN based smart power							
	monitoring system.							
•	ence Books:							
1.	Subhas Chandra Mukhopadhyay, "Smart Sensors, Measurement and							
	Instrumentation", Springer Heidelberg, New York, Dordrecht London, 2013.							
2.	Halit Eren, "Wireless Sensors and Instruments: Networks, Design and							
	Applications", CRC Press, Taylor and Francis Group, 2006.							
3.	Uvais Qidwai, Smart Instrumentation: A data flow approach to Interfacing",							
	Chapman & Hall; 1st Ed., December 2013.							

Signal Processing Stream							
PEC-IN410 Advanced Digital Signal Processing							
Teaching	scheme:			Examination scheme:			
Lectures		3	hrs/week	Theory			
Tutorials		0	hrs/week	In Semester Evaluation : 20 Marks			
Practical		0	hrs/week	Mid Semester Examination : 30 marks			
Credits		3	•	End Semester Examination : 50 marks			
Course o	bjectives:						
1.	To provide complete view of Digital Signal Processing subject with conceptualclarity in first few lectures.						
2.	To study fu	ındameı	ntals of multira	ate signal processing and filter banks.			
3.	To study the fundamentals of wavelet transform, multiresolution formulation of wavelet transform and implementation of wavelet transform using filter banks.						
4.	To develop the foundation for modeling of signal, linear prediction and estimation theory.						
Course O		er succe	ssfully comple	eting the course students will be able to,			
1.	An ability to apply knowledge of mathematics, science, and engineering to the analysis and design of digital system.						
2.		to iden	•	e and solve engineering problems in the area signal			
3.	An ability	to use th	e techniques,	skills, and modern engineering tools such as Matlab.			
4.				sciplinary teams.			
5.	An ability	to design	n a system, cor	nponents or process to meet desired needs within			
				nomic, environmental, social political, ethical, health			
	and safety,	manufa	cturability and	d sustainability.			
6.	An ability	to use	the modern	engineering tools such as digital processors with			
	simulators						

PO/PSO → ↓ CO	P01	PO2	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2	PSO3	PSO4
PEC-IN410.1	3	3	3	3	3	-	-	3	3	3	3	3	3	2	3	-
PEC-IN410.2	3	2	3	1	3	-	-	2	3	3	3	3	3	1	3	-
PEC-IN410.3	3	3	3	2	3	-	-	2	3	3	3	3	3	•	2	1
PEC-IN410.4	3	2	3	3	1	-	-	2	2	3	3	3	3	2	3	-
PEC-IN410.5	3	3	3	2	3	3	-	3	3	3	3	3	3	1	2	1
PEC-IN410.6	3	2	3	1	1	-	-	2	2	2	2	3	3	1	2	1
PEC-IN410	3	3	3	3	3	1	-	3	3	3	3	3	3	1	3	1

Syllabus:	
Unit 1	Fundamentals of DSP
	Background and review discrete time random signals.Quantization effects: - Effect of round of noise in digital filter, zero input limit cycles infixed point realization of IIR digital filters. Effects of finite register length in DFT computations.
Unit 2	Multirate Digital Signal Processing
	Fundamentals of Multirate systems, Basic multirate operations, Decimation,
	interpolation, filter design and implementation of sampling rate conversion,

	polyphase filter structures, time variant filter, structures, multistage									
	implementation of sampling rate conversion of BP signals, sampling rate									
	conversion by an arbitrary factor, interconnection of building blocks, polyphase									
	representation, multistage implementations.									
Unit 3	Wavelet Transform									
	Introduction to wavelets, wavelets and wavelet expansion systems, discrete									
	wavelet transform, multiresolution formulation of wavelet systems, Haar Wavelet									
	and other wavelet representations, scaling function, wavelet functions, Parseval's									
	theorem.									
Unit 4	Multirate Filter Banks									
	Maximally decimated filter banks, errors created in QMF banks, simple alias free									
	QMF system, power symmetric filter banks, M channel filter banks, polyphase									
	representation, PR systems, alias free filter banks, Linear phase PR QMF banks,									
	cosine modulated filter banks, Wavelet transform and its relation to multirate filter									
	banks, paraunitary PR filter banks, Applications of multirate signals processing									
	narrow band LPF, suband coding of speech.									
Unit 5	Linear Prediction									
	Innovations representation of a stationary random process, forward and backward									
	linear prediction, solutions of the normal equations (Levinson-Durbin algorithm									
	and Schur algorithm) Power Spectrum Estimation: Parametric and non-parametric									
	methods for power spectrum estimation.									
Unit 6	Response of linear systems									
	Response of linear systems to random process inputs. Be aware of common									
	applications of such models to communication systems, sources of noise such as									
	thermal noise, behavior of queues and particle emission systems.									
Text/Refer	ence Books:									
1.	Multirate filters and Filter banks: P. P. Vaidyanathan, PH International, Englewood									
	Cliffs.									
2.	Multirate signal Processing: Rabiner and Schafer, PH International, Englewood									
	Cliffs.									
3.	Introduction to Wavelets and Wavelet Transform: C. S. Burrus, Ramesh and A.									
	Gopinath, Prentice Hall Inc.									
4.	Digital Signal Processing: Principles, Algorithms, and Applications: J. G. Proakis and									
	D.G. Manolakis; Prentice Hall of India Ltd, 1995.									
5.	Discrete-Time Signal Processing; A. V. Oppenheim and R. W. Schafer; ; Prentice Hall									
J.	of India Ltd, 1997.									
L	VI Muni Braj 17771									

Elective-IV							
Control Stream							
PEC-IN411 Digital Control System							
Teaching scheme:			Examination scheme:				
Lectures	3	hrs/week	Theory				
Tutorials	0	hrs/week	In Semester Evaluation : 20 Marks				
Practical	0	hrs/week	Mid Semester Examination : 30 marks				
Credits	3	•	End Semester Examination : 50 marks				
Course objectives:							

1.	To equip the students with the basic knowledge of A/D and D/A conversion.						
2.	To understand the basics of Z- Transform.						
3.	To study the stability analysis of digital control system.						
4.	To equip the basic knowledge of digital process control design.						
Course O	Course Outcome: After successfully completing the course students will be able to,						
1.	Understand the basic sampling theory and converter.						
2.	Understand Z-transform and its properties.						
3.	Analyze signals in both time domain and Z domain.						
4.	Understand d transfer function, block diagram, and signal flow graphs.						
5.	Understand the state variable technique.						
6.	Understand the basic knowledge necessary for system stability.						

PO/PSO →																-
↓ CO	P01	PO2	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2	PSO3	PSO4
PEC-IN411.1	3	2	3	2	-	-	-	-	-	-	-	2	3	2	2	3
PEC-IN411.2	3	2	2	2	3	-	-	-	-	-	-	1	3	2	2	2
PEC-IN411.3	3	3	2	3	2	-	-	-	ı	-	1	2	3	2	2	2
PEC-IN411.4	3	3	-	2	2	-	-	-	ı	-	ı	2	3	2	3	2
PEC-IN411.5	3	3	2	3	1	-	-	-	ı	-	ı	2	3	2	2	2
PEC-IN411.6	3	3	2	2	2	-	-	-	- 1	-	-	2	3	2	2	1
PEC-IN411	3	2	2	2	2	-	-	-	-	-	-	2	3	2	2	2

Syllabus:	
Unit 1	Digital control Systems
	Introduction, description of some physical systems, continuous versus digital
	control, Discrete-time signals, discrete time systems, sampling and reconstruction,
	digitizing analog controllers.
Unit 2	The Z Transforms
	Definition and evaluation of Z-Transform, mapping between the s-plane and the z-plane, the inverse z-transform, theorems of z-transform, imitation of z-transform method. The pulse transfer function, pulse, transfer function of zero order hold,
	responses between the sampling instants, signal flow graph method applied to
	digital systems, stability of digital control systems, jurystability criterion.
Unit 3	State variable analysis of digital control systems
	Introduction, state description of digital processors, state description of sampled continuous- time plant, state description of systems with dead time and sample and hold discrete state models using phase physical and canonical variables. Relation between state equation and transfer function and solution of state difference equations, controllability and observability.
Unit 4	Pole-placement design and digital state observer
	Stability improvement by state feedback, digital control systems, with state feedback, dead beat control by state feedback, design of the full order and reduced-order state observers, linear digital regulator design (Finite time and infinite time problems).
Unit 5	Design of Sampled Data Control systems
	Discretizing the differential equation of continuous PID controllers, Parameter optimized discrete control algorithms of low order, PID control algorithm through

	Z transformations, Deadbeat algorithm, Dahlin's algorithm, Digital Equivalent of convention controller, Smith Predictor algorithm, Internal Model control, Analytical Predictor Algorithm, Kalman algorithm, Algorithm of Gautam and Mutharasan, Treatment of noisy process signals.
Text/Refere	ence Books:
1.	Ogata K Discrete time control system Englewood cliffs prentice-Hall 1987.
2.	Kuo B. C. – Digital control system 2nd edition Orlando florida saunders college publishing 1992.
3.	M.Gopal- Digital control and state variable methods, Second Edition, Tata McGraw Hill 2002.
4.	M. Gopal - Digital Control Engineering Wikey eastern 1988.
5.	Houpls C. H. and G. B.Lamont – Digital control systems, McGraw Hill 1984.
6.	P. B. Deshpande and R. H. Ash – Computer Process control with advanced
7.	Control applications, Second Edition, Instrument Society of America (ISA) Publications, 1988.
8.	R. Iserman – Digital Control Systems, Vol.I; Fundamentals, Deterministic Control, Second Edition, springer- Verlag, Berlin, Heidelberg 1989.

			Cont	trol Stream						
PEC-IN	412 Adv	anced	Control S	ystems						
Teaching	scheme:			Examination scheme:						
Lectures		3	hrs/week	Theory						
Tutorials	utorials 0 hrs/week In Semester Evaluation : 20 Marks									
Practical	al 0 hrs/week Mid Semester Examination : 30 marks									
Credits	edits 3 End Semester Examination : 50 marks									
Course objectives:										
1.	. To understand the basics of mathematical modeling.									
2.	To study the stability analysis oflinear and nonlinear systems.									
3.	To unders	stand opt	imal control.							
Course O	utcome: Af	ter succe	ssfully comple	eting the course students will be able to,						
1.	At the end	l of the co	ourse students	willbe able to apply the modeling concepts.						
2.	Demonstr	ate adva	nced knowledg	ge and understanding of theory and application in						
	Control sy	stem eng	gineering.							
3.	Students	will be eq	uipped with s	tabilityanalysis of linear andnonlinear systems.						
4.	Demonstr	ate adva	nced knowleds	ge and understanding of optimal system control,						
	Nonlinear	optimiza	ation and stocl	nastic optimal control.						
5. Design, analyze and perform simulation of digital control system design and ensure										
	desired performance and stability criteria are met.									
6.	Apply mathematical and theoretical knowledge to design and model an effective									
	control system for a practical mechatronic engineering process									

PO/PSO → ↓ CO	PO1	PO2	PO3	PO4	P05	P06	P07	P08	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
PEC-IN412.1	3	2	3	2	-	-	-	-	•	-	-	2	3	2	2	3

_										•	•	•				
PEC-IN412.2	3	2	2	2	3	-	-	-	-	ı	-	1	3	2	2	2
PEC-IN412.3	3	3	2	3	2	-	-	-	-	-	-	2	3	2	2	2
PEC-IN412.4	3	3	-	2	2	-	-	-	-	-	-	2	3	2	3	2
PEC-IN412.5	3	3	2	3	1	-	-	-	-	•	-	2	3	2	2	2
PEC-IN412.6	3	3	2	2	2	-	-	-	-	•	-	2	3	2	2	1
PEC-IN412	3	2	2	2	2	-	-	-	-	-	-	2	3	2	2	2

Syllabus:	
Unit 1	Introduction
OIII I	Non-linear systems types of non-linearity, typical examples, singular points, phase plane analysis, limit cycles, linearization, describing functions. Need for model reduction, dominant pole concept. Model reduction via partial realization. Time moment matching and Pade approximation, Hankel norm model reduction.
Unit 2	Stability of Nonlinear system
	Stability concepts - equilibrium points - BIBO and asymptotic stability, Lyapunovtheory, definitions (stability and functions). Direct method of Lyapunov, application to non-linear problems. Stability analysis by describing function method –jump resonance. Frequency domain stability criteria, Popov's method and is extensions.
Unit 3	Model reference adaptive control
	Different configurations and classifications of MRAC - mathematical description - direct and indirect model reference adaptive control - MIT rule for continues time MRAC systems Lypunov approach and hyper stability approach for continuous time and discrete time MRAC systems - multivariable systems - stability and convergence studies.
Unit 4	Self-tuning regulators
	Different approaches to self-tuning - recursive parameter estimation implicit and explicit STR-LQG self-tuning - convergence analysis minimum variance and pole assignment approaches to multivariable self-tuning regulators.
Unit 5	Adaptive control
	Recent trends and applications of adaptive controlRecent trends in self-tuning robustness studies multivariable system. Model updating general-purpose adaptive regulator. Application to process control components and systems. Industrial applications.
Unit 6	Optimal control
	Optimal control problem formulation, necessary conditions of optimality, state regulator problem. Matrixriccati equation, infinite time regulator problem, output regulator and tracking problems. pontryagin's minimum principles, time, and optimal control problem. Dynamic programming. Linear quadratic regulator, model matching based on linear quadratic optimal regulator. Observer design, linear optimal filter.
Text/Refere	
1.	Chalam, V.V., "Adaptive Control Systems", Techniques & Applications, Marcel Dekker, Inc. NY and Basel. 1987.
2.	Eveleigh, V.W., "Adaptive Control and Optimisation Techniques". McGraw-Hill, 1967.
3.	Narendra and Annasamy, "Stable Adaptive Control Systems", Prentice Hall, 1989.
4.	Astry, S. and Bodson, M., "Adaptive Control", Prentice Hall,1989.

5.	M. Vidyasagar, "Nonlinear Systems Analysis", 2nd Ed., Prentice Hall, 1993.
6.	Hassan K. Khalil, "Nonlinear Systems", Third Edition, Prentice Hall, 2002.
7.	William S. Levine (Editor), "The Control Handbook(Electrical Engineering Handbook Series)", CRC Press, March 1996.
8.	Nagrath I.J., and Gopal, M., "Control system Engineering" Wiley Eastern Reprint 1995.
9.	Kirk D.E., "Optimal control theory-an introduction", Prentice Hall, N.J. 1970.
10.	Gopal. M., "Modern control system Theory", Wiley Eastern Ltd., 2 nd Edition Reprint 1995.
11.	Graham C., Goodwill, S. F. Graebe and M. E. Salgado, "Control System Design" Pearson; US edition (26 September 2000).
12.	System Design" Prentice Hall India, New Delhi, 2002.

			Indus	strial Stream							
PEC-IN	413 Cybe	r sec	urity								
Teaching	scheme:			Examination scheme:							
Lectures		3	hrs/week	Theory							
Tutorials		0	hrs/week	In Semester Evaluation : 20 Marks							
Practical		0	hrs/week	Mid Semester Examination : 30 marks							
Credits		3		End Semester Examination : 50 marks							
Course of	ojectives:		1								
1. To identify the key components of cybersecurity network architecture.											
2.	To apply cybersecurity architecture principles.										
3.	To describe risk management processes and practices.										
4.	To identify:	security	tools and hai	dening techniques.							
Course O	utcome: Afte	r succe	ssfully comple	eting the course students will be able to,							
1.				of cybercrimes, cyber laws and also how to protect from such attacks.							
2.	Highlight the continuity a		-	architecture and its relevance to systems, service							
3.	Discuss the	applica	ation of techn	iques such as defenses in depth to demonstrate how							
	controls can be selected, deployed and tested to minimize risk and impact										
4.	4. Differentiate between controls to protect systems availability and reliability; controls										
	to protect information; and controls to manage human behavior										
5.	Understand the trade-offs for functionality, usability and security										
6.	Understand	the rol	e of operation	s in monitoring, maintaining and evolving controls							

PO/PSO → ↓ CO	PO1	PO2	PO3	PO4	P05	P06	P07	P08	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
PEC-IN413.1	3	3	2	-	2	2	-	-	-	2	2	2	3	3	3	1
PEC-IN413.2	3	3	2	2	2	2	-	-	-	2	2	2	3	3	3	1
PEC-IN413.3	3	2	2	2	2	2	-	ı	ı	2	2	2	3	3	3	1
PEC-IN413.4	3	1	2	1	1	-	-	1	1	1	2	2	3	1	2	1
PEC-IN413.5	3	3	2	2	2	-	-	-	2	2	3	2	3	3	2	1

PEC-IN413.6	3	3	2	2	2	-	-	-	2	2	2	2	3	2	2	1
PEC-IN413	3	3	3	2	2	1	-	1	1	2	3	3	3	3	3	1

Syllabus:	
Unit 1	Introduction
	Pre-requisites in Information and Network Security Overview of Networking
	Concepts, Basics of Communication Systems, Transmission Media, Topology and
	Types of Networks, TCP/IP Protocol Stacks, Wireless Networks, The Internet
	Information Security Concepts, Information Security Overview: Background and
	Current Scenario, Types of Attacks,. Goals for Security, E-commerce Security,
	Computer Forensics, Steganography.
Unit 2	Security Threats and Vulnerabilities
	Overview of Security threats, Weak / Strong Passwords and Password Cracking
	Insecure Network connections, Malicious Code, Programming Bugs, Cybercrime
	and Cyber terrorism, Information Warfare and Surveillance Cryptography /
	Encryption, Introduction to Cryptography / Encryption, Digital Signature, Public
	Key infrastructure, Applications of Cryptography, Tools and techniques of
	Cryptography.
Unit 3	Security Management Practices
	Overview of Security Management, Information Classification Process, Security
	Policy, Risk Management, Security Procedures and Guidelines, Business
	Continuity and Disaster Recovery, Ethics and Best Practice, Security Laws and
	Standards, Security Assurance, Security Laws, IPR, International Standards,
	Security Audit SSE-CMM / COBIT etc.
Unit 4	Information and Network SecurityAccess Control and Intrusion Detection
	Overview of Identification and Authorization, Overview of IDS, Intrusion Detection
	Systems and Intrusion Prevention Systems, Server Management and Firewalls,
	User Management, Overview of Firewalls, Types of Firewalls, DMZ and firewall
	features.
Unit 5	Security for VPN and Next Generation Technologies
	VPN Security, Security in Multimedia Networks, Various Computing Platforms:
	HPC, Cluster and Computing Grids, Virtualization and Cloud Technology and
	Security.
Unit 6	System and Application Security
	Architectures and Models, Designing Secure Operating Systems, Controls to enforce
	security services, Information Security Models, System Security, Desktop Security,
	email security: PGP and SMIME, Web Security: web authentication, SSL and SET,
	Database Security.
	OS Security, Vulnerabilities, updates and patches, OS integrity checks, Anti-virus
	software, updates and patches, Wireless Networks and Security, Components of
	wireless networks, Security issues in wireless.
	ence Books:
1.	Cyber Security Understanding Cyber Crimes, Computer Forensics and Legal
	Perspectives by Nina Godbole and Sunit Belpure, Publication Wiley.
2.	Anti-Hacker Tool Kit (Indian Edition) by Mike Shema, Publication Mc Graw Hill.

	Ir	ndustrial Stream							
PEC-IN	414 Industrial Auto	mation and Robotics							
Teaching	scheme:	Examination scheme:							
Lectures	3 hrs/w	veek Theory							
Tutorials	0 hrs/w	veek In Semester Evaluation : 20 Marks							
Practical	0 hrs/w	week Mid Semester Examination : 30 marks							
Credits	3 End Semester Examination : 50 marks								
Course o	bjectives:								
1.	To understand basic skills	useful in identifying the concepts of automated machines							
	and equipment.								
2.	To understand the terms and phrases associated with industrial automation.								
3.	To explain the General fun-	ction of Industrial Automation Identify Safety in Industrial							
	Automation.								
4.	To identify Practical Pr	ogrammable Logic Controller Applications Categorize							
	Input/output Modules and	Wiring.							
Course O	utcome: After successfully co	ompleting the course students will be able to,							
1.	Design and conduct experir	nents to analyze the data and interpret the results.							
2.		ution for a given application related to automation.							
3.		sis to provide solutions for automation.							
4.	Design components and systems related to industrial automation with realistic								
	constraints.								
5.	Understand various Instrumentation Standard Protocols, PLC Configuration,								
	Applications and Machine a								
6.	* *	and understanding of engineering principles to manage							
	projects and in multidiscipl								

											_					
PO/PSO → ↓ CO	PO1	PO2	PO3	PO4	PO5	P06	P07	P08	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
PEC-IN414.1	3	-	-	-	1	-		-	ı	-	•	1	3	3	2	-
PEC-IN414.2	3	-	-	-	1	-	-	-	ı	-	-	1	3	3	2	-
PEC-IN414.3	1	3	2	2	3	-	-	-	ı	-	-	2	3	3	3	2
PEC-IN414.4	1	2	3	1	3	-	ı	-	ı	-	•	2	3	3	3	2
PEC-IN414.5	3	2	3	2	3	-	-	-	-	-	-	2	3	3	3	1
PEC-IN414.6	1	2	1	-	2	-	-	-	-	-	-	1	2	2	2	-
PEC-IN414	2	2	2	2	2	-	-	-	-	-	-	2	3	3	3	2

Syllabus:	
Unit 1	Introduction to Industrial Automation
	Plant wide control systems and Automation Strategy. Introduction to Industrial
	Automation, Role of automation in industries, Introduction to the types of
	manufacturing industries, Introduction to type of automation system, Benefits of
	automation. Introduction to Automation pyramid, Introduction to automation tools
	like PAC, PLC, SCADA, DCS, Hybrid DCS with reference to automation pyramid,
	Comparison of PLC, PAC, and SCADA on the basis of Performance criteria Control
	system audit, Performance criteria, Development of User Requirement
	Specifications (URS) for automation. Functional Design Specifications (FDS) for

	automation tools.
Unit 2	Instrumentation Standard Protocols
	Definition of protocol, Introduction to Open System Interconnection (OSI) model,
	Communication standard (RS232, RS485), Modbus (ASCII/RTU), Introduction to
	thirdparty interface, concept of OPC (Object linking and embedding for Process
	Control), HART Protocol: Introduction, frame structure, programming,
	implementation examples, benefits, advantages and limitation. Foundation Fieldbus
	H1: Introduction, frame structure, programming, implementation examples,
	benefits, advantages and limitation. Comparison of HART, Foundation Fieldbus,
	Devicenet, Profibus, Controlnet, Industrial Ethernet.
Unit 3	PLC Configuration
	Applications and Machine automation, PLC programming methods as per IEC
	61131, Developing programs using Sequential Function Chart, Functional Block
	Diagram, Analog control using PLC (PID controller configuration), Interfacing PLC
	to SCADA/DCS using communication link (RS232, RS485), Protocols (Modbus
	ASCII/RTU) and OPC, Development stages involved for PLC based automation
	systems. Introduction Computer Numerically Controlled (CNC) Machines, Basic
	CNC Principle, servo control, types of servo control for motion axes, Control system
	of CNC,Introduction to G-code.
Unit 4	Distributed Control System
	Basics, DCS introduction, Various function Blocks, DCS components/block diagram,
	DCSArchitecture of different makes, comparison of these architectures with
	automationPyramid, DCS specification, latest trend and developments, DCS support
	to Enterprise Resources Planning (ERP), performance criteria for DCS and other
	automation tools.
Unit 5	DCS Design
	Distributed Control Systems Engineering and Design ,DCS detail Engineering,
	configuration and programming, functions including databasemanagement,
	reporting, alarm management, diagnosis, Historical database management, security
	and user access management, communication, third party interfaces ,control,
TT '1 C	display etc. Enhanced functions like Advance process control, fuzzy logic, ANN.
Unit 6	Robotics
	Distributed Control System's Engineering and Design ,DCS detail Engineering,
	configuration and programming, functions including databasemanagement,
	reporting, alarm management, diagnosis, Historical database management, security and user access management, communication, third party interfaces ,control,
	display etc. Enhanced functions like Advance process control, fuzzy logic, ANN.
Text/Refere	
1.	Mikell P. Weiss G.M., Nagel R.N., Odraj N.G., —Industrial Robotics , McGraw-Hill,
1.	Singapore, 1996.
2.	The management of control system: Justification and Technical Auditing, N. E.
	Bhttiha, ISA.
3.	Computer aided process control, S.K.Singh, PHI.
4.	Understanding Distributed Process Systems For Control, Samuel Herb, ISA.
5.	Programmable Logic Controllers: Principles and Applications, Webb &Reis, PHI.
6.	Introduction to Programmable Logic Controllers, Garry Dunning, ThomsonLearning.
7.	Distributed computer control for industrial automation, Popovik Bhatkar, Dekkar Pub.

8.	Computer Based Process control, Krishna Kant, PHI
9.	Mechatronics ,HMT, TMH publication
10.	Deb. S. R., Robotics technology and flexible Automation, John Wiley, USA 1992.
11.	Asfahl C.R., Robots and manufacturing Automation, John Wiley, USA 1992.
12.	Klafter R.D., Chimielewski T.A., Negin M., Robotic Engineering – An Integrated approach, Prentice Hall of India, New Delhi, 1994.

	Instrumentation Stream								
PEC-IN	PEC-IN415 Embedded System Design								
Teaching	scheme:	Examination scheme:							
Lectures	3 hrs/week	Theory							
Tutorials	0 hrs/week	In Semester Evaluation : 20 Marks							
Practical	0 hrs/week	Mid Semester Examination : 30 marks							
Credits	3	End Semester Examination : 50 marks							
Course of	bjectives:								
1.	To Understand the architectural	detail of 32 bit microcontroller.							
2.	To Develop ability to program th	e microcontroller.							
3.	To Develop ability to do the combination of software, Hardware and Interfacing the								
	peripherals for various application	ons.							
Course O	utcome: After successfully comple	eting the course students will be able to,							
1.	Describe characteristics of embe	dded systems.							
2.	Compare the RISC based archit	ecture of ARM processor with other VLIW and DSP							
	processors and its programming	aspects.							
3.	Interfacing the peripherals for v	arious applications (like blinking of LEDs, digital I/O							
	devices, precision analog and serial communications) based on ARM processor.								
4.	Examine various protocols like I ² C, CAN, Bluetooth and its use for embedded								
	applications.								
5.	Judge the performance of embedded systems for measurement and control								
	applications.	-							
6.	Design real time embedded syste	ems using the concept of RTOS.							

PO/PSO → ↓ CO	P01	PO2	P03	PO4	P05	P06	P07	P08	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
PEC-IN415.1	3	-	-	-	-	-	-	-	-	-	•	2	3	3	2	2
PEC-IN415.2	3	1	1	2	2	-	-	-	•	-	1	1	3	2	1	1
PEC-IN415.3	3	-	3	3	3	-	-	-	1	-	1	2	3	2	3	1
PEC-IN415.4	3	1	-	-	-	-	-	-	ı	-	ı	2	3	2	3	1
PEC-IN415.5	3	2	2	1	2	-	-	-	-	-	-	2	3	2	2	2
PEC-IN415.6	3	1	3	-	3	-	-	-	•	-	1	1	3	2	2	2
PEC-IN415	3	3	3	3	3	-	-	-	-	-	-	3	3	3	3	3

Unit 1 Introduction to Embedded system Embedded system definition, different scales of embedded systems, design with small scale embedded systems, CISC and RISC architecture, 32 bit Microcontrollers: Internal Block Diagram, CPU, ALU, address bus, data bus, control signals, Working Registers, SFRs, Clock and Reset circuits, Stack and use of Stack Pointer, Program Counter. J/O Ports, Memory structure, Data Memory, Program Memory, Architecture, Instruction set, different addressing modes, I/O ports, TIMER2 and interrupts, UART, External Interrupts and Timers. Unit 2 ARM processor Architecture, Processor modes, Register organization, Exceptions and its handling, Memory and memory management, ARM and THUMB instruction sets, addressing modes, ARM floating point architecture. Real-Time system (RTOS) concepts, Kernel structure, Task management, Inter task communication & synchronization, Understanding Device Drivers. Unit 3 Assembly language programming and hardware interfacing techniques Introduction to development tools like cross assembler, simulator, HLL cross compilers and in circuit emulators for system development. On-chip interfaces: Digital I/O pins, ADC, DAC, timers, counters, PWM, watchdog timers, LCD, LEDs, seven segment displays, I2C E2PROM and their applications. ExternalInterfaces: Stepper motor interfacing, DC Motor interfacing, sensor interfacing, SPI, CAN Protocols, USB protocol, Blue-tooth protocol. Writing application level programs for these interfaces using High level languages. Unit 4 Introduction to Real-Time / Embedded Operating Systems Real Time Scheduling, Inter process communication, Programming paradigms: FSM and concurrent process models, Performance Metrics of RTOS, Linux & RTLinux, Overview of other RTOS. Text/Reference Books: 1. Frank Vahid and Tony Givargis, Embedded system design: A unifiedhardware/software introduction, John Wiley and sons, 2002. 2. Raj Kamal, "Embedded Systems" TATA McGraw Hill Edition. 3. Sloss Andrew N, Symes Dominic, Wright Chris; ARM System Developer'	Syllabus:	
Embedded system definition, different scales of embedded systems, design with small scale embedded systems, CISC and RISC architecture, 32 bit Microcontrollers: Internal Block Diagram, CPU, ALU, address bus, data bus, control signals, Working Registers, SFRs, Clock and Reset circuits, Stack and use of Stack Pointer, Program Counter. 1/0 Ports, Memory structure, Data Memory, Program Memory, Architecture, Instruction set, different addressing modes, 1/0 ports, TIMER2 and interrupts, UART, External Interrupts and Timers. Unit 2 ARM processor Architecture, Processor modes, Register organization, Exceptions and its handling, Memory and memory management, ARM and THUMB instruction sets, addressing modes, ARM floating point architecture. Real-Time system (RTOS) concepts, Kernel structure, Task management, Inter task communication & synchronization, Understanding Device Drivers. Unit 3 Assembly language programming and hardware interfacing techniques Introduction to development tools like cross assembler, simulator, HLL cross compilers and in circuit emulators for system development. On-chip interfaces: Digital I/O pins, ADC, DAC, timers, counters, PWM, watchdog timers, LCD, LEDS, seven segment displays, 12C R2PROM and their applications. ExternalInterfaces: Stepper motor interfacing, DC Motor interfacing, sensor interfacing, SPI, CAN Protocols, USB protocol, Blue-tooth protocol. Writing application level programs for these interfaces using high level languages. Unit 4 Introduction to Real-Time /Embedded Operating Systems Real Time Scheduling, Inter process communication, Programming paradigms: FSM and concurrent process models, Performance Metrics of RTOS, Linux & RTLinux, Overview of other RTOS. Text/Reference Books: 1. Frank Vahid and Tony Givargis, Embedded system design: A unifiedhardware/software introduction, John Wiley and sons, 2002. 2. Raj Kamal, "Embedded Systems" TATA McGraw Hill Edition. 3. Sloss Andrew N, Symes Dominic, Wright Chris; ARM System Developer'sGuide: Designing and Optimizing, Morgan		Introduction to Embedded system
Architecture, Processor modes, Register organization, Exceptions and its handling, Memory and memory management, ARM and THUMB instruction sets, addressing modes, ARM floating point architecture. Real-Time system (RTOS) concepts, Kernel structure, Task management, Inter task communication & synchronization, Understanding Device Drivers. Unit 3 Assembly language programming and hardware interfacing techniques Introduction to development tools like cross assembler, simulator, HLL cross compilers and in circuit emulators for system development. On-chip interfaces: Digital I/O pins, ADC, DAC, timers, counters, PWM, watchdog timers, LCD, LEDs, seven segment displays, 12C E2PROM and their applications. ExternalInterfaces: Stepper motor interfacing, DC Motor interfacing, sensor interfacing, SPI, CAN Protocols, USB protocol, Blue-tooth protocol. Writing application level programs for these interfaces using High level languages. Unit 4 Introduction to Real-Time /Embedded Operating Systems Real Time Scheduling, Inter process communication, Programming paradigms: FSM and concurrent process models, Performance Metrics of RTOS, Linux & RTLinux Internals, Programming in Linux & RTLinux, Configuring & Compiling RTLinux, Overview of other RTOS. Text/Reference Books: 1. Frank Vahid and Tony Givargis, Embedded system design: A unifiedhardware/software introduction, John Wiley and sons, 2002. 2. Raj Kamal, "Embedded Systems" TATA McGraw Hill Edition. 3. Sloss Andrew N, Symes Dominic, Wright Chris; ARM System Developer'sGuide: Designing and Optimizing; Morgan Kaufman Publication. 4. An Implementation guide to Real Time Programming - David L. Ripps, Yourdon Press, 1990. 5. D. E. Simon, An embedded software primer, Pearson Education, 2002. 6. D. W. Lewis, Fundamentals of embedded software, Pearson Education. 7. J. W. S. Liu, Real time systems, Pearson Education. 8. Silberchatz, Galvin, Gagne, Operating system concepts, John Wiley. 9. Dr. K. V. K. K. Prasad, "Embedded / Real – Time Systems: Concept, Design & Programming"		Embedded system definition, different scales of embedded systems, design with small scale embedded systems, CISC and RISC architecture, 32 bit Microcontrollers: Internal Block Diagram, CPU, ALU, address bus, data bus, control signals, Working Registers, SFRs, Clock and Reset circuits, Stack and use of Stack Pointer, Program Counter. I/O Ports, Memory structure, Data Memory, Program Memory, Architecture, Instruction set, different addressing modes, I/O ports, TIMER2 and
Memory and memory management, ARM and THUMB instruction sets, addressing modes, ARM floating point architecture. Real-Time system (RTOS) concepts, Kernel structure, Task management, Inter task communication & synchronization, Understanding Device Drivers. Unit 3	Unit 2	ARM processor
Introduction to development tools like cross assembler, simulator, HLL cross compilers and in circuit emulators for system development. On-chip interfaces: Digital I/O pins, ADC, DAC, timers, counters, PWM, watchdog timers, LCD, LEDs, seven segment displays, I2C E2PROM and their applications. ExternalInterfaces: Stepper motor interfacing, DC Motor interfacing, sensor interfacing, SPI, CAN Protocols, USB protocol, Blue-tooth protocol. Writing application level programs for these interfaces using High level languages. Unit 4 Introduction to Real-Time /Embedded Operating Systems Real Time Scheduling, Inter process communication, Programming paradigms: FSM and concurrent process models, Performance Metrics of RTOS, Linux & RTLinux Internals, Programming in Linux & RTLinux, Configuring & Compiling RTLinux, Overview of other RTOS. Text/Reference Books: 1. Frank Vahid and Tony Givargis, Embedded system design: A unifiedhardware/software introduction, John Wiley and sons, 2002. 2. Raj Kamal, "Embedded Systems" TATA McGraw Hill Edition. 3. Sloss Andrew N, Symes Dominic, Wright Chris; ARM System Developer'sGuide: Designing and Optimizing; Morgan Kaufman Publication. 4. An Implementation guide to Real Time Programming - David L. Ripps, Yourdon Press, 1990. 5. D. E. Simon, An embedded software primer, Pearson Education, 2002. 6. D. W. Lewis, Fundamentals of embedded software, Pearson Education. 7. J. W. S. Liu, Real time systems, Pearson Education. 8. Silberchatz, Galvin, Gagne, Operating system concepts, John Wiley. 9. Dr. K. V. K. K. Prasad, "Embedded / Real - Time Systems: Concept, Design & Programming", Dreamtech Press.		Memory and memory management, ARM and THUMB instruction sets, addressing modes, ARM floating point architecture. Real-Time system (RTOS) concepts, Kernel structure, Task management, Inter task communication & synchronization,
compilers and in circuit emulators for system development. On-chip interfaces: Digital I/O pins, ADC, DAC, timers, counters, PWM, watchdog timers, LCD, LEDs, seven segment displays, I2C E2PROM and their applications. ExternalInterfaces: Stepper motor interfacing, DC Motor interfacing, sensor interfacing, SPI, CAN Protocols, USB protocol, Blue-tooth protocol. Writing application level programs for these interfaces using High level languages. Unit 4 Introduction to Real-Time /Embedded Operating Systems Real Time Scheduling, Inter process communication, Programming paradigms: FSM and concurrent process models, Performance Metrics of RTOS, Linux & RTLinux, Internals, Programming in Linux & RTLinux, Configuring & Compiling RTLinux, Overview of other RTOS. Text/Reference Books: 1. Frank Vahid and Tony Givargis, Embedded system design: A unifiedhardware/software introduction, John Wiley and sons, 2002. 2. Raj Kamal, "Embedded Systems" TATA McGraw Hill Edition. 3. Sloss Andrew N, Symes Dominic, Wright Chris; ARM System Developer'sGuide: Designing and Optimizing; Morgan Kaufman Publication. 4. An Implementation guide to Real Time Programming - David L. Ripps, Yourdon Press, 1990. 5. D. E. Simon, An embedded software primer, Pearson Education, 2002. 6. D. W. Lewis, Fundamentals of embedded software, Pearson Education. 7. J. W. S. Liu, Real time systems, Pearson Education. 8. Silberchatz, Galvin, Gagne, Operating system concepts, John Wiley. 9. Dr. K. V. K. K. Prasad, "Embedded / Real - Time Systems: Concept, Design & Programming", Dreamtech Press.	Unit 3	Assembly language programming and hardware interfacing techniques
Real Time Scheduling, Inter process communication, Programming paradigms: FSM and concurrent process models, Performance Metrics of RTOS, Linux & RTLinux Internals, Programming in Linux & RTLinux, Configuring & Compiling RTLinux, Overview of other RTOS. Text/Reference Books: 1. Frank Vahid and Tony Givargis, Embedded system design: A unifiedhardware/software introduction, John Wiley and sons, 2002. 2. Raj Kamal, "Embedded Systems" TATA McGraw Hill Edition. 3. Sloss Andrew N, Symes Dominic, Wright Chris; ARM System Developer'sGuide: Designing and Optimizing; Morgan Kaufman Publication. 4. An Implementation guide to Real Time Programming - David L. Ripps, Yourdon Press, 1990. 5. D. E. Simon, An embedded software primer, Pearson Education, 2002. 6. D. W. Lewis, Fundamentals of embedded software, Pearson Education. 7. J. W. S. Liu, Real time systems, Pearson Education. 8. Silberchatz, Galvin, Gagne, Operating system concepts, John Wiley. 9. Dr. K. V. K. K. Prasad, "Embedded / Real - Time Systems: Concept, Design & Programming", Dreamtech Press.		compilers and in circuit emulators for system development. On-chip interfaces: Digital I/O pins, ADC, DAC, timers, counters, PWM, watchdog timers, LCD, LEDs, seven segment displays, I2C E2PROM and their applications. ExternalInterfaces: Stepper motor interfacing, DC Motor interfacing, sensor interfacing, SPI, CAN Protocols, USB protocol, Blue-tooth protocol. Writing application level programs
and concurrent process models, Performance Metrics of RTOS, Linux & RTLinux, Internals, Programming in Linux & RTLinux, Configuring & Compiling RTLinux, Overview of other RTOS. Text/Reference Books: 1. Frank Vahid and Tony Givargis, Embedded system design: A unifiedhardware/software introduction, John Wiley and sons, 2002. 2. Raj Kamal, "Embedded Systems" TATA McGraw Hill Edition. 3. Sloss Andrew N, Symes Dominic, Wright Chris; ARM System Developer'sGuide: Designing and Optimizing; Morgan Kaufman Publication. 4. An Implementation guide to Real Time Programming - David L. Ripps, Yourdon Press, 1990. 5. D. E. Simon, An embedded software primer, Pearson Education, 2002. 6. D. W. Lewis, Fundamentals of embedded software, Pearson Education. 7. J. W. S. Liu, Real time systems, Pearson Education. 8. Silberchatz, Galvin, Gagne, Operating system concepts, John Wiley. 9. Dr. K. V. K. K. Prasad, "Embedded / Real - Time Systems: Concept, Design & Programming", Dreamtech Press.	Unit 4	Introduction to Real-Time /Embedded Operating Systems
 Frank Vahid and Tony Givargis, Embedded system design: A unifiedhardware/software introduction, John Wiley and sons, 2002. Raj Kamal, "Embedded Systems" TATA McGraw Hill Edition. Sloss Andrew N, Symes Dominic, Wright Chris; ARM System Developer'sGuide: Designing and Optimizing; Morgan Kaufman Publication. An Implementation guide to Real Time Programming - David L. Ripps, Yourdon Press, 1990. D. E. Simon, An embedded software primer, Pearson Education, 2002. D. W. Lewis, Fundamentals of embedded software, Pearson Education. J. W. S. Liu, Real time systems, Pearson Education. Silberchatz, Galvin, Gagne, Operating system concepts, John Wiley. Dr. K. V. K. K. Prasad, "Embedded / Real - Time Systems: Concept, Design & Programming", Dreamtech Press. 		and concurrent process models, Performance Metrics of RTOS, Linux & RTLinux Internals, Programming in Linux & RTLinux, Configuring & Compiling RTLinux,
unifiedhardware/software introduction, John Wiley and sons, 2002. 2. Raj Kamal, "Embedded Systems" TATA McGraw Hill Edition. 3. Sloss Andrew N, Symes Dominic, Wright Chris; ARM System Developer'sGuide: Designing and Optimizing; Morgan Kaufman Publication. 4. An Implementation guide to Real Time Programming - David L. Ripps, Yourdon Press, 1990. 5. D. E. Simon, An embedded software primer, Pearson Education, 2002. 6. D. W. Lewis, Fundamentals of embedded software, Pearson Education. 7. J. W. S. Liu, Real time systems, Pearson Education. 8. Silberchatz, Galvin, Gagne, Operating system concepts, John Wiley. 9. Dr. K. V. K. K. Prasad, "Embedded / Real – Time Systems: Concept, Design & Programming", Dreamtech Press.	Text/Refer	ence Books:
 Sloss Andrew N, Symes Dominic, Wright Chris; ARM System Developer'sGuide: Designing and Optimizing; Morgan Kaufman Publication. An Implementation guide to Real Time Programming - David L. Ripps, Yourdon Press, 1990. D. E. Simon, An embedded software primer, Pearson Education, 2002. D. W. Lewis, Fundamentals of embedded software, Pearson Education. J. W. S. Liu, Real time systems, Pearson Education. Silberchatz, Galvin, Gagne, Operating system concepts, John Wiley. Dr. K. V. K. K. Prasad, "Embedded / Real - Time Systems: Concept, Design & Programming", Dreamtech Press. 		unifiedhardware/software introduction, John Wiley and sons, 2002.
Designing and Optimizing; Morgan Kaufman Publication. 4. An Implementation guide to Real Time Programming - David L. Ripps, Yourdon Press, 1990. 5. D. E. Simon, An embedded software primer, Pearson Education, 2002. 6. D. W. Lewis, Fundamentals of embedded software, Pearson Education. 7. J. W. S. Liu, Real time systems, Pearson Education. 8. Silberchatz, Galvin, Gagne, Operating system concepts, John Wiley. 9. Dr. K. V. K. K. Prasad, "Embedded / Real – Time Systems: Concept, Design & Programming", Dreamtech Press.		
Press, 1990. D. E. Simon, An embedded software primer, Pearson Education, 2002. D. W. Lewis, Fundamentals of embedded software, Pearson Education. J. W. S. Liu, Real time systems, Pearson Education. Silberchatz, Galvin, Gagne, Operating system concepts, John Wiley. Dr. K. V. K. K. Prasad, "Embedded / Real – Time Systems: Concept, Design & Programming", Dreamtech Press.		Designing and Optimizing; Morgan Kaufman Publication.
 D. W. Lewis, Fundamentals of embedded software, Pearson Education. J. W. S. Liu, Real time systems, Pearson Education. Silberchatz, Galvin, Gagne, Operating system concepts, John Wiley. Dr. K. V. K. K. Prasad, "Embedded / Real – Time Systems: Concept, Design & Programming", Dreamtech Press. 	4.	Press, 1990.
 J. W. S. Liu, Real time systems, Pearson Education. Silberchatz, Galvin, Gagne, Operating system concepts, John Wiley. Dr. K. V. K. K. Prasad, "Embedded / Real – Time Systems: Concept, Design & Programming", Dreamtech Press. 	5.	D. E. Simon, An embedded software primer, Pearson Education, 2002.
 Silberchatz, Galvin, Gagne, Operating system concepts, John Wiley. Dr. K. V. K. K. Prasad, "Embedded / Real – Time Systems: Concept, Design & Programming", Dreamtech Press. 	6.	D. W. Lewis, Fundamentals of embedded software, Pearson Education.
9. Dr. K. V. K. K. Prasad, "Embedded / Real – Time Systems: Concept, Design & Programming", Dreamtech Press.	7.	J. W. S. Liu, Real time systems, Pearson Education.
Programming", Dreamtech Press.	8.	Silberchatz, Galvin, Gagne, Operating system concepts, John Wiley.
	9.	Dr. K. V. K. R. Prasad, "Embedded / Real – Time Systems: Concept, Design &
	10.	

			Signal Pr	ocessing Stream						
PEC-IN	PEC-IN416 Digital Image Processing									
Teaching	scheme:			Examination scheme:						
Lectures		3	hrs/week	Theory						
Tutorials		0	hrs/week	In Semester Evaluation : 20 Marks						
Practical		0	hrs/week	Mid Semester Examination : 30 marks						
Credits	3 End Semester Examination : 50 marks									
Course ol	ojectives:	I								
1.	To unders	tand the	fundamentals o	of digital image processing.						
2.	To unders	tand Ima	ge transform u	sed in digital image processing.						
3.	To unders	tand Ima	ge enhancemer	nt techniques used in digital image processing.						
4.			ge restoration	techniques and methods used in digital image						
	processing	_								
5.				n and Segmentation used in digital image processing.						
				eting the course students will be able to,						
1.	Understar gray and o	_		d the role human visual system plays in perception of						
2.			e to and unde ine, and defens	rstanding of various applications of image processing se.						
3.		signal		orithms and techniques in image enhancement and						
4.	Acquire an appreciation for the image processing issues and techniques and be able to apply these techniques to real world problems.									
5.	Student will also have sufficient expertise in both the theory of two-dimensional signal processing and its wide range of applications, for example, image restoration, image compression, and image analysis.									
6.				ssing techniques for solving real problems.						

PO/PSO → ↓ CO	P01	PO2	P03	P04	P05	P06	P07	P08	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
PEC-IN416.1	3	3	3	2	-	-	-	1	2	2	3	2	3	3	3	1
PEC-IN416.2	3	1	ı	1	ı	-	ı	3	2	3	3	2	3	3	3	1
PEC-IN416.3	3	3	ı	-	ı	-	ı	2	2	3	3	2	3	3	3	1
PEC-IN416.4	3	3	ı	-	ı	-	ı	2	2	3	3	2	3	1	2	1
PEC-IN416.5	2	2	ı	2	ı	-	ı	3	2	3	3	2	3	3	2	1
PEC-IN416.6	3	3	3	2	2	-	-	3	2	3	3	2	3	2	2	1
PEC-IN416	3	3	1	1	1	-	•	3	3	3	3	3	3	3	3	1

Syllabus:	
Unit 1	Introduction
	Digital Image processing, the origins of Digital Image Processing, Examples of
	Fields that use Digital Image Processing, Fundamentals Steps in Digital image
	processing, components of an image processing system.
Unit 2	Digital Image Fundamentals
	Elements of visual perception, Light and the electromagnetic spectrum, Image
	sensing and Acquisition, Image sampling and quantization, some basic

	Deletion skip a ketanom Divola Linear and monlinear On suctions
Unit 3	Relationships between Pixels, Linear and nonlinear Operations.
Unit 3	Image Enhancement in the spatial Domain
	Background, Some basic Gray level Transformation, Histogram processing,
	Enhancement using arithmetic/logic operations, Basics of spatial Filtering,
	Smoothing spatial Filters, sharpening spatial Filters, Combining Spatial
77 1. 4	Enhancement Methods.
Unit 4	Image Enhancement in the Frequency Domain
	Background, Introduction to the Fourier transform and the Frequency domain,
	Smoothing Frequency –Domain Filters, Sharpening frequency Domain filters,
	Homomorphic filtering, Implementation.
Unit 5	Image Restoration
	A model of the Image Degradation/Restoration process, Noise Models, Restoration
	in the Presence of Noise only-spatial filtering, Periodic Nose Reduction by
	Frequency Domain Filtering, Linear Position-Invariant Degradations, Estimation of
	the Degradation function, Inverse filtering, Minimum Mean square Error (Wiener)
	filtering, Constrained Lease Squares Filtering, Geometric Mean Filter, Geometric
	Transformations.
Unit 6	Image Compression
	Fundamentals, Image Compression Methods, Elements of information Theory,
	Error-Free Compression, Lossy compression, Image compression standards. Image
	Segmentation: Detection of Discontinuities, Edge Linking and Boundary Detection,
	Thresholding, Region-based segmentation, the use of motion in segmentation.
	Representation and Description: Representation, Boundary Description, Regional
	Description.
Text/Refere	
1.	Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing, Pearson
	Education (Singapore), 2nd edition, 2002.
2.	K. Jain, Fundamentals of Digital Image Processing, Prentice Englewood Cliffs, N. J.,
	1989.
3.	S. Burrus, R. A. Gopinath and H. Guo, Introduction to Wavelets and Wavelet
	Transforms, Prentice Hall, N. J., 1998.
4.	G. Haskell and A. N. Netravali, Digital Pictures: Representation, Compression and
	Standards, Perseus Publishing, N. Y., 1997.

SII-IN417	SII-IN417 Seminar on Industrial Training								
Teaching sc	heme:	Examination scheme:							
Lectures	0 hrs/week	Practical							
Tutorials	0 hrs/week	Continuous Evaluation : 50 marks,							
Practical	2 hrs/week	End Term Evaluation : 50 marks							
Credits	1								
Course obje	ctives:								
1.		ng platform to students where they can enhance							
	their employ ability skills and exposure.	become job ready along with real corporate							
2.	To cultivate student's leadership	ability and responsibility to perform or execute							
	the given task.								
3.	Awareness of the social, cultural	, global and environmental responsibility as an							
	engineer.								

Course outc	omes:After successfully completing the course students will be able to,
1.	To enhance students' knowledge in one particular technology.
2.	Capability to acquire and apply fundamental principles of engineering.
3.	Ability to communicate efficiently.
4.	Knack to be a multi-skilled engineer with good technical knowledge, management,
	leadership and entrepreneurship skills.
5.	Capability and enthusiasm for self-improvement through continuous professional
	development and life-long learning
6.	Develop ability to identify, formulate and model problems and find engineering
	solution based on a systems approach.

PO/PSO → ↓ CO	P01	PO2	P03	PO4	P05	P06	P07	P08	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
SII-IN417.1	3	1	1	-	-	-	-	3	3	2	1	2	3	1	1	1
SII-IN417.2	3	2	1	-	-	1	-	2	2	2	1	2	3	2	1	2
SII-IN417.3	3	-	1	-	-	1	-	3	1	2	1	2	3	3	1	1
SII-IN417.4	3	-	2	-	-	2	-	1	3	2	2	2	3	2	-	1
SII-IN417.5	3	-	3	-	-	1	-	3	3	3	2	2	3	1	-	2
SII-IN417.6	3	-	2	-	-	1	-	2	3	3	2	2	3	1	-	2
SII-IN417	3	1	2	-	-	1	-	3	3	3	2	3	3	2	1	2

Term Work:

A Talk will be delivered by the student based on Industrial Training work undertaken by the student during summer vacation after 3rd year. Industrial work of each student will be evaluated by two teachers appointed by Head of the Institution for giving term work marks. In case a student fails to obtain permission for program training from any industry, the department concerned can plan an equivalent program in the different laboratories under the guidance of faculties. The organizations where practical training will be preferred are: Process Industries, Instrumentation System Design, Instrument Manufacturing organizations, Research and Development establishments, Consultancy firms, Standards and Calibration laboratories.

PRJ-IN4	418 Min	i Proje	ect	
Teaching	scheme:			Examination scheme:
Lectures		0	hrs/week	Practical
Tutorials		0	hrs/week	Continuous Evaluation : 50 marks,
Practical		10	hrs/week	End Term Evaluation : 50 marks
Credits		5		
Course ol	bjectives:			
1.	Understan	d &Apply	the theoretica	al concepts to solve industrial problems with teamwork
	and multic	disciplina	ry approach.	
2.	Get capab	le of self-	education and	clearly understand the value of achieving perfection in

	project implementation & completion.
Course	Outcome: After successfully completing the course students will be able to,
1.	Identify, formulate and solve a problem of Instrumentation Engineering and allied
	areas.
2.	Understand social impact of automation, safety aspects and hazards associated with
	various processes in core instrumentation industry.
3.	Apply new and emerging technologies to analyze, design, maintain reliable, safe and
	cost effective solution for research and industry problems.
4.	Analyze parametric optimization of manufacturing process.
5.	Reframe work to accomplish projects in multidisciplinary areas.
6.	Design need based project for industry.

PO/PSO → ↓ CO	P01	PO2	P03	PO4	P05	P06	P07	P08	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
PRJ-IN418.1	3	2	1	2	3	-	-	-	1	1	1	-	3	3	3	1
PRJ-IN418.2	1	1	3	1	3	2	2	-	2	1	2	-	3	3	2	1
PRJ-IN418.3	3	3	3	2	3	-	2	1	3	1	2	-	3	3	3	2
PRJ-IN418.4	3	3	3	2	3	1	•	-	3	1	2	1	3	3	3	2
PRJ-IN418.5	3	3	3	2	3	1	•	-	3	1	2	2	3	3	3	1
PRJ-IN418.6	3	3	3	3	3	1	1	1	2	1	3	2	3	3	3	1
PRJ-IN418	3	3	3	2	3	1	1	1	2	1	2	1	3	3	3	1

Term Work:							
Term work w	vill be carried out by a batch of at the most two candidates. Itshall consists of a report						
based on -							
1.	Laboratory work involving design and construction aspects for any instrumentation applications.						
2.	Design modification with fabrication of an existing equipment.						
3.	Investigation of practical problems in the manufacture and or testing of electronic or process equipment.						
4.	Proposing a theoretical design methodology/or existing method for any instrumentation and control application and development of software for its simulation showing the validity of the results obtained.						
5.	The candidates will have to complete at least the design methodology and aspects of the project work.						
Term Work	Assessment:						
	The following shall be the break up for term work. The presentation will be given by the candidate. The presentation will be attended and and and a group of three teachers, one of whom shall be the guide and the remaining two will be appointed by Director of the Institute. The guide will assess the report based on Quantum of work, Quality of the report Regularity of the candidate in the project work and in submission and discussion with guide.						

Semester-VIII

PCC-IN ²	421 Instrumentation	n Project Management					
Teaching	scheme:	Examination scheme:					
Lectures	3 hrs/week	Theory					
Tutorials	0 hrs/week	In Semester Evaluation : 20 Marks					
Practical	2 hrs/week	Mid Semester Examination : 30 marks					
Credits	4	End Semester Examination : 50 marks					
Course ob	jectives:						
1.	To get awareness about various domains in Industrial project Management.						
2.	To understand concept of I	Designing of Instrument, Designing of control panel.					
3.	To get awareness about var	rious designing criteria in industry.					
Course ou	tcomes: After successfully o	completing the course students will be able to,					
1.		concepts to address specific management needs at the					
	individual, team, division a	nd/or organizational level.					
2.		sponsibilities of practicing engineering managers and the					
		ithin a global and societal context.					
3.		g to solve complex technical and operational problems to					
	meet both business and cus						
4.		olex systems and operations using both qualitative and					
	quantitative tools and pers						
5.	=	problems by applying their knowledge of business,					
	mathematics, science and e						
6.		creative teams and project processes effectively and					
	efficiently.						

PO/PSO → ↓ CO	PO1	PO2	РОЗ	P04	P05	P06	PO7	P08	P09	PO10	P011	PO12	PSO1	PSO2	PSO3	PSO4
PCC-IN421.1	3	-	-	-	ı	3	1	1	3	-	1	2	3	2	2	2
PCC-IN421.2	3	-	-	ı	ı	2	1	1	2	ı	1	2	3	2	2	2
PCC-IN421.3	3	1	1	1	1	1	-	-	ı	ı	3	1	3	1	1	1
PCC-IN421.4	3	2	-	2	2	3	2	-	2	3	2	2	3	2	1	3
PCC-IN421.5	3	2	3	2	3	-	-	3	ı	-	3	1	3	1	1	2
PCC-IN421.6	3	-	-	-	-	3	2	2	3	3	2	2	3	1	2	3
PCC-IN421	3	1	2	2	2	2	2	2	3	3	2	2	3	2	2	2

Syllabus:	
Unit 1	Concept study and definition of Project Engineering and Management
	Basics of Project Management, Definition and objectives of Project Management,
	Stages of Project Management, Project Planning Process, Establishing Project
	organization. Organization Structure, The Project team, Roles and responsibilities of
	project team members and team leader, Interactions involved in Project and their
	co-ordination project statement.
Unit 2	Work definition

	Defining work content, Time Estimation Method, Project Cost Estimation and budgeting, Project Risk Management, Project scheduling and Planning Tools: Work Breakdown structure.
	Program evaluation and review techniques (PERT) and Critical path method (CPM),
	Life cycle phases, Statement of work (SOW), Project Specification, milestone
	scheduling. Project cash flow analysis, Project scheduling with resource Constraints:
	Resource Leveling and Resource Allocation. Project Implementation: Project
	Monitoring and Control with PERT/Cost, Computers applications in Project
	Management, Contract Management, Project Procurement Management; Post Project
** •	Analysis.
Unit 3	Project engineering documents and drawing
	P & I diagram based on Process Flow Sheet, P & ID symbols for process loops like
	temperature, flow, level, pressure, etc. Material balance sheet and Temperature
	pressure sheet, Methods of tagging and nomenclature scheme based on ANSI / ISA
	standards.
	Standards used in instrumentation project: ISA S5.1, S5.3, S5.4, S5.5 and S5.20, ANSI,
	& NFPA. Instrument index sheet, installation sketches, specification sheets.
	Collection and study of project engineering documents and software like INTools,
	MS-Project, Primavera.
Unit 4	Detailed Project engineering
	Plant layouts and General arrangement drawing (Plans and Elevation), Isometric of
	instrument piping, installation sketches of filed instrument. Cable Engineering (Class
	of conductors, Types, Specification and Application), Selection of cables with respect
	to specific application, Cable identification schemes, Cable trays, Basic Wiring
	Practice, wire numbering & numbering methods. Failsafe wiring Practice, Hazardous
	area classifications & its effect on design, Loop wiring diagrams, BOM and MBOM.
	Earthling and Grounding for General, Power and Signal.
Unit 5	Procurement activities
	Vendor registration, Tendering and bidding process, Bid evaluation, Purchase orders,
	Pre-Qualification Evaluation of Vendor, Kick-off meeting, Vendor documents,
	drawing and reports as necessary at above activities. Construction activities: Site
	conditions and planning, Front availability, Installation and commissioning activities
	and documents require at this stage. Cold Commissioning and hot commissioning.
Unit 6	Control Centers and Panels
	Types, Design, Inspection and Specification, Control room layout and engineering,
1	Types of operating Stations, Intelligent Operator Interface (IOI). Panel testing
	Procedure. Onsite inspection and testing (SAT), Customer Acceptance Test (CAT),
	Procedure. Onsite inspection and testing (SAT), Customer Acceptance Test (CAT), Factory Acceptance Test (FAT), Performance trials and final hand over. Calibration
Text/Refe	Procedure. Onsite inspection and testing (SAT), Customer Acceptance Test (CAT),
Text/Refe	Procedure. Onsite inspection and testing (SAT), Customer Acceptance Test (CAT), Factory Acceptance Test (FAT), Performance trials and final hand over. Calibration records, Test and inspection reports. erence Books:
<i>'</i> .	Procedure. Onsite inspection and testing (SAT), Customer Acceptance Test (CAT), Factory Acceptance Test (FAT), Performance trials and final hand over. Calibration records, Test and inspection reports. erence Books: Andrew and William, "Applied Instrumentation in the Process Industries.Volume II"
1.	Procedure. Onsite inspection and testing (SAT), Customer Acceptance Test (CAT), Factory Acceptance Test (FAT), Performance trials and final hand over. Calibration records, Test and inspection reports. erence Books: Andrew and William, "Applied Instrumentation in the Process Industries.Volume II" Gulf Publishing Company.
<i>'</i> .	Procedure. Onsite inspection and testing (SAT), Customer Acceptance Test (CAT), Factory Acceptance Test (FAT), Performance trials and final hand over. Calibration records, Test and inspection reports. erence Books: Andrew and William, "Applied Instrumentation in the Process Industries. Volume II" Gulf Publishing Company. Liptak B. G., "Instrument Engineers Handbook, Process MeasurementVolume I and
1.	Procedure. Onsite inspection and testing (SAT), Customer Acceptance Test (CAT), Factory Acceptance Test (FAT), Performance trials and final hand over. Calibration records, Test and inspection reports. erence Books: Andrew and William, "Applied Instrumentation in the Process Industries. Volume II" Gulf Publishing Company. Liptak B. G., "Instrument Engineers Handbook, Process MeasurementVolume I and Process Control Volume II" Chilton Book Company, 2001 Hiller and Lieberman.
1. 2. 3.	Procedure. Onsite inspection and testing (SAT), Customer Acceptance Test (CAT), Factory Acceptance Test (FAT), Performance trials and final hand over. Calibration records, Test and inspection reports. Perence Books: Andrew and William, "Applied Instrumentation in the Process Industries. Volume II" Gulf Publishing Company. Liptak B. G., "Instrument Engineers Handbook, Process MeasurementVolume I and Process Control Volume II" Chilton Book Company, 2001 Hiller and Lieberman. "Introduction to Operations Research", Tata McGrawHill. 7th Edition, 2003.
1.	Procedure. Onsite inspection and testing (SAT), Customer Acceptance Test (CAT), Factory Acceptance Test (FAT), Performance trials and final hand over. Calibration records, Test and inspection reports. Perence Books: Andrew and William, "Applied Instrumentation in the Process Industries. Volume II" Gulf Publishing Company. Liptak B. G., "Instrument Engineers Handbook, Process Measurement Volume I and Process Control Volume II" Chilton Book Company, 2001 Hiller and Lieberman. "Introduction to Operations Research", Tata McGrawHill. 7th Edition, 2003. B.D. Shinde, K.V. Gitapathi, "Electronic & Instrument system design, "Centre of
1. 2. 3. 4.	Procedure. Onsite inspection and testing (SAT), Customer Acceptance Test (CAT), Factory Acceptance Test (FAT), Performance trials and final hand over. Calibration records, Test and inspection reports. Perence Books: Andrew and William, "Applied Instrumentation in the Process Industries. Volume II" Gulf Publishing Company. Liptak B. G., "Instrument Engineers Handbook, Process Measurement Volume I and Process Control Volume II" Chilton Book Company, 2001 Hiller and Lieberman. "Introduction to Operations Research", Tata McGrawHill. 7th Edition, 2003. B.D. Shinde, K.V. Gitapathi, "Electronic & Instrument system design, "Centre of Technical coordination Pune.
1. 2. 3.	Procedure. Onsite inspection and testing (SAT), Customer Acceptance Test (CAT), Factory Acceptance Test (FAT), Performance trials and final hand over. Calibration records, Test and inspection reports. Perence Books: Andrew and William, "Applied Instrumentation in the Process Industries. Volume II" Gulf Publishing Company. Liptak B. G., "Instrument Engineers Handbook, Process Measurement Volume I and Process Control Volume II" Chilton Book Company, 2001 Hiller and Lieberman. "Introduction to Operations Research", Tata McGrawHill. 7th Edition, 2003. B.D. Shinde, K.V. Gitapathi, "Electronic & Instrument system design, "Centre of Technical coordination Pune. B.M. Naik, "Project Management Scheduling and Monitoring by PERT/CPM", Vani
1. 2. 3. 4.	Procedure. Onsite inspection and testing (SAT), Customer Acceptance Test (CAT), Factory Acceptance Test (FAT), Performance trials and final hand over. Calibration records, Test and inspection reports. Perence Books: Andrew and William, "Applied Instrumentation in the Process Industries. Volume II" Gulf Publishing Company. Liptak B. G., "Instrument Engineers Handbook, Process MeasurementVolume I and Process Control Volume II" Chilton Book Company, 2001 Hiller and Lieberman. "Introduction to Operations Research", Tata McGrawHill. 7th Edition, 2003. B.D. Shinde, K.V. Gitapathi, "Electronic & Instrument system design, "Centre of Technical coordination Pune.

	and controlling", 5th Edition.										
7.	John Bacon, "Management Systems", ISA Publications.										
8.	Fisher T. G., "Batch Control System", ISA Publications.										
9.	Instrument Installation Project Management, ISA Publications.										
10.	Michael D. Whitt, "Successful Instrumentation and Control Systems Design", ISA; 2nd										
	edition, 2012.										
Term Wo	rk:										
It will cons	It will consist of at least eight experiments/assignments/programs based on above syllabus.										

				Elective-V							
			Co	ontrol Stream							
PEC-IN ²	122 :	Systen	n Identifica	tion							
Teaching	schen	ne:		Examination scheme:							
Lectures		3	hrs/week	Theory							
Tutorials		0	hrs/week	In Semester Evaluation : 20 Marks							
Practical		0	hrs/week	Mid Semester Examination : 30 marks							
Credits		3		End Semester Examination : 50 marks							
Course ob	jectiv	es:									
1.	_		r understanding ech signals).	g of the physical mechanism generating the signal (for							
2.	To infer about some of the signal parameters. For example, a radar echo from a moving target contains information about the target motion.										
3.	To track changes in the signal's source and help identify their cause. For example, certain diseases affect the electrical signal generated by the human brain.										
Course Ou	•			mpleting the course students will be able to,							
1.		ents get nomenon	•	of a variety of mathematical models for random							
2.		_	-	such models as to issues of stationary, Markovianness, and sample function continuity and differentiability.							
3.	Abili mini	ty to ma mum err	ake optimal info	erences and estimates with respect to such criteria as and least mean square error (e.g., Wiener and Kalman al design are introduced.							
4.		ket beha		havior. For example, a good probabilistic model of stock one to predict its future trends and take advantage of							
5.	_	rove the voice sign		gnal (for example, reduction of noise and reverberation							
6.	Achi	eve data	compression for	r storage or transmission.							

PO/PSO → ↓ CO	PO1	PO2	PO3	PO4	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2	PSO3	PSO4
PEC-IN422.1	2	-	-	ı	ı	ı	ı	-	-	-	-	1	3	2	2	1
PEC-IN422.2	3	2	-	ı	2	ı	ı	ı	1	-	-	2	3	2	2	1
PEC-IN422.3	3	2	-	ı	3	ı	ı	1	•	-	-	2	3	2	2	1
PEC-IN422.4	2	2	3	-	2	-	-	-	-	-	-	1	3	2	1	1
PEC-IN422.5	1	1	1	-	3	-	-	-	-	-	-	1	3	2	1	1

PEC-IN422.6	2	2	3	2	2	1	_	_	_	_	-	1	3	2	1	1
PEC-IN422	2	2	2	2	2	1	-	-	-	-	-	1	3	2	1	1

Syllabus:	
Unit 1	Discrete Time Random Process
	Random Variables Definitions, Ensemble Averages, Jointly Distributed Random Variables, Joint Moments Independent, Uncorrelated and Orthogonal random variable, Linear Mean Square, estimation, Gaussian Random Variables, Parameters Estimation- Definitions, Ensemble Averages, Gaussian Processes, Stationary Processes, the Covariance and autocorrelation matrices, Ergodicity, White Noise, the Power Spectrum, Filtering Ransom Processes, Spectral Realization, Special Types of Random Processes- MA, AR, ARMA, and Harmonic.
Unit 2	Linear Predication and Optimum Linear Filters
	Rational Power Spectrum, Relationship between the Filter Parameters and the Autocorrelation Sequence, Forward and Backward Linear Prediction, Solution of the Normal, Equations- Levinson-Durbin Algorithm, the Shur algorithm, Properties of Linear-Prediction Error Filters, AR Lattice and ARMA Lattice Ladder filters, Wiener Filters for Filtering and Prediction- FIR Wener Filter, IIR Wener Filter, Noncausal Wener Filter.
Unit 3	Signal Modeling and System Identification
	System Identification based on FIR(MA), All-Pole (AR) and Pole-Zero (ARMA) Models- Pade Approximation, Prony's method, Shank's Method, Least-Square Filtering Design for Prediction and Deconvolution.
Unit 4	Solution for Least Sequences, Estimation Problems
	Definition and Basic Concepts, Matrix Formulation of Least Square Estimation Algorithm, Cholesky Decomposition, LDV Decomposition, QR Decomposition, Gram-Schmilt Orthogonalization, Givers Rotation, Householder's Reflection, Singular Valve Decomposition (SVD).
Unit 5	Power Spectrum Estimation
	Estimation of Spectra form Finite Duration Observations of Signals, Nonparametric Methods for Power Spectrum Estimation, Parametric Method for power spectrum estimation, Minimum variance spectral estimation, Eigen analysis algorithms for spectrum estimation.
	rence Books:
1.	Proakis J. G., Rander C. M., f. Ling and Nikins C. L., Advanced Digital Signal Processing, Macmillan Publishing Company, New York, 1992.
2.	Hayes M. H., Statical Digital Signal Processing and Modelling, John Wiley and Sons INC. New York, 1996.

		C	Control Stream								
PEC-IN423	Non-li	near Conti	rol Systems								
Teaching scher	ne:		Examination scheme:								
Lectures	3	hrs/week	Theory								
Tutorials	0	hrs/week	In Semester Evaluation : 20 Marks								
Practical	0	hrs/week	Mid Semester Examination : 30 marks								
Credits	3		End Semester Examination : 50 marks								
Course Objectiv	Course Objectives:										

1.	To introduce students to nonlinear dynamical systems and phenomena with													
	examples drawn from mechanical systems.													
2.	To provide methods of characterizing and understanding the behavior of systems that													
	can be described by nonlinear ordinary deferential equations.													
Course or	Course outcomes: After successfully completing the course students will be able to,													
1.	Derive and describe the methods for PPA and DF.													
2.	Apply the PPA and DF method to specific systems.													
3.	Derive and describe the feedback linearization.													
4.	Apply the method of feedback linearization to specific systems.													
5.	Provide the necessary methods for designing controllers for such systems.													
6.	Provide applications relevant to the mechanical engineering disciplines where the													
	course material can be applied (aerospace control, vehicle control, process control,													
	control of dynamical systems)													

PO/PSO → ↓ CO	P01	PO2	РОЗ	PO4	P05	P06	PO7	P08	P09	PO10	P011	PO12	PSO1	PSO2	PSO3	PSO4
PEC-IN423.1	3	-	-	-	-	-	1	-	-	-	-	2	3	3	2	2
PEC-IN423.2	3	-	-	-	-	-	-	-	-	2	1	2	3	3	2	2
PEC-IN423.3	3	2	2	2	2	-	-	-	ı	-	ı	1	3	1	2	1
PEC-IN423.4	3	-	-	-	-	-	1	-	ı	-	ı	1	3	2	2	1
PEC-IN423.5	3	-	-	1	1	-	-	-	ı	-	ı	2	3	1	1	1
PEC-IN423.6	3	3	2	3	2	-	-	-	-	2	-	1	3	3	2	2
PEC-IN423	3	1	1	1	1	-	1	-	-	1		2	3	3	3	2

Syllabus:										
Unit 1	Introduction									
	Introduction to nonlinearities and nonlinear phenomenon, Nonlinearsystem									
	behavior, Why nonlinear control?, Examples.									
Unit 2	Phase Plane Analysis									
	Concepts of Phase Plane Analysis: Phase Portraits; SingularPoints; Symmetry in Phase									
	Plane Portraits, Methods of Constructing Phase Portraits: Analytical method, the									
	method of Iscolines, Determining time form Phase Portraits, Phase Plane Analysis of									
	linear systems, Phase Plane Analysis of nonlinear systems, limit cycles and existence									
	of limit cycle: Poincare, Bendixsons theorem.									
Unit 3	Describing Function Method									
	Describing function fundamentals: An example ofdescribing functions; Computing									
	describing functions, Derivations of describingfunctions of common nonlinearities,									
	Describing function analysis of nonlinear systems: The Nyquist Criterion and its									
	extension: Existence of limit cycles; Stability of limit cycles; Reliability of describing									
	function analysis, Introduction to dual input describing functions, Subharmonic and									
	jump resonance.									
Unit 4	Fundamentals of Lyapunov Theory									
	Introduction, Nonlinear Systems and Equilibrium Points. Autonomous and Non-									
	autonomous systems, Concept of Stability, Asymptotic stability and exponential									
	stability, Local and global stability, Linearization and Local stability, Lyapunov's									
	linearization method, Lyapunov's direct method, Positive definite functions, and									
	Lyapunov's functions, Equilibrium Point theorems; Lyapunov theorem for local and									
	global stability, Invariant set theorems, System Analysis based on Lyapunov Direct									

	method. Lyapunov analysis of linear time-invariant systems, Generation of Lyapnov
	functions. Krasovski's Method, The variable gradient method Physically motivated
	Lypunov functions, control design based on Lyapunov's direct method.
Unit 5	Advanced Stability Theory
	Concepts of stability for non-autonomous systems, Lyapunov analysis of Non-
	autonomous systems, Lyapunov like analysis using Barbalat's Lemma, Positive linear
	system: PR and SPR transfer functions, The Kalman - Yakubovich Lemma, The
	Passivity formulation.
Unit 6	Feedback Linearization
	Intuitive concepts: Feedback linearization and canonical form; Input-state; Input-
	output linearization, Mathematical tools, Input-state linearization of SISO systems;
	Generating a linear input-output relation. Normal forms, The zerodynamics.
	Stabilization and tracking; Inverse dynamics and Non-minimum phase systems; Case
	study: Trajectory Control of Robot Manipulator.
Text/Refe	rence Books:
1.	J. E. Slotine and w. Li, Applied Nonlinear Control., Prentice Hall Inc. Englewood cliffs,
	New Jersey 1995.
2.	M. Vidyasagar, Nonlinear System Analysis, Prentice-Hall Inc. Englewood cliffs, New
	Jersey 1978.
3.	Gelb A. and Vander Velde W. E., Multiple Input describing Function and Nonlinear
	System Design, Machrao-Hill (1968).
4.	A. Isidori, Nonlinear Control System: An Introduction, Springer Yerlag, 1989.
5.	Gibson, Nonlinear Automatic Control, Tata Ma-Graw Hill, 1963.

			In	dustrial Stream						
PEC-IN4	124	Batch	Process Co	ontrol						
Teaching	schen	ne:		Examination scheme:						
Lectures		3	hrs/week	Theory						
Tutorials		0	hrs/week	In Semester Evaluation : 20 Marks						
Practical		0	hrs/week	Mid Semester Examination : 30 marks						
Credits		3		End Semester Examination : 50 marks						
Course objectives:										
1.	Exan	Examine the different techniques required for Batch process control.								
2.	Study different standards for batch process control.									
3.	Impl	ement 1	the standards fo	or different batch process P&IDs.						
Course Ou	itcom	es: Afte	er successfully c	ompleting the course students will be able to,						
1.	Acqu	iired kn	owledge of star	ndards used for Batch process control.						
2.	Deve	elopmer	nt of control sch	emes for different batch process P&IDs.						
3.	Deve	elop a d	eep understand	ling of the application of statistical techniques to process						
	cont	rol.								
4.	Stud	ydesign	of batch contro	ol systems and the concepts upon which they are based.						
5.	Knov	w the co	onstructional de	etails, principle of operation, and performance of different						
	unit	operati	ons and their In	strumentation.						
6.	Intro	duce th	ne use of real-tir	ne databases for decision support.						

PO/PSO →	PO1	PO2	P03	PO4	P05	P06	P07	P08	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
↓ CO		102	1 00	101	100	100	10,	100	101	1010		. 012	1001	1002	. 500	

PEC-IN424.1	3	-	-	2	-	-	-	1	1	1	-	1	3	3	2	_
PEC-IN424.2	3	1	2	1	ı	ı	ı	2	1	2	-	1	3	3	2	-
PEC-IN424.3	-	1	2	2	1	•	•	1	1	1	-	2	3	3	3	2
PEC-IN424.4	3	2	3	1	2	ı	ı	2	1	1	-	2	3	3	3	2
PEC-IN424.5	3	2	3	2	1	ı	ı	2	1	1	-	2	3	3	3	1
PEC-IN424.6	-	2	ı	ı	2	ı	ı	2	1	1	-	1	2	2	2	-
PEC-IN424	3	2	2	2	2	-	-	2	-	1	-	2	3	3	3	1

Syllabus:	
Unit 1	Introduction
	Introduction to batch control system, batch control system terminology, and characteristics of batch processes, hierarchical batch model, control structure for batch systems.
Unit 2	S88 standard
	Role of standards in batch control systems, study of international standards and practices such as S88, S 95, USA FDA regulation, 21CFR 11, etc.
Unit 3	Control of batch Process
	General control requirements, safety interlocking, regulatory & discrete controls, sequential control of batch processes, control activities and process management, information handling for a batch process.
Unit 4	Design of batch control systems
	Batch management, recipe management, and production scheduling & information management. Batch control system design, system requirements, system hardware/reliability requirement.
Unit 5	Specifications and data management
	Batch control system specifications and implementation, Information/display requirements, cost justification and benefits, data management.
Unit 6	Implementation & case studies
	Generic implementation of batch processes, case study of batch control system implementation for applications in food and beverages, pharmaceuticals etc.
Text/Refe	erence Books:
1.	Thomas .G. Fisher William M. Hawkins, —Batch Control Systems , ISA series, 1st ed., 2008.
2.	Thomas .G. Fisher William M. Hawkins, —Batch Control Systems , ISA series, 2nd ed., 2012.

PFC-IN	Industrial Stream PEC-IN425 Industrial Internet of Things (IIoT)									
Teaching scheme: Examination scheme:										
Lectures		3	hrs/week	Theory						
Tutorials 0 hrs/week In Semester Eval			hrs/week	In Semester Evaluation : 20 Marks						
Practical		0	hrs/week	Mid Semester Examination : 30 marks						
Credits		3		End Semester Examination : 50 marks						
Course of	ojecti	ves:								
1.	1. To Learn advanced Web Technologies.									
2.	To apply technologies while solving problems									

Course O	Outcomes: After successfully completing the course students will be able to,								
1.	Present a survey on building blocks of Web Technologies and open source tools.								
2.	2. Write test cases to use technologies for solving problems using Web Technologies.								
3.	3. Write presentations on using Web Technologies with case studies.								
4.	Understand the Vulnerabilities of IoT.								
5.	Develop Architectural Approach for IoT Empowerment Introduction.								
6.	Train and encourage the students to present and discuss the computer assignments								
	and projects to their classmates and on the web.								

PO/PSO → ↓ CO	PO1	PO2	P03	P04	P05	P06	PO7	P08	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
PEC-IN425.1	3	2	3	1	2	1	1	1	2	1	2	1	3	3	3	2
PEC-IN425.2	3	1	3	1	3	2	2	1	2	2	2	1	3	2	2	1
PEC-IN425.3	3	1	3	1	2	1	-	1	3	-	2	2	3	2	1	1
PEC-IN425.4	3	2	3	1	3	2	-	1	3	-	2	2	3	2	2	1
PEC-IN425.5	3	2	3	1	3	1	-	1	2	-	2	3	3	1	1	1
PEC-IN425.6	3	1	1	1	3	-	-	1	3	-	2	1	3	2	3	2
PEC-IN425	3	2	3	1	3	2	1	-	3	1	2	2	3	3	3	1

Syllabus:	
Unit 1	IoT Web Technology
	The Internet of Things Today, Time for Convergence, Towards the IoT Universe, Internet of Things Vision, IoT Strategic Research and Innovation Directions, IoT Applications, Future Internet Technologies, Infrastructure, Networks and Communication, Processes, Data Management, Security, Privacy & Trust, Device Level Energy Issues, IoT Related Standardization, Recommendations on Research Topics.
Unit 2	IoT Applications for Value Creation
	Introduction, IoT applications for industry: Future Factory Concepts, Brown field IoT, Smart Objects, Smart Applications, Four Aspects in your Business to Master IoT, Value Creation from Big Data and Serialization, IoT for Retailing Industry, IoT for Oil and Gas Industry, Opinions on IoT Application and Value for Industry, Home Management, eHealth.
Unit 3	Internet of Things
	Privacy, Security and Governance Introduction, Overview of Governance, Privacy and Security Issues, Contribution from FP7 Projects, Security, Privacy and Trust in IoT-Data-Platforms for Smart Cities, First Steps Towards a Secure Platform, Smartie Approach. Data Aggregation for the IoT in Smart Cities, Security.
Unit 4	Architectural Approach for IoT Empowerment
	Introduction, Designing a Common Architectural Ground, IoT Standardization, M2M Service Layer Standardization, OGC Sensor Web for IoT, IEEE, IETF and ITU-T standardization activities, Interoperability Challenges, Physical vs Virtual, Solve the Basic First, Data Interoperability, Semantic Interoperability, Organizational Interoperability, Eternal Interoperability, Importance of Standardisation, Plan for validation and testing, Important Economic Dimension, Research Roadmap for IoT Testing Methodologies. Semantic as an Interoperability Enabler and related work.
Unit 5	Vulnerabilities of IoT

	Introduction, Vulnerabilities of IoT, Security requirements, Challenges for a secure								
	Internet of Things, identity management, Identity portrayal, Different identity								
	management model: Local identity, Network identity, Federated identity, Global								
	web identity, Identity management in Internet of Things, User-centric identity								
	management, Device-centric identity management, Hybrid identity management.								
Unit 6	Trust Management in IoT								
	Introduction, Trust management life cycle, Identity and trust, Third party								
	approach, Public key infrastructure, Attribute certificates, Web of trust models,								
	Web servicessecurity, SAML approach, Fuzzy approach for Trust, Access control in								
	IoT, Different access control schemes, Authentication and Access control policies								
	modeling.								
Text/Referei	nce Books:								
1.	Dr. Ovidiu Vermesan, Dr. Peter Friess, Internet of Things: Converging								
	Technologies for Smart Environments and Integrated Ecosystems, River								
	Publishers, 2013,ISBN: 978-87-92982-96-4 (E-Book), ISBN: 978-87-92982-73-5.								
2.	Vijay Medishetti, Arshadeep Bahga, Internet of Things: A Hands-On Approach (Paperback).								
3.	Cuno Pfister, Getting Started with the Internet of Things, O'Reilly Media, 2011, ISBN: 978-1-4493-9357-1.								
4.	Poonam Railkar, Identity Management for Internet of Thing, River Publishers,								
	2015, ISBN: 978-87-93102-91-0 (EBook), ISBN:978-87-93102-90-3.								
5.	BoS Content: Books, Course Notes, Digital contents, Blogs developed by the BoS								
	for bridging the gaps in the syllabus, problem solving approaches and advances in								
	the course.								
L									

			Instru	umentation Stream							
PEC-IN4	PEC-IN426 Agricultural Instrumentation										
Teaching:	schen	ne:		Examination scheme:							
Lectures		3	hrs/week	Theory							
Tutorials 0 hrs/week In Semester Evaluation: 20 Marks											
Practical 0 hrs/week Mid Semester Examination : 30 marks											
Credits 3 End Semester Examination : 50 marks											
Course Ob	jectiv	es:									
1.	To in	itroduce	the soil measu	rement systems.							
2.	To d	eal with	green house in	strumentation.							
3.	To d	iscuss tł	ne working of a	utomation equipment in agriculture.							
Course ou	tcom	es: After	successfully co	ompleting the course students will be able to,							
1.	Desig	gn senso	ors for soil mois	sture measurement.							
2.	Auto	mate ag	ricultural appli	ications.							
3.	Meas	sure cha	racteristics of l	eaves.							
4.	Appl	ication (of SCADA for DA	AM parameters & control.							
5.	Auto	mation	in earth moving	g equipment & farm equipment.							
6.	Infra	red & U	V bio sensor m	ethods in agriculture.							

PO/PSO → ↓ CO	P01	PO2	P03	PO4	P05	P06	PO7	P08	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
PEC-IN426.1	3	3	3	3	2	2	2	-	1	-	3	3	3	2	1	1

PEC-IN426.2	3	2	2	2	1	2	2	-	1	_	2	2	3	3	1	1
PEC-IN426.3	3	1	3	2	3	2	1	1	1	1	1	1	3	3	1	2
PEC-IN426.4	3	2	3	3	1	3	2	1	2	-	3	1	3	2	2	2
PEC-IN426.5	3	2	3	3	2	2	2	1	1	1	3	1	3	3	3	2
PEC-IN426.6	3	1	3	2	1	2	2	1	1	-	2	1	3	3	3	2
PEC-IN426	3	1	3	3	2	3	2	1	1	1	3	2	3	3	2	2

Syllabus:	
Unit 1	Introduction
	Necessity of instrumentation & control for agriculture, engineering properties of soil: fundamental definitions & relationships, index properties of soil, permeability & seepage analysis, shear strength, Mohr's circle of stress, active & passive earth pressures, stability & slopes, Sensors: introduction to sonic anemometers, hygrometers, fine wire thermocouples, open & close path gas analyzers, brief introduction m to various bio-sensors.
Unit 2	Case studies
	Flow diagram of sugar plant & instrumentation set up for it, flow diagram of fermenter & control(batch process), flow diagram of dairy industry & instrumentation set up for it, juice extraction control process & instrumentation set up for it.
Unit 3	Irrigation systems
	Necessity, irrigation methods: overhead, center pivot, lateral Move, micro irrigation systems &its performance, comparison of different irrigation systems, soil moisture measurement methods: resistance based method, voltage based method, thermal based method, details of gypsum block soil moisture sensor, irrigation scheduling, irrigation efficiencies, design considerations in irrigation channels.
Unit 4	Application of SCADA for DAM parameters & control
	Irrigation control management up- stream & down - stream control systems, green houses &instrumentation: ventilation, cooling & heating, wind speed, temperature & humidity, rain gauge carbon dioxide enrichment measurement & control.
Unit 5	Automation in earth moving equipment & farm equipment
	Application of SCADA & PLC in packing industry and cold storage systems, implementation of hydraulic, pneumatic & electronics control circuits in harvesters cotton pickers, tractor etc. classification of pumps: pump characteristics, pump selection & installation.
Unit 6	Green houses & instrumentation
	ventilation, cooling & heating, wind speed, temperature & humidity, rain gauge, carbon dioxide enrichment measurement & control Leaf area length evaportranspiration, temperature, wetness & respiration measurement & data logging, electromagnetic radiations photosynthesis, infrared & UV bio sensor methods in agriculture, agrometrological instrumentation weather stations, surface flux measurement, soil water content measurement using time-domain reflectrometery(TDR),ground water occurrence confined & unconfined aquifers, evolution of aquifer properties, ground water recharge.
	erence Books:
1.	Patranabis, "Industrial instrumentation", TMH.
2.	B.G. Liptak, "Instrumentation handbook-process control", Chilton Book Company.
3. 4.	C.D. Johnson, "Process control and instrumentation technology", PHI. Wills B.A., "Mineral Processing Technology", 4th Ed., Pergamon Press.
т.	wins bar, mileral riocessing reciniology, and Eu., religation riess.

			Instri	umentation Stream							
PEC-IN4	427 En	erg	y Harvesti								
Teaching				Examination scheme:							
Lectures		3	hrs/week	Theory							
Tutorials		0	hrs/week	In Semester Evaluation : 20 Marks							
Practical		0	hrs/week	Mid Semester Examination : 30 marks							
Credits		3		End Semester Examination : 50 marks							
Course ob	jectives:										
1.	principle	es of	energy harve	e "Energy Harvesting" is to familiarize students with basic esting systems as well as methods of electro-mechanical provoltaic cells and thermoelectric generators.							
2.	The emphasis is on understanding the physical principles of energy harvesting methods mainly electro-mechanical conversion and simulation modelling of such mechatronic systems.										
Course ou	ıtcomes:A	fter	successfully co	ompleting the course students will be able to,							
1.	energy f	rom	_	deals with overview of independent ways of generating for autonomous supplying of wireless sensors, remote devices.							
2.	Students	wil ind	l be able to: A	nalyze of ambient energy for energy harvesting from the Select the best way of supplying of modern autonomous							
3.	Simulati	on m	odeling of elec	ctro-mechanical conversion.							
4.				ways of the energy generating from surroundings.							
5.	Able to understand, how to overcome energy limitations of batteries or possibly fully substitute batteries is to harvest energy from the environment to power the electronics.										
6.		tion,		harvesting from mechanical energy of vibrations, shocks, vior etc., and simulation modelling of energy harvesting							

PO/PSO → ↓ CO	P01	PO2	PO3	PO4	P05	P06	P07	P08	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
PEC-IN427.1	3	3	3	3	2	2	2	-	1	-	3	3	3	2	1	1
PEC-IN427.2	3	2	2	2	1	2	2	-	1	-	2	2	3	3	1	1
PEC-IN427.3	3	1	3	2	3	2	1	1	1	1	ı	1	3	3	1	2
PEC-IN427.4	3	2	3	3	1	3	2	1	2	-	3	1	3	2	2	2
PEC-IN427.5	3	2	3	3	2	2	2	1	1	1	3	1	3	3	3	2
PEC-IN427.6	3	1	3	2	1	2	2	-	1	-	2	1	3	3	3	2
PEC-IN427	3	1	3	3	2	3	2	1	1	1	3	2	3	3	2	2

Syllabus:	
Unit 1	Solar energy
	Solar energy, its importance, storage of solar energy, solar pond, non-convective solar pond, applications of solar pond and solar energy, solar water heater, flat plate collector, solar distillation, solar cooker, solar green houses, solar cell, absorption air conditioning. Need and characteristics of photovoltaic (PV) systems, PV models and

	equivalent circuits, and sun tracking systems.
	Carbon captured technologies, cell, batteries, power consumption, Environmental
	issues and Renewable sources of energy, sustainability.
Unit 2	Wind Energy harvesting
	Fundamentals of Wind energy, Wind Turbines and different electrical machines in
	wind turbines, Power electronic interfaces, and grid interconnection topologies.
Unit 3	Ocean Energy
	Ocean Energy Potential against Wind and Solar, Wave Characteristics and Statistics,
	Wave Energy Devices. Tide characteristics and Statistics, Tide Energy Technologies,
	Ocean Thermal Energy, Osmotic Power, Ocean Bio-mass.
Unit 4	Geothermal Energy
	Geothermal Resources, Geothermal Technologies. Hydro Energy: Hydropower
	resources, hydropower technologies, environmental impact of hydro power sources.
Unit 5	Piezoelectric Energy harvesting
	Introduction, Physics and characteristics of piezoelectric effect, materials and
	mathematical description of piezoelectricity, Piezoelectric parameters and modeling
	piezoelectric generators, Piezoelectric energy harvesting applications, Human power.
Unit 6	Harvesting applications
	Human power, Electromagnetic Energy Harvesting: Linear generators, physics
	mathematical models, recent applications.
Text/Ref	erence Books:
1.	G.D. Rai, "Non-conventional energy sources" Khanna Publishers, New Delhi.
2.	M P Agarwal , "Solar energy", S Chand and Co. Ltd.
3.	Suhas P Sukhative, "Solar energy" Tata McGraw - Hill Publishing Company Ltd.
4.	Godfrey Boyle, "Renewable Energy, Power for a sustainable future", 2004, Oxford
	University Press, in association with The Open University.
5.	Dr. P Jayakumar, "Solar Energy: Resource Assessment Handbook", 2009.

			Signal	Processing Stream						
PEC-IN ²	PEC-IN428 Digital Signal Processors and Applications									
Teaching scheme: Examination scheme:										
Lectures		3	hrs/week	Theory						
Tutorials		0	hrs/week	In Semester Evaluation : 20 Marks						
Practical	0 hrs/week Mid Semester Examination : 30 marks									
Credits	ts 3 End Semester Examination : 50 marks									
Course Ob	Course Objectives:									
1.	To provide better understanding of discrete-time and digital signal in time and									
	frequ	ency do	main.							
2.	To pr	ovide k	nowledge to ar	nalyze linear systems with difference equations.						
3.	To provide knowledge to analyze linear systems with difference equations.									
Course ou	tcome	s:After	successfully co	empleting the course students will be able to,						
1.	An ability to apply knowledge for analyzing the signals in both time and frequency									
	domain.									
2.	An ability to design FIR and IIR filters for signal pre-processing.									
3.	An ab	An ability to implement and realize the filters using different structures.								
4.	Expla	in the s	election of DSF	processor for signal processing applications.						

5.	Represent discrete-time signals analytically and visualize them in the time domain.
6.	Understand the meaning and implications of the properties of systems and signals.
7.	Understand the Transform domain and its significance and problems related to
	computational complexity.
8.	Be able to specify and design any digital filters using MATLAB.

PO/PSO → ↓ CO	P01	PO2	P03	PO4	P05	P06	P07	P08	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
PEC-IN428.1	2	-	-	-	-	-	-	-	-	-	-	1	3	2	2	1
PEC-IN428.2	3	2	-	-	2	-	-	-	-	-	-	2	3	2	2	1
PEC-IN428.3	3	2	-	-	3	1	-	-	1	-	1	2	3	2	2	1
PEC-IN428.4	2	2	3	-	2	1	-	-	1	-	1	1	3	2	1	1
PEC-IN428.5	1	1	1	-	3	1	-	-	1	-	1	1	3	2	1	1
PEC-IN428.6	2	2	3	2	2	1	-	-	-	-	-	1	3	2	1	1
PEC-IN428	2	2	2	2	2	1	-	-	-	-	-	1	3	2	1	1

Syllabus:	
Unit 1	Signal Processing Fundamentals
	Discrete-time and digital signals, A/D, D/A conversion and Nyquist rate, Frequency
	aliasing due to sampling, Need for anti-aliasing filters. Discrete Time Fourier
	transform and frequency spectra, Spectral computation, Computational complexity of
	the DFT and the FFT, Algorithmic development and computational advantages of the
	FFT, Inverse FFT, Implementation of the FFT, Correlation of discrete-time signals.
Unit 2	Discrete-time systems
	Difference equations and the Z-transform, Analysis of discrete-time LTIL systems, Stability and Jury's test.
Unit 3	FIR Filters
	Ideal digital filters, Realizability and filter specifications, Classification of linear phase
	FIR filters, Design using direct truncation, window methods and frequency sampling,
	Least-squares optimal FIR filters, Minimax optimal FIR filters, Design of digital
	differentiators and Hilbert transformers, comparison of design methods.
Unit 4	IIR Filters
	Design of analog prototype filters, Analog frequency transformations, Impulse
	invariance method and digital frequency transformations, Bilinear transformation,
	Analog prototype to digital transformations, Difficulties in direct IIR filter design,
Unit 5	Comparisons with FIR filters. IIR Filters design
UIILS	Design of analog prototype filters, Analog frequency transformations, Impulse
	invariance method and digital frequency transformations, Bilinear transformation,
	Analog prototype to digital transformations, Difficulties in direct IIR filter design,
	Comparisons with FIR filters.
Unit 6	Filter Realization
	Structures for FIR filters, Structures for IIR filters, State-space analysis and filter
	structures, Fixed point and floating-point representation of numbers, Errors resulting
	from rounding and truncating, Quantization effects of filter coefficients, Round-off
	effects of digital filters.
Unit 7	DSP Processors
	Computer architectures for signal processing – Harvard architecture and pipelining,

	General purpose digital signal processors, Selection of DSPs, Implementation of DSP
	algorithms on a general purpose DSP, Special purpose hardware – hardware digital
	filters and hardware FFT processors, Evaluation boards for real-time DSP.
Reference	e Books:
1.	Chen, C.T., Digital Signal Processing: Spectral Computation & Filter Design, Oxford
	Univ. Press, 2001 (Available as an Indian reprint).
2.	Proakis, J.G., & Manolakis, D.G., Digital Signal Processing: Principles, Algorithms, &
	Applications, 3/e Prentice Hall of India, 2007.
3.	Ifeachor, E.C., & Jervis, B.W., Digital Signal Processing: A Practical Approach, 2/e,
	Pearson Education Asia, 2009.
4.	McClellan, J.H., Schafer, R.W., & Yoder, M.A., DSP First: A Multimedia Approach, 2/e
	Prentice Hall Upper Saddle River, NJ, 2003.
5.	Mitra, S.K., Digital Signal Processing: A Computer-Based Approach, 4/e ,McGraw Hill,
	NY, 2011 (A low-cost Indian reprint is available).
6.	Embree, P.M., & Danieli, D., C++ Algorithms for Digital Signal Processing, 2/e, Prentice
	Hall Upper Saddle River, NJ, 1999.

	Elective-VI								
	Control Stream								
PEC-IN4	PEC-IN429 AI based Control Systems								
Teaching	Teaching scheme: Examination scheme:								
Lectures		3	hrs/week	Theory					
Tutorials		0	hrs/week	In Semester Evaluation : 20 Marks					
Practical	0 hrs/week Mid Semester Examination : 30 marks								
Credits	3 End Semester Examination : 50 marks								
Course ob	Course objectives:								
1.	To provide students with an understanding of the fundamental theory of neural								
	networks and fuzzy systems.								
2.	The objective is intended for students to apply neural networks and fuzzy systems to								
	mod	el and so	olvecomplicate	d practical problems such as recognition.					
Course ou	Course outcomes: After successfully completing the course students will be able to,								
1.	Comprehend the concepts of feed forward neural networks								
2.	Analyze the various feedback networks.								
3.	3. Understand the concept of fuzziness involved in various systems and fuzzy set theory.								
4.	Comprehend the fuzzy logic control and adaptive fuzzy logic and to design the fuzzy								
	control using genetic algorithm.								
5.	Anal	yze the a	application of f	uzzy logic control to real time systems.					
6.	Impl	ementn	eural networks	sand fuzzy systems to solvepractical problems.					

COULDCIN	01 00	arbe	oute	01110	1114 1 1	95.411	I O a co	01110								
PO/PSO → ↓ CO	P01	P02	P03	PO4	P05	P06	P07	P08	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
PEC-IN429.1	3	3	-	1	2	-	-	1	3	3	3	3	3	3	1	3
PEC-IN429.2	3	-	-	2	-	-	-	-	2	3	3	2	3	2	1	-
PEC-IN429.3	3	-	-	2	-	-	-	-	2	3	3	3	3	3	2	-
PEC-IN429.4	3	2	3	2	3	-	-	-	2	3	3	3	3	2	3	2
PEC-IN429.5	3	3	3	2	3	-	-	2	3	3	3	3	3	3	3	2
PEC-IN429.6	3	3	3	2	3	-	-	2	3	3	3	3	3	3	3	3

PEC-IN429 3 2 2 2 2 - - 1 3 3 3 3 3 3 3

Callabase	
Syllabus:	AC!-1 N1 Ct
Unit 1	Artificial Neural Systems
	Preliminaries, fundamentals concepts and models of artificial neural system, neural
11 '. 0	network learning rules, Hebbian, Perceptron, delta Windrow-Hoff learning rules.
Unit 2	Single layer Perceptron Classification
	Classification model, features and decision regions, training and classification using
	discrete perception, algorithm and example, single layer continuous Perceptron
** 1: 0	networks for linear separable classification.
Unit 3	Multilayer Feed forward Networks
	Generalized delta learning rule, feed forward recall and error back propagation
	training, learning factors. Single layer feedback networks: Basic concepts of
	dynamical systems mathematical foundation of discrete time and gradient type
	Hopfield networks, transient response of continuous time networks solution
	optimization problems.
Unit 4	Neural network in control system
	Neuro control approaches, training algorithms, evaluation of training algorithms,
	through simulation, self-running neuro-control scheme, self-tuning PID neuro
	controller, neuro control scheme feed water bath temperature control system.
Unit 5	Introduction of fuzzy control
	Introduction fuzzy control from an industrial perspective, mathematical of fuzzy
	control fuzzy sets, fuzzy relation, approximate reasoning representing a set of rules.
	Fuzzy knowledge based controllers FKBS design parameters: Structure of FKBC
	fuzzification and defuzzification module, rule base choice of variable and contents of
	rules, derivation of rules, data base choice of membership unction and scaling factors,
	choice of fuzzification, defuzzification procedure.
Text/Refe	erence Books:
1.	Kosko, B, "Neural Networks and Fuzzy Systems: A Dynamical Approach to Machine
	Intelligence", PrenticeHall, NewDelhi, 2004.
2.	Timothy J Ross, "Fuzzy Logic with Engineering Applications", John Willey and Sons,
	West Sussex, England, 2005.
3.	M. T. Hagan, H. B. Demuth and M. Beale, "Neural Network Design" Thomson Learning,
	Vikas Publishing House, New Delhi, 2002.
4.	J. M. Zurada, "Introduction to Artificial Neural Systems", Jaico Publication House 1997.
5.	S. Haykin, "Neural Networks: A Comprehensive Foundation", Pearson Education, New
	Delhi, 2002.
6.	John Yen and Reza Langari, "Fuzzy Logic: Intelligence, Control and Information",
	Pearson Education New Delhi, 2003.
7.	S. Rajsekaran, G. A. Vijayalaxmi Pai, "Neural Networks, Fuzzy Logic, and Genetic
	Algorithms, Synthsis and Applications", Prentice Hall of India, 2003.
8.	S. Omatu, M. Khalid and R Yusof, "Neuro Control and its Applications", Springer -
	Verlag, London Limited 1996.
9.	D. Driankov H. Hellendoorn and M. Reinfrank, "An Introduction to Fuzzy Control",
	Narosa Publication House, Second Reprint, New Delhi, 1997.

			In	dustrial Stream					
PEC-IN4	430	Produ	ct Design a	and Development					
Teaching	schen	ne:		Examination scheme:					
Lectures	Lectures 3 hrs/week Theory								
Tutorials		0	hrs/week	In Semester Evaluation : 20 Marks					
Practical		0	hrs/week	Mid Semester Examination : 30 marks					
Credits		3		End Semester Examination : 50 marks					
Course ob	jectiv	es:							
1.	ТоС	ompeter	ice with a set o	f tools and methods for product design and development.					
2.	Too	levelop (Confidence in a	bilities to create a new product.					
3.	To	reate Av	vareness of the	role of multiple functions in creating a new product (e.g.					
	mar	keting, fi	nance, industri	al design, engineering, production).					
Course ou	tcom	es: After	successfully co	mpleting the course students will be able to,					
1.	Und	erstand t	the integration	of customer requirements in product design.					
2.	Appl	ly structi	ıral approach t	o concept generation, selection and testing.					
3.	Und	erstand	various aspe	cts of design such as industrial design, design for					
	man	ufacture	, economic ana	lysis and product architecture.					
4.	Abili	ity to co	ordinate multi _l	ple, interdisciplinary tasks in order to achieve a common					
	objective.								
5.	I		•	knowledge from other courses through practice and					
	refle	ction in	an action-orier	nted setting.					
6.	Enha	anced tea	am working ski	ills.					

PO/PSO → ↓ CO	P01	PO2	PO3	PO4	PO5	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2	PSO3	PSO4
PEC-IN430.1	3	3	3	3	3	3	3	2	3	1	1	3	3	3	3	1
PEC-IN430.2	3	3	3	2	3	3	2	3	2	2	2	3	3	3	2	2
PEC-IN430.3	3	3	3	2	3	3	2	1	2	1	2	3	3	2	2	1
PEC-IN430.4	3	3	3	3	3	3	2	-	2	2	3	3	3	3	2	2
PEC-IN430.5	3	3	3	2	3	3	2	-	2	1	2	3	3	3	2	1
PEC-IN430.6	3	3	3	3	3	3	2	-	3	2	3	3	3	3	3	2
PEC-IN430	3	3	3	3	3	3	3	1	3	2	3	3	3	3	3	2

Syllabus:									
Unit 1	Introduction								
	Product Planning. Identifying Customer Needs. Project Selection. Concept Generation.								
	Concept Testing. Concept Selection. Product Specification. Product Architecture.								
	Industrial Design. Robust Design. Product Development Economics. Design for								
	Manufacturing. Supply Chain Design. Intellectual Property. Design for Environment.								
Unit 2	Product Development Schedule								
	Customer base for customer needs survey, Project Proposal, Mission statement and								
	customer needs, Concepts sketch and target specification, Preliminary concept								
	selection, Drawings, plans and revised schedule, financial model and patent review.								
Unit 3	Submission and Evaluation								
	Alpha prototype and test report, Beta prototype and customer evaluation,								
	demonstration of working model.								

Text/Refe	Text/Reference Books:								
1.	Karl T. Ulrich and Steven D. Eppinger, "Product Design and Development", 3rd								
	Edition, Tata McGraw- Hill, 2003, ISBN 0-07-058513-X.								
2.	Kevin Otto and Kristin Wood, "Product Design", Pearson Education, 2003, ISBN:								
	8129702711.								

			Ir	ndustrial Stream					
PEC-IN ²	431	Autor	nobile Ins	trumentation					
Teaching	schen	ne:		Examination scheme:					
Lectures		3	hrs/week	Theory					
Tutorials		0	hrs/week	In Semester Evaluation : 20 Marks					
Practical		0	hrs/week	Mid Semester Examination : 30 marks					
Credits		3		End Semester Examination : 50 marks					
Course ob	jectiv	es:							
1.	To u	ndersta	nd the concept	s of Automotive Electronics and its evolution and trends,					
	Automotive systems & subsystems overview.								
2.	2. To understand Safety standards, advances in towards autonomous vehicles.								
3.	To u	ndersta	nd sensors and	l sensor monitoring mechanisms aligned to automotive					
	syste	ems, diff	erent signal co	onditioning techniques, interfacing techniques and actuator					
	mecl	nanisms	•						
Course ou	tcom	es: After	successfully c	ompleting the course students will be able to,					
1.	Obta	in an	overview of	automotive components, subsystems, design cycles,					
	comi	municat	ion protocols	and safety systems employed in today's automotive					
	indu	stry.							
2.	Desc	ribe th	e working of	f various instruments, sensors and actuators used in					
	auto	mobile s	systems.						
3.	Illust	trate the	test procedur	es and instrumentation for emission standards.					
4.	Discuss about different types instruments used in industry.								
5.	Gain	the kno	wledge of Auto	omobile chassis electronic control system.					
6.	Unde	erstand	Auto Body Ele	ctronic Control Technology.					

PO/PSO → ↓ CO	P01	PO2	РОЗ	PO4	P05	P06	P07	P08	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
PEC-IN431.1	3	2	3	2	3	-	-	2	3	1	1	3	3	3	3	1
PEC-IN431.2	3	1	2	-	3	-	-	3	2	2	2	3	3	3	2	2
PEC-IN431.3	3	2	1	-	2	-	-	1	2	1	2	3	3	2	2	1
PEC-IN431.4	3	3	3	3	2	-	-	-	2	2	3	3	3	3	2	2
PEC-IN431.5	3	3	2	2	1	-	-	-	2	1	2	3	3	3	2	1
PEC-IN431.6	3	3	3	2	2	-	-	-	3	2	3	3	3	3	3	2
PEC-IN431	3	3	3	2	3	-	•	1	3	2	3	3	3	3	3	2

Syllabus:	
Unit 1	Fundamentals of Automotive Electronics
	Open loop and closed loop systems components for electronic engine management, vehicle motion control, Current trends in modern Automobiles.

Unit 2	Electronic Fuel Injection and ignition systems								
	Introduction, Carburetor control system,throttle body ignition and multi-port or								
	point fuel injection, Advantages of electronicignition system, Types of solid state								
	ignition systems and their principle of operation, electronic spark timing control								
	system.								
Unit 3	Engine control system								
	Engine cranking and warm up control, Acceleration enrichment -De-acceleration								
	leaning and idle speed control, integrated engine control system, exhaust emission								
	control system, Engine performance testing.								
Unit 4	Automobile chassis electronic control system								
	Principle of electronic braking, automatictransmission electronic control circuit,								
	cruise control circuit, the electronic steeringcontrol theory, ABS, ASR, ESP, and other								
	electronic control method.								
Unit 5	Auto Body Electronic Control Technology								
	Automotive central locking and anti-theft system control technology, electronically								
	controlled windows and doors and airbag technology, principle of control circuit								
	components and characteristics.								
Unit 6	Ergonomics and safety								
	Driver information system, lighting system components, batterymonitoring and								
	control, Air conditioning, steering control techniques, Automatic gearcontrol systems,								
	Emission standards.								
Text/ Ref	erence Books:								
1.	William B. Riddens, "Understanding Automotive Electronics", 5th								
	Edition,(Butterworth Heinemann Woburn), (1998).								
2.	Tom Weather Jr and Cland C. Hunter, "Automotive Computers and Control System",								
	Prentice Hall Inc., New Jeresy.								
3.	Jiri Marek, Hans Peter trah, "Sensors Applications, Sensors for								
	AutomotiveTechnology" 1st Edition, Wiley.								
4.	T. Mellard, Automotive Electronic Systems" 1987 by Heinenmann Professional.								
	,								

	Instrumentation Stream										
PEC-IN ²	432	Intell	igent Sens	ors							
Teaching	schei	ne:		Examination scheme:							
Lectures		3	hrs/week	Theory							
Tutorials		0	hrs/week	In Semester Evaluation : 20 Marks							
Practical	l 0 hrs/week Mid Semester Examination : 30 marks										
Credits	Credits 3 End Semester Examination : 50 marks										
Course Ob	jecti	ves:									
1.	To ti	rain the	students to the	e variousintelligent sensors principle.							
	To	train tl	ne students	using intelligent sensors for wellness and industrial							
	appl	ications	ı								
2.	To s	tudy fus	ion of multi se	nsors make them understand their applications.							
3.	To t	rain the	students sel	ection of sensors for specific application using Artificial							
	intel	ligent te	chniques.								
Course ou	tcom	es:After	successfully o	completing the course students will be able to,							
1.	Und	Understand Intelligent measurement system.									
2.	Iden	tify, defi	ne, names var	ious types of smart sensors, biosensors, fiber optic sensors,							

	MEMS, robotics sensors.
3.	Describe, draw, and explain the working principle and its possible application of
	various Intelligent sensors.
4.	Analyse problem and develop projects by using various types of intelligent sensors in
	Agriculture, Environmental, and Automotive industries and Wellness.
5.	Evaluate asses and compare various types of intelligent sensors and decide the test
	selection for particular application like biosensors, environmental sensors.
6.	Create, design, formulate, generate and deliver the best possible solution using
	various types of intelligent sensors for example wellness, automation, economic bio-
	sensors, robotic applications.
7.	Evaluate the fusion of multisensors for various applications and selection of
	intelligent sensors using Artificial intelligence for any applications.

PO/PSO → ↓ CO	PO1	PO2	PO3	PO4	P05	P06	P07	P08	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
PEC-IN432.1	3	-	-	-	-	-	-	-	-	-	-	2	3	3	2	1
PEC-IN432.2	3	2	2	-	1	-	-	-	-	-	-	2	3	3	2	1
PEC-IN432.3	3	3	-	2	1	-	2	-	•	-	-	2	3	2	2	1
PEC-IN432.4	3	2	2	2	2	1	2	-	1	-	ı	2	3	3	2	2
PEC-IN432.5	3	2	3	2	3	1	2	-	1	-	•	2	3	3	2	2
PEC-IN432.6	3	-	-	-	ı	-	-	-	1	-	-	2	3	3	2	1
PEC-IN432	3	3	3	3	3	3	2	-	1	-	-	3	3	3	3	3

Syllabus:	
Unit 1	The General measurement system
	Measurement system-purpose, structure and elements.
Unit 2	An introduction to Multi-sensor
	Data fusion Techniques, Application of Data Fusion, Process models for Data Fusion,
	Limitation of Data Fusion system.
Unit 3	Smart Sensors
	Introduction, Primary sensors, Excitation, Amplification, Filters, Converters,
	Compensation, Nonlinearity, Approximation and regression, Noise and interference,
	response time, drift, cross-sensitivity, Information Coding/Processing, Data
	communication, standards for smart sensor interface, the Automation.
Unit 4	Recent trends in sensor technology
	Introduction, film sensors, thick film sensors, thin film sensors, semiconductor IC
	technology-standard methods.
Unit 5	MEMS/NANO
	Microelectromechanical systems (MEMS), Micromachining, Biomedical Applications,
	Nano-sensors, Carbon Nanotubes.
Unit 6	Chemical Sensors
	Introduction, semiconductor gas detectors, Ion Selective electrodes, Conductometric
	sensors, Mass sensors.
Unit 7	Robotics sensors
	Introduction, characteristics, types of sensors, touch or tactile sensors, binary and
	analog sensors, proximity sensors, types of proximity sensors, contact and non-
	contact proximity sensors, robotic vision. Fiber optic sensors: Fiber optic sensors for

	the measurement of temperature, Pressure, turbidity, pollution. Biosensors: Enzyme sensors, Cell based biosensors using Microelectrodes, Biosensors in Food Analysis.
Text/Re	eference Books:
1.	Principles of Measurement systems John P. Bentley, Third edition 2000, Pearson.
2.	D. Patranabis, "Sensors and Transducers", Second Edition Prentice Hall of India Pvt. Ltd. New Delhi, 2006.
3.	Middlehook S. and Audet S. A., "Silicon Sensors", Academic Press, London 1999.
4.	Richard C. Dorf, "Sensors, Nanoscience, Biomedical engineering and instruments", CRC Press, Taylor and Francis group USA, third edition, 2006.
5.	Henry Zanger, Cynthia Zanger, "Fiber optics Communication and other applications", Macmillan publishing company, New York, 1991.
6.	Raj Mohan Joshi, "Biosensors", First Edition, ISHA Books, Delhi, 2006.
7.	R. K. Rajput, "Robotics and Industrial Automation", S. Chand & company Ltd., First edition, 2008.
8.	D. V. S. Murty, "Transducers and Instrumentation", Second edition, PHI publication, Second edition, 2010.

			Signal	Processing Stream							
PEC-IN4	133	Biom	edical Sign	al Processing							
Teaching:	schen	ne:		Examination scheme:							
Lectures		3	hrs/week	Theory							
Tutorials		0	hrs/week	In Semester Evaluation : 20 Marks							
Practical		0	hrs/week	Mid Semester Examination : 30 marks							
Credits		3		End Semester Examination : 50 marks							
Course ob	jectiv	es:									
1.	1. To understand Biomedical Signal Processing Course with the fundamental tools that are used to describe, analyze and process biomedical signals.										
2.	To u	ındersta	nd fundamenta	al principles in the analysis and design of filters, power							
	spec	tral der	ısity estimatioi	n and non-stationary signal processing techniques with							
	appl	ications	to biomedical s	signals.							
Course ou	tcom	es: After	successfully co	ompleting the course students will be able to,							
1.	Und	erstand	linear system tl	heory.							
2.	Und	erstand	transfer functio	ons and state models.							
3.	Und	erstand	time-domain ar	nd frequency-domain models.							
4.	Und	erstand	the concept of s	signal filtering.							
5.	Deve	elop the	skill to model c	complex biomedical systems.							
6.	Lear	n to use	signal processi	ing methods to analyze signals originating in biomedical							
	syste	ems.									

PO/PSO → ↓ CO	P01	PO2	P03	PO4	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2	PSO3	PSO4
PEC-IN433.1	2	-	-	-	-	-	-	-	-	-	-	1	3	2	2	1
PEC-IN433.2	3	2	-	-	2	-	-	-	-	-	ı	2	3	2	2	1
PEC-IN433.3	3	2	-	-	3	-	-	-	-	-		2	3	2	2	1
PEC-IN433.4	2	2	3	-	2	-	-	-	-	-	-	1	3	2	1	1
PEC-IN433.5	1	1	1	-	3	-	-	-	-	-	-	1	3	2	1	1

PEC-IN433.6	2	2	3	2	2	1	-	-	-	-	-	1	3	2	1	1
PEC-IN433	2	2	2	2	2	1	-	-	-	-	-	1	3	2	1	1

Cyllabuci	
Syllabus: Unit 1	Basic Neurology
UIIIL I	Nervous system, neuron, resting potential, biopotential, Nernst equation, electrical
	equivalents. Electrical activity of the heart: Cardiac system, bipolar and unipolar lead
	system, Einthoven triangle, electrodes, electrocardiogram-normal and abnormal,
	exercise ECG, lead positioning, electrode positioning for Holter ECG recording, vector
	cardiography, signal conditioning and processing.
Unit 2	Electrical activity of neuromuscular system
UIIIL Z	muscular system, electrical signals of motor unit and gross muscle, human motor
	coordination system, electrical signals of motor unit and gross muscle, numan motor coordination system, electrodes, correlation of force and work, EMG integrators,
	signal conditioning and processing.
Unit 3	Electrical activity of the brain
Units	Sources of brain potential, generation of signals, waves, EEG recording electrodes, 10-
	20 electrode system, EEG under Grand mal and petit mal seizures, signal conditioning
	and processing. Electrical signals from visual system: Sources of electrical signals in
	eye, generation of signals, electro-retinogram, eletro-occulogram.
Unit 4	Electrical signals from auditory system
Ullit	Generation of cochlear potential and nature, evoked responses, auditory nerves,
	signal conditioning and processing. Noise and interference in biomedical signals:
	Sources of noise in biomedical signal recordings, filtering techniques-active and
	passive filters, digital filtering, grounding and shielding.
Unit 5	Computer applications and Bio-telemetry
Onics	Real time computer applications, data acquisition, compression and processing,
	remote data recording and management.
Unit 6	Digital signal processing and data compression
Onico	Typical signal processing operations, time-domain operations, correlation and
	covariance, convolution, Digital filters: Smoothing filters, least square polynomial
	smoothing, windowing, FFT, DFT, data compression methods, Tolerance-
	comparison data compression techniques, polynomial predictors: Zero order
	predictor (ZOP), First order predictor (FOP), Polynomial interpolation: Zero order
	interpolator ZOI and FOI. AZTEC, MAZTEC, TP, CORTES, FAN, SAPA, DPCM, Entropy
	coding method, Peak picking method, cycle-to-cycle compression technique, Huffman
	coding, EBP-ANN based technique: Data compression-retrieval performance indices.
Unit 7	Medical imaging
OHIC /	Diagnostic X-rays, CAT, MRI, thermography, ultrasonography, medical uses of
	isotopes, endoscopy.
Text/Refe	erence Books:
1.	W. J. Jonkins, "Biomedical Digital Signal Processing", Prentice Hall of India, New Delhi.
2.	G. F. Ihbar, "Signal Analysis and Pattern Recognition in BiomedicalEngineering", John
	Wiley and Sons.
3.	R.S. Khandpur , "Hand Book of Biomedical Instrumentation.", Tata Mcgraw Hill Publ.
4.	H.K. Wolf and P.W. Macfarlane (Editors), "Optimization of Computer ECG Processing.",
	North Holland Publishing Co., Amsterdam.
5.	Carr and Brown, "Biomedical Instrumentation."
6.	M.J. Goldman, "Principles of Clinical Electrocardiography."
<u> </u>	,,,

PRJ-IN43	34 Project (In house)												
Teaching so	cheme:	Examination scheme:											
Lectures	0 hrs/week	Practical											
Tutorials	0 hrs/week	Continuous Evaluation : 50 marks,											
Practical	14 hrs/week	End Term Evaluation : 50 marks											
Credits	7												
Course obj	ectives:												
1.													
	teamwork and multidisciplinary approach.												
2.	-	et capable of self-education and clearly understand the value of achieving perfection											
	in project implementation & comp	oletion.											
Course out	comes:After successfully completi	ng the course students will be able to,											
1.	Identify, formulate and solve a p	problem of Instrumentation Engineering and allied											
	areas.												
2.	Understand social impact of au	utomation, safety aspects and hazards associated											
	with various processes in core in	nstrumentation industry.											
3.	Apply new and emerging techn	ologies to analyze, design, maintain reliable, safe,											
	and cost effective solution for re	search and industry problems.											
4.	Analyze parametric optimization	n of manufacturing process.											
5.	Reframe work to accomplish pro	ojects in multidisciplinary areas.											
6.	Design need based project for in	dustry.											

PO/PSO → ↓ CO	P01	PO2	PO3	PO4	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2	PSO3	PSO4
PRJ-IN434.1	3	2	1	2	3	-	-	-	1	1	1	-	3	3	3	1
PRJ-IN434.2	1	1	3	1	3	2	2	-	2	1	2	-	3	3	2	1
PRJ-IN434.3	3	3	3	2	3	-	2	1	3	1	2	-	3	3	3	2
PRJ-IN434.4	3	3	3	2	3	1	-	-	3	1	2	1	3	3	3	2
PRJ-IN434.5	3	3	3	2	3	1	ı	-	3	1	2	2	3	3	3	1
PRJ-IN434.6	3	3	3	3	3	1	1	1	2	1	3	2	3	3	3	1
PRJ-IN434	3	3	3	2	3	1	1	1	2	1	2	1	3	3	3	1

Term wo	rk:
	PROJECT (In house) will be the continuation of mini project undertaken by the candidates in the first term. The term work shall consist of report of the work carried out by the candidates in respect of the project assigned. The candidate must bring the mini projectreport along with project (In house) report while appearing for project (In house) submission.
Practical	Examination:
	It shall consist of presentation and oral examination based upon the project work reportsubmitted by the candidates and or upon the demonstration of the fabricated/designed equipment or software developed for simulation. The said examination will be conducted by a panel of two examiners, consisting of preferably guide working as internal examiners and another external examiner preferably from an industry or other university.

PRJ-IN4	35 Project (In Industry/	Research Institute)												
Teaching s		Examination scheme:												
Lectures	0 hrs/week	Practical												
Tutorials	0 hrs/week	Continuous Evaluation : 50 marks,												
Practical	34 hrs/week	End Term Evaluation : 50 marks												
Credits	17													
Course obj	ctives:													
1.	Inderstand & Apply the theoretical concepts to solve industrial problems with													
	teamwork and multidisciplinary	amwork and multidisciplinary approach.												
2.	Get capable of self-education	Get capable of self-education and clearly understand the value of achieving												
	perfection in project implementation & completion.													
Course out	comes:After successfully completi	ng the course students will be able to,												
1.	Identify, formulate and solve a	problem of Instrumentation Engineering and allied												
	areas.													
2.	Understand social impact of a	utomation, safety aspects and hazards associated												
	with various processes in core is	nstrumentation industry.												
3.	Apply new and emerging techr	ologies to analyze, design, maintain reliable, safe,												
	and cost effective solution for re	search and industry problems.												
4.	Analyze parametric optimization	Analyze parametric optimization of manufacturing process.												
5.	Reframe work to accomplish pro	Reframe work to accomplish projects in multidisciplinary areas.												
6.	Design need based project for in	dustry.												

PO/PSO → ↓ CO	PO1	PO2	PO3	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2	PSO3	PSO4
PRJ-IN435.1	3	2	1	2	3	-	-	-	1	1	1	-	3	3	3	1
PRJ-IN435.2	1	1	3	1	3	2	2	-	2	1	2	-	3	3	2	1
PRJ-IN435.3	3	3	3	2	3	-	2	1	3	1	2	-	3	3	3	2
PRJ-IN435.4	3	3	3	2	3	1	-	-	3	1	2	1	3	3	3	2
PRJ-IN435.5	3	3	3	2	3	1	-	-	3	1	2	2	3	3	3	1
PRJ-IN435.6	3	3	3	3	3	1	1	1	2	1	3	2	3	3	3	1
PRJ-IN435	3	3	3	2	3	1	1	1	2	1	2	1	3	3	3	1

Term work: PROJECT (In Industry/Research Institute) will be based upon the work allotted by the industry/research institute where student is working for whole semester. The term work shall consist of report of the work carried out bythe candidates in respect of the project assigned by the industry/ research institute. The candidate must bring detail projectreport while appearing for project (In Industry/Research Institute) submission. **Practical Examination:** It shall consist of presentation and oral examination based upon the project work reportsubmitted by the candidates and or upon the demonstration of the fabricated/designedequipment or software developed for simulation industry/research institute. The said examination will be conducted by a panel of two examiners, consisting of preferably guide working as internal examinerand another external examiner preferably from an industry, other university or research institute.

	Open Elec	ctive Course											
OEC-IN43	36 Introduction to MEMS	S/NEMS											
Teaching sc	heme:	Examination scheme:											
Lectures	3 hrs/week	Theory											
Tutorials	0 hrs/week	In Semester Evaluation : 20 Marks											
Practical	0 hrs/week	Mid Semester Examination : 30 marks											
Credits	3	End Semester Examination : 50 marks											
Course objectives:													
1. To develop a concept on the scope and recent developments in the science and													
	technology of micro- and nano-systems.												
2.	To gain a basic understanding of construction and mechanics underlying these												
	systems.												
3.	To learn some potentially applica	able micro- and nano-systems at the frontier of the											
	development of the field.												
4.	To acquire the knowledge about	design and fabrication of MEMS / NEMS.											
Course outo	omes: After successfully completing	ng the course students will be able to,											
1.	Understand the operation of micro	o devices, micro systems and their applications.											
2.	Design the micro devices, micro s	systems using the MEMS fabrication process.											
3.	Gain knowledge of basic approac	hes for various sensor designs.											
4.	Gain knowledge of basic approac	hes for various actuator designs.											
5.	Develop experience on micro / na	ano systems.											
6.	Gain the technical knowledge r	required for computer-aided design, fabrication,											
	analysis and characterization of r	nicro- and nano-scale devices.											

PO/PSO → ↓ CO	P01	PO2	P03	PO4	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2	PSO3	PSO4
OEC-IN436.1	3	1	1	1	2	2	1	3	2	3	1	1	3	1	2	1
OEC-IN436.2	2	2	2	1	2	1	2	1	1	1	1	1	3	1	3	1
OEC-IN436.3	2	3	1	2	1	2	1	1	1	1	3	1	3	1	2	1
OEC-IN436.4	2	3	2	1	1	1	3	2	1	2	1	1	3	1	2	1
OEC-IN436.5	1	2	2	1	3	2	1	2	2	1	2	1	1	1	3	1
OEC-IN436.6	1	1	1	2	3	3	1	1	2	1	1	2	2	1	3	1
OEC-IN436	2	3	2	1	3	2	2	2	2	2	2	1	3	1	3	1

Syllabus:	
Unit 1	Introduction
	Micro and Nano scale systems Introduction to Design of MEMS and NEMS, Overview of Nano and Micro electromechanical Systems, Applications of Micro and Nano electro mechanical systems, Micro electromechanical systems, devices and structures Definitions, Materials for MEMS: Silicon, silicon compounds, polymers, metals. Scaling effects.
Unit 2	MEMS Fabrication Technologies
	Microsystem fabrication processes: Photolithography, Ion Implantation, Diffusion, Oxidation, Thin film depositions: LPCVD, Sputtering, Evaporation, Electroplating; Etching techniques: Dry and wet etching, electrochemical etching; Micromachining: Bulk Micromachining, Surface Micromachining, High Aspect-Ratio (LIGA and LIGA-

like) Technology; Non-conventional micromachining – microelectrodischarge machining, ultrasonic machining, laser micromachining, nano imprinting, focused ion beam machining, screen printing, soft lithography, injection molding, hot embossing, stereolithography. Unit 3 MEMS Sensors Design of Acoustic wave sensors, resonant sensor, Vibratory gyroscope, Capacitive and Piezoresistive Pressure sensors- engineering mechanics behind these Microsensors. Unit 4 Design of Actuators Mechanics at microscale – microstructural elements, Stiction and control. Actuation principles – Electrostatic, Piezoresistive, Piezoelectric, Thermal, Electromagnetic, Resonant and tunneling. Shape memory Alloys, piezoelectric crystals, Parallel plate, Torsion bar, Comb drive actuators, Micromechanical Motors, Microaccelerometers, microphones, ink-jet printer heads, resonators, digital micromirrors, etc. Unit 5 Microfluidics Fluid dynamics at the microscale, electrokinetics, surface tension driven transport, microfluidics for DNA analysis, Lab-on-Chip applications, Microfluidic devices: Micropumps, microvalves, micromixers. Unit 6 Packaging Microsystems packaging, Essential packaging technologies, Selection of packaging materials. Wafer bonding and packaging, Assembly techniques for MEMS Text/Reference Books: 1. G.K. Ananthasuresh, K.J. Vinoy, S. Gopalakrishnan, K.N. Bhat and V.K. Aatre, "Micro and Smart Systems", John Wiley & Co. Indian Edition New Delhi, ISBN: 978 81265 27151, 2010, 385p. 2. Marc Madou, "Fundamentals of Micro fabrication", CRC press 1997. 3. Stephen D. Senturia," Micro system Design", Kluwer Academic Publishers, 2001. 4. Tai Ran Hsu, "MEMS and Microsystems Design and Manufacture", Tata McGraw Hill, 2002. 5. Chang Liu, "Foundations of MEMS", Pearson education India limited, 2006. 6. N. Maluf, "An introduction to microelectromechanical systems engineering", Artech House 2000.		
beam machining, screen printing, soft lithography, injection molding, hot embossing, stereolithography. Unit 3 MEMS Sensors Design of Acoustic wave sensors, resonant sensor, Vibratory gyroscope, Capacitive and Piezoresistive Pressure sensors- engineering mechanics behind these Microsensors. Unit 4 Design of Actuators Mechanics at microscale – microstructural elements, Stiction and control. Actuation principles – Electrostatic, Piezoresistive, Piezoelectric, Thermal, Electromagnetic, Resonant and tunneling. Shape memory Alloys, piezoelectric crystals, Parallel plate, Torsion bar, Comb drive actuators, Micromechanical Motors, Microaccelerometers, microphones, ink-jet printer heads, resonators, digital micromirrors, etc. Unit 5 Microfluidics Fluid dynamics at the microscale, electrokinetics, surface tension driven transport, microfluidics for DNA analysis, Lab-on-Chip applications, Microfluidic devices: Micropumps, microvalves, micromixers. Unit 6 Packaging Microsystems packaging, Essential packaging technologies, Selection of packaging materials. Wafer bonding and packaging, Assembly techniques for MEMS Text/Reference Books: 1. G.K. Ananthasuresh, K.J. Vinoy, S. Gopalakrishnan, K.N. Bhat and V.K. Aatre, "Micro and Smart Systems", John Wiley & Co. Indian Edition New Delhi, ISBN: 978 81265 27151, 2010, 385p. 2. Marc Madou, "Fundamentals of Micro fabrication", CRC press 1997. 3. Stephen D. Senturia," Micro system Design", Kluwer Academic Publishers, 2001. 4. Tai Ran Hsu, "MEMS and Microsystems Design and Manufacture", Tata McGraw Hill, 2002. 5. Chang Liu, "Foundations of MEMS", Pearson education India limited, 2006. N. Maluf, "An introduction to microelectromechanical systems engineering", Artech		like) Technology; Non-conventional micromachining – microelectrodischarge
Unit 3 MEMS Sensors Design of Acoustic wave sensors, resonant sensor, Vibratory gyroscope, Capacitive and Piezoresistive Pressure sensors- engineering mechanics behind these Microsensors. Unit 4 Design of Actuators Mechanics at microscale – microstructural elements, Stiction and control. Actuation principles – Electrostatic, Piezoresistive, Piezoelectric, Thermal, Electromagnetic, Resonant and tunneling. Shape memory Alloys, piezoelectric crystals, Parallel plate, Torsion bar, Comb drive actuators, Micromechanical Motors, Microaccelerometers, microphones, ink-jet printer heads, resonators, digital micromirrors, etc. Unit 5 Microfluidics Fluid dynamics at the microscale, electrokinetics, surface tension driven transport, microfluidics for DNA analysis, Lab-on-Chip applications, Microfluidic devices: Micropumps, microvalves, micromixers. Unit 6 Packaging Microsystems packaging, Essential packaging technologies, Selection of packaging materials. Wafer bonding and packaging, Assembly techniques for MEMS Text/Reference Books: 1. G.K. Ananthasuresh, K.J. Vinoy, S. Gopalakrishnan, K.N. Bhat and V.K. Aatre, "Micro and Smart Systems", John Wiley & Co. Indian Edition New Delhi, ISBN: 978 81265 27151, 2010, 385p. 2. Marc Madou, "Fundamentals of Micro fabrication", CRC press 1997. 3. Stephen D. Senturia," Micro system Design", Kluwer Academic Publishers, 2001. 4. Tai Ran Hsu, "MEMS and Microsystems Design and Manufacture", Tata McGraw Hill, 2002. 5. Chang Liu, "Foundations of MEMS", Pearson education India limited, 2006. N. Maluf, "An introduction to microelectromechanical systems engineering", Artech		O,
Unit 3 MEMS Sensors		
Design of Acoustic wave sensors, resonant sensor, Vibratory gyroscope, Capacitive and Piezoresistive Pressure sensors- engineering mechanics behind these Microsensors. Unit 4 Design of Actuators Mechanics at microscale – microstructural elements, Stiction and control. Actuation principles – Electrostatic, Piezoresistive, Piezoelectric, Thermal, Electromagnetic, Resonant and tunneling. Shape memory Alloys, piezoelectric crystals, Parallel plate, Torsion bar, Comb drive actuators, Micromechanical Motors, Microaccelerometers, microphones, ink-jet printer heads, resonators, digital micromirrors, etc. Unit 5 Microfluidics Fluid dynamics at the microscale, electrokinetics, surface tension driven transport, microfluidics for DNA analysis, Lab-on-Chip applications, Microfluidic devices: Micropumps, microvalves, micromixers. Unit 6 Packaging Microsystems packaging, Essential packaging technologies, Selection of packaging materials. Wafer bonding and packaging, Assembly techniques for MEMS Text/Reference Books: 1. G.K. Ananthasuresh, K.J. Vinoy, S. Gopalakrishnan, K.N. Bhat and V.K. Aatre, "Micro and Smart Systems", John Wiley & Co. Indian Edition New Delhi, ISBN: 978 81265 27151, 2010, 385p. 2. Marc Madou, "Fundamentals of Micro fabrication", CRC press 1997. 3. Stephen D. Senturia," Micro system Design", Kluwer Academic Publishers, 2001. 4. Tai Ran Hsu, "MEMS and Microsystems Design and Manufacture", Tata McGraw Hill, 2002. 5. Chang Liu, "Foundations of MEMS", Pearson education India limited, 2006. 6. N. Maluf, "An introduction to microelectromechanical systems engineering", Artech		
## Action Pressure sensors engineering mechanics behind these Microsensors. Unit 4 Design of Actuators	Unit 3	
Unit 4 Design of Actuators		and Piezoresistive Pressure sensors- engineering mechanics behind these
Mechanics at microscale – microstructural elements, Stiction and control. Actuation principles – Electrostatic, Piezoresistive, Piezoelectric, Thermal, Electromagnetic, Resonant and tunneling. Shape memory Alloys, piezoelectric crystals, Parallel plate, Torsion bar, Comb drive actuators, Micromechanical Motors, Microaccelerometers, microphones, ink-jet printer heads, resonators, digital micromirrors, etc. Unit 5 Microfluidics Fluid dynamics at the microscale, electrokinetics, surface tension driven transport, microfluidics for DNA analysis, Lab-on-Chip applications, Microfluidic devices: Micropumps, microvalves, micromixers. Unit 6 Packaging Microsystems packaging, Essential packaging technologies, Selection of packaging materials. Wafer bonding and packaging, Assembly techniques for MEMS Text/Reference Books: 1. G.K. Ananthasuresh, K.J. Vinoy, S. Gopalakrishnan, K.N. Bhat and V.K. Aatre, "Micro and Smart Systems", John Wiley & Co. Indian Edition New Delhi, ISBN: 978 81265 27151, 2010, 385p. 2. Marc Madou, "Fundamentals of Micro fabrication", CRC press 1997. 3. Stephen D. Senturia," Micro system Design", Kluwer Academic Publishers, 2001. 4. Tai Ran Hsu, "MEMS and Microsystems Design and Manufacture", Tata McGraw Hill, 2002. 5. Chang Liu, "Foundations of MEMS", Pearson education India limited, 2006. N. Maluf, "An introduction to microelectromechanical systems engineering", Artech		
principles – Electrostatic, Piezoresistive, Piezoelectric, Thermal, Electromagnetic, Resonant and tunneling. Shape memory Alloys, piezoelectric crystals, Parallel plate, Torsion bar, Comb drive actuators, Micromechanical Motors, Microaccelerometers, microphones, ink-jet printer heads, resonators, digital micromirrors, etc. Unit 5 Microfluidics Fluid dynamics at the microscale, electrokinetics, surface tension driven transport, microfluidics for DNA analysis, Lab-on-Chip applications, Microfluidic devices: Micropumps, microvalves, micromixers. Unit 6 Packaging Microsystems packaging, Essential packaging technologies, Selection of packaging materials. Wafer bonding and packaging, Assembly techniques for MEMS Text/Reference Books: 1. G.K. Ananthasuresh, K.J. Vinoy, S. Gopalakrishnan, K.N. Bhat and V.K. Aatre, "Micro and Smart Systems", John Wiley & Co. Indian Edition New Delhi, ISBN: 978 81265 27151, 2010, 385p. 2. Marc Madou, "Fundamentals of Micro fabrication", CRC press 1997. 3. Stephen D. Senturia," Micro system Design", Kluwer Academic Publishers, 2001. 4. Tai Ran Hsu, "MEMS and Microsystems Design and Manufacture", Tata McGraw Hill, 2002. 5. Chang Liu, "Foundations of MEMS", Pearson education India limited, 2006. N. Maluf, "An introduction to microelectromechanical systems engineering", Artech	Unit 4	
 microphones, ink-jet printer heads, resonators, digital micromirrors, etc. Unit 5 Microfluidics Fluid dynamics at the microscale, electrokinetics, surface tension driven transport, microfluidics for DNA analysis, Lab-on-Chip applications, Microfluidic devices: Micropumps, microvalves, micromixers. Unit 6 Packaging Microsystems packaging, Essential packaging technologies, Selection of packaging materials. Wafer bonding and packaging, Assembly techniques for MEMS Text/Reference Books: G.K. Ananthasuresh, K.J. Vinoy, S. Gopalakrishnan, K.N. Bhat and V.K. Aatre, "Micro and Smart Systems", John Wiley & Co. Indian Edition New Delhi, ISBN: 978 81265 27151, 2010, 385p. Marc Madou, "Fundamentals of Micro fabrication", CRC press 1997. Stephen D. Senturia," Micro system Design", Kluwer Academic Publishers, 2001. Tai Ran Hsu, "MEMS and Microsystems Design and Manufacture", Tata McGraw Hill, 2002. Chang Liu, "Foundations of MEMS", Pearson education India limited, 2006. N. Maluf, "An introduction to microelectromechanical systems engineering", Artech 		principles – Electrostatic, Piezoresistive, Piezoelectric, Thermal, Electromagnetic, Resonant and tunneling. Shape memory Alloys, piezoelectric crystals, Parallel plate,
Fluid dynamics at the microscale, electrokinetics, surface tension driven transport, microfluidics for DNA analysis, Lab-on-Chip applications, Microfluidic devices: Micropumps, microvalves, micromixers. Unit 6 Packaging Microsystems packaging, Essential packaging technologies, Selection of packaging materials. Wafer bonding and packaging, Assembly techniques for MEMS Text/Reference Books: 1. G.K. Ananthasuresh, K.J. Vinoy, S. Gopalakrishnan, K.N. Bhat and V.K. Aatre, "Micro and Smart Systems", John Wiley & Co. Indian Edition New Delhi, ISBN: 978 81265 27151, 2010, 385p. 2. Marc Madou, "Fundamentals of Micro fabrication", CRC press 1997. 3. Stephen D. Senturia," Micro system Design", Kluwer Academic Publishers,2001. 4. Tai Ran Hsu, "MEMS and Microsystems Design and Manufacture", Tata McGraw Hill, 2002. 5. Chang Liu, "Foundations of MEMS", Pearson education India limited, 2006. N. Maluf, "An introduction to microelectromechanical systems engineering", Artech		
microfluidics for DNA analysis, Lab-on-Chip applications, Microfluidic devices: Micropumps, microvalves, micromixers. Unit 6 Packaging Microsystems packaging, Essential packaging technologies, Selection of packaging materials. Wafer bonding and packaging, Assembly techniques for MEMS Text/Reference Books: 1. G.K. Ananthasuresh, K.J. Vinoy, S. Gopalakrishnan, K.N. Bhat and V.K. Aatre, "Micro and Smart Systems", John Wiley & Co. Indian Edition New Delhi, ISBN: 978 81265 27151, 2010, 385p. 2. Marc Madou, "Fundamentals of Micro fabrication", CRC press 1997. 3. Stephen D. Senturia," Micro system Design", Kluwer Academic Publishers,2001. 4. Tai Ran Hsu, "MEMS and Microsystems Design and Manufacture", Tata McGraw Hill, 2002. 5. Chang Liu, "Foundations of MEMS", Pearson education India limited, 2006. 6. N. Maluf, "An introduction to microelectromechanical systems engineering", Artech	Unit 5	Microfluidics
 Unit 6 Packaging Microsystems packaging, Essential packaging technologies, Selection of packaging materials. Wafer bonding and packaging, Assembly techniques for MEMS Text/Reference Books: G.K. Ananthasuresh, K.J. Vinoy, S. Gopalakrishnan, K.N. Bhat and V.K. Aatre, "Micro and Smart Systems", John Wiley & Co. Indian Edition New Delhi, ISBN: 978 81265 27151, 2010, 385p. Marc Madou, "Fundamentals of Micro fabrication", CRC press 1997. Stephen D. Senturia," Micro system Design", Kluwer Academic Publishers,2001. Tai Ran Hsu, "MEMS and Microsystems Design and Manufacture", Tata McGraw Hill, 2002. Chang Liu, "Foundations of MEMS", Pearson education India limited, 2006. N. Maluf, "An introduction to microelectromechanical systems engineering", Artech 		microfluidics for DNA analysis, Lab-on-Chip applications, Microfluidic devices:
Microsystems packaging, Essential packaging technologies, Selection of packaging materials. Wafer bonding and packaging, Assembly techniques for MEMS Text/Reference Books: 1. G.K. Ananthasuresh, K.J. Vinoy, S. Gopalakrishnan, K.N. Bhat and V.K. Aatre, "Micro and Smart Systems", John Wiley & Co. Indian Edition New Delhi, ISBN: 978 81265 27151, 2010, 385p. 2. Marc Madou, "Fundamentals of Micro fabrication", CRC press 1997. 3. Stephen D. Senturia," Micro system Design", Kluwer Academic Publishers,2001. 4. Tai Ran Hsu, "MEMS and Microsystems Design and Manufacture", Tata McGraw Hill, 2002. 5. Chang Liu, "Foundations of MEMS", Pearson education India limited, 2006. N. Maluf, "An introduction to microelectromechanical systems engineering", Artech		
 materials. Wafer bonding and packaging, Assembly techniques for MEMS Text/Reference Books: G.K. Ananthasuresh, K.J. Vinoy, S. Gopalakrishnan, K.N. Bhat and V.K. Aatre, "Micro and Smart Systems", John Wiley & Co. Indian Edition New Delhi, ISBN: 978 81265 27151, 2010, 385p. Marc Madou, "Fundamentals of Micro fabrication", CRC press 1997. Stephen D. Senturia," Micro system Design", Kluwer Academic Publishers,2001. Tai Ran Hsu, "MEMS and Microsystems Design and Manufacture", Tata McGraw Hill, 2002. Chang Liu, "Foundations of MEMS", Pearson education India limited, 2006. N. Maluf, "An introduction to microelectromechanical systems engineering", Artech 	Unit 6	5 5
 G.K. Ananthasuresh, K.J. Vinoy, S. Gopalakrishnan, K.N. Bhat and V.K. Aatre, "Micro and Smart Systems", John Wiley & Co. Indian Edition New Delhi, ISBN: 978 81265 27151, 2010, 385p. Marc Madou, "Fundamentals of Micro fabrication", CRC press 1997. Stephen D. Senturia," Micro system Design", Kluwer Academic Publishers,2001. Tai Ran Hsu, "MEMS and Microsystems Design and Manufacture", Tata McGraw Hill, 2002. Chang Liu, "Foundations of MEMS", Pearson education India limited, 2006. N. Maluf, "An introduction to microelectromechanical systems engineering", Artech 		
 and Smart Systems", John Wiley & Co. Indian Edition New Delhi, ISBN: 978 81265 27151, 2010, 385p. Marc Madou, "Fundamentals of Micro fabrication", CRC press 1997. Stephen D. Senturia," Micro system Design", Kluwer Academic Publishers, 2001. Tai Ran Hsu, "MEMS and Microsystems Design and Manufacture", Tata McGraw Hill, 2002. Chang Liu, "Foundations of MEMS", Pearson education India limited, 2006. N. Maluf, "An introduction to microelectromechanical systems engineering", Artech 	Text/Reference Books:	
 27151, 2010, 385p. Marc Madou, "Fundamentals of Micro fabrication", CRC press 1997. Stephen D. Senturia," Micro system Design", Kluwer Academic Publishers, 2001. Tai Ran Hsu, "MEMS and Microsystems Design and Manufacture", Tata McGraw Hill, 2002. Chang Liu, "Foundations of MEMS", Pearson education India limited, 2006. N. Maluf, "An introduction to microelectromechanical systems engineering", Artech 	1.	
 Marc Madou, "Fundamentals of Micro fabrication", CRC press 1997. Stephen D. Senturia," Micro system Design", Kluwer Academic Publishers,2001. Tai Ran Hsu, "MEMS and Microsystems Design and Manufacture", Tata McGraw Hill, 2002. Chang Liu, "Foundations of MEMS", Pearson education India limited, 2006. N. Maluf, "An introduction to microelectromechanical systems engineering", Artech 		
 Stephen D. Senturia," Micro system Design", Kluwer Academic Publishers,2001. Tai Ran Hsu, "MEMS and Microsystems Design and Manufacture", Tata McGraw Hill, 2002. Chang Liu, "Foundations of MEMS", Pearson education India limited, 2006. N. Maluf, "An introduction to microelectromechanical systems engineering", Artech 	2	
 Tai Ran Hsu, "MEMS and Microsystems Design and Manufacture", Tata McGraw Hill, 2002. Chang Liu, "Foundations of MEMS", Pearson education India limited, 2006. N. Maluf, "An introduction to microelectromechanical systems engineering", Artech 		
 2002. 5. Chang Liu, "Foundations of MEMS", Pearson education India limited, 2006. 6. N. Maluf, "An introduction to microelectromechanical systems engineering", Artech 		
6. N. Maluf, "An introduction to microelectromechanical systems engineering", Artech	4.	2002.
	6.	