DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATION ENGINEERING

Semester VII								
Course Code	Name of the course	L	Т	Р	Cree Th	dits Pr		
PCC-EC401	Microwave Engineering	03		02	03	01		
PCC-EC402	Electronic Instrumentation	03		02	03	01		
PEC-EC4** / OEC-EC4**	Elective-III	03		02	03	01		
PEC-EC4** / OEC-**4**	Elective-IV	03		02	03	01		
HMC-EC4**	Elective-V	02			02			
SII-EC411	Industrial Training Seminar			02		01		
	Total	14		10	19			
	Semester VIII							
Course Code	Name of the course	L	Т	Р	Cree Th	dits Pr		
PRJ-EC412	Project			24		12		
PEC-EC4**/ OEC-EC4**	Elective-VI	03	-		03			
PEC-EC4**/ OEC-EC4**	Elective-VII	03			03			
	Total	06		24	1	8		

Curriculum Structure of B. Tech. (With effective from 2021-2022)

L - No. of Lecture Hours/week, T - No. of Tutorial Hours/week, P - No. of Practical Hours/week

B.Tech.(EXTC)	Contact Hours	Credits
TOTAL	54	37

Elective-III, I	V	Elective-V				
(Any TWO fr	om the following)	(Any ONE from the following)				
PEC-EC403	Data Communication and Networking	HMC-EC409	Entrepreneurial Economics			
PEC-EC404	Analog and Mixed Signal VLSI Design	HMC-EC410	Patent Law for Engineers and Scientists			
PEC-EC405	Embedded Operating System					
OEC-EC406	Wavelets and TF Decomposition					
OEC EC407	Artificial Intelligence and Neural					
OLC-LC407	Networks					
OEC-EC408	Digital Image Processing					

Elective-VI, VII (Any TWO from the following)								
PEC-EC413	Mobile & Wireless Communication							
PEC-EC414	Multimedia System							
PEC-EC415	Optical Communication Engineering							
OEC-EC416	Internet of Things							
OEC-EC417	Machine vision and Learning							
OEC-EC418	Data Mining And Data Warehousing							

Note: 1. Elective-IV: Student can choose a course from Program Elective / Open Elective offered by department / Institute Open Elective (Offered by any other department).

2. Elective-VI and VII will be operated in MOOC / Flipped Classroom mode.

SEMESTER VII

PCC-EC-4	01		Microwave	e Engineering (Cr-4, L-3,T-0 P-1)				
Teaching schem	e:			Examination scheme:				
Lecture		3	hrs /week	Theory				
Tutorial		0	hrs/week	In Semester Evaluation : 20 Marks				
Practical		2	hrs/week	Mid Semester Examination : 30 Marks				
Credit		4		In Semester Evaluation after Mid Term : 20 Marks				
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				End Semester Examination : 30 Marks				
Course Objectiv	ves:							
1.	Design and	eva	luate impedance n	natching networks.				
2.	Analyze wa	ive	propagating prope	erties of guided wave structures, coaxial line, parallel				
	plate, micro strip, strip line, rectangular and circular waveguides, and coupled lines.							
3.	Apply the Smith chart to evaluate microwave networks							
	, apply and o							
4.	Design, eva	luat	e and characterize	e of different microwave devices.				
	Destances			Charles Charles and the second				
5.	Design and	ana	liyze the linear and	cross-filed microwave tubes.				
Course Outcom	es: On succe	essfi	l completion of thi	s course, students will be able to				
1.	Justify the i	impo	ortance of impeda	nce matching.				
	,	•	·	U U U U U U U U U U U U U U U U U U U				
2.	Perform th	e tra	ansmission line and	alysis.				
3.	Compare a	Compare and analyze the wave propagation from various transmission mediums.						
A	State the key features of the microwaye devices							
		State the key reatures of the microwave devices.						
5.	Visualize th	e ar	chitecture and une	derstand the working principle of microwave tubes.				

												-			
PO/PSO⇒	PO	Р	PO	PO	PO	PSO	PSO	PSO							
↓ CO	1	2	3	4	5	6	7	8	Ο	10	11	12	1	2	3
									9						
CO1	2	1	1	1	2	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	2	3	2	-	-	-	-	-	-	-	3	3	2
CO4	2	2	3	2	2	-	-	-	-	-	-	-	3	3	2
CO5	3	3	2	3	2	-	-	-	-	-	-	-	3	2	2
СО	12	11	10	12	10	-	-	-	-	-	-	-	15	13	10
(total)															
CO(avg)	2	2	2	2	2	-	-	-	-	-	-	-	3	3	2

Gullahua						
Synabus	Introduction (02 hours)					
Unit 1	History of Microwaves, Microwave frequency bands, Microwave devices, Microwave systems, General applications of microwaves.					
	Microwave transmission lines (08 hours)					
Unit 2	Introduction, transmission line equations and solutions, Reflection coefficient					
	and transmission coefficient Standing wave and standing wave ratio, Line					
	impedance and Admittance, Impedance matching using stub line, application					
	of smith chart in solving transmission line problems.					
	Electromagnetic plane waves (08 hours)					
Unit 3	Introduction, Electric and magnetic wave equation, Poynting theorem,					
Ont 5	Uniform plane waves and reflection, Plane wave propagation in free space and					
	lossless dielectric, plane wave propagation in lossy media.					
Unit 1	Microwave waveguide and components (08 hours)					
Omt 4	Introduction, Rectangular waveguide and circular waveguide, Microwave					
	cavities, Microwave hybrid circuits, Directional couplers, circulator and					
	conlanar strip lines, shielded strip lines, Micro strip lines, paranet strip lines,					
	Transferred electron devices (04 hours)					
Unit 5	Gunn diode DWH theory Microwaya concretion and amplification LSA diode					
	Gunn diode, K w H theory, Microwave generation and amplification, LSA diode.					
Unit 6	Avalanche transit time devices (04 nours)					
	Microscope linear and angeed field takes (06 hours)					
Unit 7	Microwave linear and crossed field tubes (00 nours)					
om <i>i</i>	Klystron, Reflex Klystron, Helix Traveling-wave Tubes (TwTs), Magnetron					
Text/Reference B	onks:					
1.	Samuel Y Liao, Microwave Devices and Circuits, Third Edition, Phil					
2.	David M Pozar, Microwave Engineering, Wiley Publication					
3.	Robert E. Collin. Foundations for microwave engineering. John Wiley & Sons					
	Inc.					

PCC-EC-40	2		Electronic Ir	nstrumentation (Cr-4, L-3,T-0 P	-1)				
Teaching scheme	:			Examination scheme:					
Lecture		3	hrs /week	Theory					
Tutorial		0	hrs/week	In Semester Evaluation	: 20 Marks				
Practical		2	hrs/week	Mid Semester Examination	: 30 Marks				
Credit		4		In Semester Evaluation after Mid Terr	n : 20 Marks				
				End Semester Examination	: 30 Marks				
Course Objective	Course Objectives:								
	To acquai	nt si	tudent with:						
1.	Electronic	me	asurement and its	parameters.					
2.	Types of s	sens	ors and transducer	s.					
3.	Electrical	para	ameter measureme	nt using bridges					
4.	Motivate st	tude	nts for verification of	of electronic systems using electronic meas	surement and				
	instrumenta	atio	n.						
Course Outcome	es: On succe	ssfu	l completion of thi	s course, students will be able to					
1.	Electronic measurement methods and its parameters.								
2.	Sensors and	Sensors and transducers and its applications.							
3.	Students sh	noul	d able to design syst	em to measure different physical quantities	s.				

PO/PSO⇒	PO	Р	PO	PO	РО	PSO	PSO	PSO							
↓ CO	1	2	3	4	5	6	7	8	0	10	11	12	1	2	3
									9						
CO1	2	1	1	1	2	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	2	3	2	-	-	-	-	-	-	-	3	3	2
СО	7	6	5	7	6	-	-	-	-	-	-	-	9	8	6
(total)															
CO(avg)	2	2	2	2	2	1	-	-	I	-	1	I	3	3	2

Syllabus	
Unit 1	Measurement and error: Generalized Measurement System, Accuracy and
	Precision, Significant Figures, Types of Errors, Statistical Analysis, Probability
	of Errors, Limiting Errors, etc.
Unit 2	Primary sensing elements and transducers: Definition and Classification of
	Transducers, Characteristics and Choice of Transducers, Potentiometer, Strain
	Gauges, RTD, Thermister, Thermocouple, LVDT, RVDT, Capacitive Transducer,
	Piezo-Electric Transducer, Hall Effect Transducers, Photo Emissive Cell,
	Photoconductive Cell, Photovoltaic Cell, Photo Diode, Photo Transistor,
	Microphone, Loud Speaker and their Applications.
Unit 3	Electronic Instruments for Measurement of Basic Parameters: DC Meter, AC
	Voltmeter Using Rectifiers, True RMS Responding Volt-Meter, Electronic Multi-
	Meter, DVM, etc.
Unit 4	Bridge Measurement: Wheatstone Bridge, Kelvin Bridge, Maxwell Bridge, Hay
	Bridge, Schering Bridge, Wien Bridge, etc.
Unit 5	Oscilloscopes: Block Diagram of General Purpose Oscilloscope, Dual Beam
	Oscilloscope, Dual Trace Oscilloscope, Lissajous Patterns, Digital Storage

	Oscilloscope, etc.							
Text/Reference B	Text/Reference Books:							
1.	Alan S. Morris, "Principles of Measurements & Instrumentation", PHI.							
2.	A.D. Helfrick & W.D. Cooper, "Modern Electronic Instrumentation & Measurement							
	Techniques", PHI.							
3.	Oliver Cage," Electronic Measurement", McGraw Hills.							
4.	Clyde F. Coombs, "Electronic Instruments Handbook", McGraw Hills.							
5.	Hewlett Packard, Tektronics, Advantest, Aplab, "Application Notes on Measurement".							
6.	A.K. Sawhney, "A course in Electrical and Electronic measurements and Instrumentation",							
	Dhanpat Rai and Company.							
NPTEL course:								
	https://onlinecourses.nptel.ac.in/noc19_ee44/preview							

Program Electives / Open Electives – III, IV (Cr-4, L-3,T-0 P-1) (Any Two from following)

PEC-EC-403	3	Data C	Communication and Networking				
Teaching scheme:			Examination scheme:				
Lecture	3	hrs /week	Theory				
Tutorial	0	hrs/week	In Semester Evaluation	: 20 Marks			
Practical	2	hrs/week	Mid Semester Examination	: 30 Marks			
Credit	4		In Semester Evaluation after Mid Term	n : 20 Marks			
			End Semester Examination	: 30 Marks			
Course Objectives:							
1. U	Understand the	components and	infrastructure that form the basis for mo	st computer			
r	networks						
2.	To know the technical aspects of data communications on the Internet						
3. A	Apply practical	l experience in net	twork programming.				
4. I	Design networ	ks based on case s	studies in colleges or other institutions				
5. <i>A</i>	Assess security	v issues in a netwo	rk, Design and Evaluate short path algo	rithm.			
Course Outcomes	s: On successfu	al completion of th	is course, students will be able to				
1. I	Describe the co	omponents and inf	rastructure that form the basis for most	computer			
r	networks						
2. I	Describe the technical aspects of data communications on the Internet						
3.	Achieve practical experience in network programming.						
4. I	Propose network designs based on case studies in colleges or other institutions						
5. I	Recognize secu	rity issues in a ne	twork, Design and Evaluate short path a	algorithm.			

PO/PSO⇒	PO	Р	PO	PO	PO	PSO	PSO	PSO							
↓ CO	1	2	3	4	5	6	7	8	0	10	11	12	1	2	3
									9						
CO1	3	-	2	-	3	3	-	-	-	-	2	3	3	-	3
CO2	3	1	2	-	2	2	-	-	-	-	2	3	3	-	3
CO3	3	2	2	-	1	3	-	-	-	-	2	3	3	-	3
CO4	3	1	2	-	3	3	-	-	-	-	1	3	3	-	1
CO5	3	2	2	-	3	2	-	-	-	-	1	3	3	-	3
CO	15	6	10	-	12	13	-	-	-	-	8	12	12	-	13
(total)															
CO(avg)	3	1	2	-	2	2	-	-	-	-	1	2	2	-	2

Syllabus	
	Introduction (2 hours) : Introduction to Data Communication and Networking:
Unit 1	Uses of Computer Networks, Network Hardware, Network Software Internet
	Reference Models (OSI and TCP/IP)
	Physical Layer (3 hours): Basis for Data Communication, Guided Transmission
Unit 2	Media, Wireless Transmission Medium, Circuit Switching and Telephone
	Network, High Speed Digital Access.
	Data Link Layer (4 hours): Data Link Layer Design Issues, Error Detection and
Unit 3	Correction, Data Link Control and Protocols, Example Data Link Protocol
	Medium Access Layer (5 hours) : Channel Allocation Problem, Multiple Access,

Unit 4	CSMA, CSMA/CD, CSMA/CA.
	Local Area Network (4 hours) : Ethernet, Fast Ethernet, Gigabit Ethernet, Wireless
Unit 5	LAN, Blue tooth, Connecting devices:-Repeaters, Hub, Bridges, Switch, Router,
	Gateways, Virtual LAN, Example Networks: X.25, Frame Relay, ATM, ISDN
	Network Layer (8 hours): Network Layer Design Issues, Routing Algorithms
Unit 6	(Optimality principle, Static Routing Algorithms, Shortest Path, Flooding,
	Dynamic routing Algorithms, Distance Vector, Link State routing.), Congestion
	control Algorithms (Principles, Policies, Algorithms), Quality of Service
	(Requirements, Techniques, Integrated Services & Differentiated Services),
	Network Layer Protocols (IP Addressing, CIDR & NAT, IP layer protocols
	(ICMP, ARP, RARP, DHCP, BOOTP), IPv6)
	Error Detection and Correction (2 hours): Introduction, Block Coding, Linear
Unit 7	Block Codes, Cyclic Codes and Checksum.
Unit 8	Transport layer (4 hours): Transport Layer Service, Elements of Transport
	protocols, Internet protocols (UDP and TCP)
Unit 9	Application Layer (4 hours): DNS- Domain Name System, Electronic Mail, World
	Wide Web, Multimedia (Audio Compression, Streaming Audio, Voice over IP,
	Video Compression, Video on Demand)
Unit 10	Network Security (4 hours): Cryptography, Symmetric key Algorithms (DES,
	AES), Public key Algorithms-RSA, Digital Signatures, IPSec, Firewall
Text/Reference B	ooks:
1.	Computer Networks by Andrew S. Tanenbaum (Fifth Edition), Pearson Education
2.	Data Communication and Networking by Behrouz A. Forouzan (Fourth Edition),
	Tata McGraw Hill

PEC-EC-404		Analog	and Mixed Signal VLSI Design				
Teaching scheme:			Examination scheme:				
Lecture	3	hrs /week	Theory				
Tutorial	0	hrs/week	In Semester Evaluation	: 20 Marks			
Practical	2	hrs/week	Mid Semester Examination	: 30 Marks			
Credit	4		In Semester Evaluation after Mid Terr	n : 20 Marks			
			End Semester Examination	: 30 Marks			
Course Objectives	:						
1.	To understan	d basics of analog	devices.				
2.	To explain di	ifferent configurat	ions of single stage amplifiers and their	r frequency			
	response.						
3.	To describe a	and analyze curren	nt mirrors.				
4.	To represent	noise in various a	nalog circuits and its effects and remov	al techniques.			
5.	To analyze a	nd design OP-AM	Ps and other analog and mixed signal b	blocks and			
	band gap refe	erences.					
Course Outcomes	: On successf	ul completion of th	his course, students will be able to				
1.	Basic buildin	g blocks like curr	ent/voltage sources and basic gain stag	es.			
2.	Advanced analog circuits such as cascaded stages, cascade, differential amplifiers.						
3.	OPAMPs, Ba	and gap reference	circuits.				
4.	Mixed signal	circuits such as S	/H circuits, ADC, DAC, Sigma-Delta	Converters,			
	PLL/DLL.		-				

PO/PSO⇒	PO	Р	PO	PO	PO	PSO	PSO	PSO							
↓ CO	1	2	3	4	5	6	7	8	0	10	11	12	1	2	3
									9						
CO1	2	1	1	1	2	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	2	3	2	-	-	-	-	-	-	-	3	3	2
CO4	2	2	3	2	2	-	-	-	-	-	-	-	3	3	2
CO	9	8	8	9	8	-	-	-	-	-	-	-	12	11	8
(total)															
CO(avg)	2	2	2	2	2	-	-	-	-	-	-	-	3	3	2

Syllabus	
	Introduction and Devices: Introduction to analog IC design, diode, BJT and MOSFET
Unit 1	as analog devices, device models including parasitic capacitances.
	Current Mirrors: Passive and active current mirrors, basic current mirrors, cascode
Unit 2	current mirrors, active current mirrors, large and small signal analysis, common mode
	properties.
	Amplifiers: Common source, source follower, common gate, cascade, folded cascode,
	basic differential pair, common mode response, single ended differential operation,
Unit 3	differential pair with MOS loads, frequency response of all amplifiers, association of
	poles with nodes.
	Noise and Feedback: Representation of noise in circuits, noise in single stage
Unit 4	amplifiers and cascade stages, noise in differential pairs, noise bandwidth, general
	feedback considerations, feedback topologies, effect of loading, effect of feedback on
	noise.

	Operational amplifiers: One stage and two stage op amps, gain boosting, common
Unit 5	mode feedback, input range limitation, slew rate, power supply rejection, noise in op-
	amp, stability and frequency compensation, multi pole system, phase margin,
	frequency compensation, compensation of two stage op-amps, other compensation
	techniques.
	Other Analog and Mixed Signal Blocks: Band gap references, supply independent
Unit 6	biasing, temperature independent references, PTAT current generation, speed and
	noise issues, introduction to other analog blocks such as S/H circuits, ADC, DAC,
	Sigma-Delta Converters, PLL/DLL, etc.
Text/Refere	nce Books:
1.	Behzad Razavi, Design of Analog CMOS integrated circuits, Tata McGraw Hill
	Edition, 2002.
2.	Philip E Allen, Douglas R. Holberg, CMOS Analog Circuit Design, Oxford, 2002
3.	David A Johns, Ken Martin, Analog Integrated Circuit Design, Wiley Students edition,
	2002.

PEC-EC-40)5		Em	bedded Operating System				
Teaching scheme	e:			Examination scheme:				
Lecture		3	hrs /week	Theory				
Tutorial		0	hrs/week	In Semester Evaluation	: 20 Marks			
Practical		2	hrs/week	Mid Semester Examination	: 30 Marks			
Credit		4		In Semester Evaluation after Mid Term	n : 20 Marks			
				End Semester Examination	: 30 Marks			
Course Objectiv	es:							
1.	To intro	luce	about anatomy of	Embedded operating system				
2.	Acquaint	ing	about Real Time S	Systems and its Operating Systems.				
3.	Teaching	g abo	out basic Linux co	mmands				
4.	Enabling	stuc	lents to understan	d Task Managements				
5.	Introduc	ng a	bout various sche	duling policies				
6.	Understa	nd t	he Inter-task com	munication and perform Memory Management				
7.	Able to u	Inde	rstand usefulness	of operating system in Embedded Applications				
Course Outcom	es: On succ	essf	ul completion of th	nis course, students will be able to				
1.	Compre	henc	the basic element	ts of operating system				
2.	Learn ab	out	the basic concepts	s of Real Time Operating Systems				
3.	Acquire knowledge about task management							
4.	Learn ab	out]	PC Synchronizati	on				
5.	Perform	Men	nory Management	in RTOS				
6.	Get know	vled	ge about tool-chai	in required for Embedded operating systems				
7.	Learn ab	out	developing application	ations using Real time operating system	s			

PO/PSO⇒	PO	Р	PO	PO	PO	PSO	PSO	PSO							
↓ CO	1	2	3	4	5	6	7	8	0	10	11	12	1	2	3
									9						
CO1	2	1	1	1	2	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	2	3	2	-	-	-	-	-	-	-	3	3	2
CO4	2	2	3	2	2	-	-	-	-	-	-	-	3	3	2
CO5	3	3	2	3	2	-	-	-	-	-	-	-	3	2	2
CO6	3	2	2	2	2	-	-	-	-	-		-	2	3	3
CO7	1	2	2	1	2	1	-		-	-	-	-	2	2	3
CO	16	15	14	15	14	-	-	-	-	-	-	-	19	18	16
(total)															
CO(avg)	2	2	2	2	2	-	-	-	-	-	-	-	3	3	3

Syllabus	
	Embedded Linux Development Environment: Need of Linux, Embedded Linux
	Today, Open Source and the GPL, BIOS and Boot loader, Anatomy of an
Unit 1	Embedded System, Storage Considerations, Embedded Linux Distributions,
	Processors for embedded Linux stand alone and integrated processors, Anatomy
	of embedded Linux setup, Booting and Initialization of Kernel. Storage
	considerations, Flash file systems, Execution contexts

	Commercial embedded linux distributions, Embedded Development
Unit 2	Environment, Cross-Development Environment, Development Tools, GNU
	Debugger, Tracing and Profiling Tools, Binary Utilities, Overview of
	Commands, File I/O (open, create, close, lseek, read, write), Process Control (
	fork, vfork, exit, wait, waitpid, exec),
	Linux Kernel Construction: Linux Kernel Background, Linux Kernel
	Construction, Kernel Build System, Kernel Configuration, Role of a Bootloader,
Unit 3	Bootloader Challenges. A Universal Bootloader: Das UBoot, Porting U-Boot,
	Device Driver Concepts, Module Utilities, Driver Methods, Linux File, System
	& Concepts
	μCOS II: History and Definition of RTOS, Key Characteristics of RTOS,
Unit 4	Features of μ COS II, Kernel structure, μ COS II RTOS services: Task
	management: Tasks, Task states and Control block, Task scheduling, task level
	context, switching, Idle task, Time management: Clock Tick, Implementing
	delay in RTOS, resuming the delayed task, getting system time, Placing task in
	ECB wait list, Removing a task from ECB, List of Free ECBs, Initializing an
	ECB, Making a Task Ready and wait for and event. Implementing timeout in
	RTOS
	Inter-Task Communication and Synchronization: Semaphore, Creating/deleting a
Unit 5	Semaphore, Waiting, signalling semaphore, Mutex, Creating/deleting and
	handling Mutex, Event flag management, Timer Interrupt Service Routines
	(ISR), Soft Timers, Mail box, sending / getting a message using mailbox as
	semaphore, message queue and its management, Memory control block. Case
	studies of uCOS based applications
	Embedded Software Development, Testing Process and Tools: Embedded
Unit 6	Software development process and tools, Host and Target Machines, Target
	System Tools and Image transfer, Embedded Loader, Monitor, linking and
	Locating Software, Getting Embedded Software into the Target System, Issues in
	Hardware- Software Design and Co-design. Testing on Host Machine,
	Simulators, Laboratory Tools, Case study of embedded system like Automatic
	Chocolate Vending Machine, Mobile Phone.
Text/Reference Bo	ooks:
1.	Real-Time Concepts for Embedded Systems Qing Li, Caroline Yao Elsevier
2.	Embedded Linux System Design and Development b P Raghvan, Amol Lad,
	Sriram Neelakandan, Auerbach Publications
3.	Jean Labrosse: MicroC/OS-II The Real Time Kernel: CMP Books, 2nd Edition
4.	Raj Kamal: Embedded Systems – Architecture: Programming and Design: TMH
5.	Operating System-Three Easy Pieces by Remzi Arpaci, Andreia Arpaci, 2015

OEC-EC-406	406 Wavelets and Time Frequency Decomposition							
Teaching scheme:			Examination scheme:					
Lecture	3	hrs /week	Theory					
Tutorial	0	hrs/week	In Semester Evaluation	: 20 Marks				
Practical	2	hrs/week	Mid Semester Examination	: 30 Marks				
Credit	4		In Semester Evaluation after Mid Term	n : 20 Marks				
			End Semester Examination	: 30 Marks				
Course Objectives								
1.	To understan	d the concepts and	l limitations of Fourier representations.					
2.	Understand t	he terminology that	at are used in the wavelet literature.					
3.	Explain the c	oncepts, theory, a	nd algorithms behind wavelets from an					
	interdisciplin	ary perspective th	at unifies harmonic analysis (mathemat	ics), filter				
	banks (signal	processing), and	multiresolution analysis (computer visio	on).				
4.	Understand h	low to use the mod	lern signal processing tools using signal	l spaces,				
	bases, operat	ors and series expansion	ansions.					
5.	Apply wavel	ets, filter banks, ai	nd multiresolution techniques to a probl	em at hand,				
	and justify w	hy wavelets provid						
6.	Think critica	lly, ask questions,	and apply problem-solving techniques.	. 1 1				
7.	The objective	e of this course is i	to establish the theory necessary to understand and					
0	A mantiaular	and related constr	ructions.					
ð.	A particular o	inco ultimatoly the	out on constructions that are amenable to efficient					
0	Study the opt	lice unimatery the	lets in signal and image processing where time					
9.	frequency tra	neforme like wave	alets ni signai and image processing where time-					
Course Outcomes	$\frac{11}{2}$ On successf	ul completion of th	his course students will be able to					
1	Understand f	he limitations of F	Fourier representation & terminology use	ed in the				
	wavelet litera	ture.	ourier representation & terminology us					
2.	Understand t	he relation betwee	n MRA and filter bank					
3.	Design the H	aar and Daubechie	es wavelet					
4.	Implement th	e discrete wavelet	transform algorithms					
5.	Implement th	e inverse discrete	wavelet transform algorithms					
6.	Understand a	nd implement the	wavepacket transform					
7.	Able to ident	ify where time-fre	equency transforms like wavelets play an important					
	role.			-				

PO/PSO⇒	PO	Р	PO	PO	PO	PSO	PSO	PSO							
↓ CO	1	2	3	4	5	6	7	8	0	10	11	12	1	2	3
									9						
CO1	2	2	1	1	2	-	-	-	-	-	-	-	3	3	2
CO2	3	3	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	3	3	3	3	3	-	-	-	-	-	-	-	3	3	2
CO4	2	2	3	2	3	-	-	-	I	-	1	-	3	3	2
CO5	3	3	3	3	2	-	-	-	-	-	-	-	3	2	2
CO6	3	2	3	2	2	-	-	-	-	-		-	2	3	3
CO7	3	3	3	2	2	-	-		-	-	-	-	2	2	3

СО	19	18	18	16	16	-	-	-	-	-	-	-	19	18	16
(total)															
CO(avg)	2	2	2	2	2	-	-	-	-	-	-	-	3	3	3

Syllabus	
	Introduction:
	The Origins of Wavelets-Are They Fundamentally New? Other Transforms. Why
Unit 1	Wavelets? The concept of scale and resolution, uncertainty, History of wavelet
	from Morlet to Daubechies via Mallat, Different communities and family of
	wavelets.
	Fundamentals of Linear Algebra: Vector spaces, Bases, Orthogonality,
	Orthonormality, Projection, Functions and function spaces, Orthogonal
	functions, Orthonormal functions, Orthogonal basis functions.
	Signal Representation in Fourier
Unit 2	Fourier series, Orthogonality, Orthonormality and the method of finding the
	Fourier coefficients Complex Fourier series, Orthogonality of complex
	exponential bases, Mathematical preliminaries for continuous and discrete
	Fourier transform, limitations of Fourier domain signal processing.
	Short Time Fourier Transform (STFT)
	Signal representation with continuous and discrete STFT, concept of time-
	frequency resolution, Resolution problem associated with STFT, Heisenberg's
	Uncertainty principle and time frequency tiling, lacunas of STFT and why
	wavelet transform?
	Discrete Wavelet Transform
	Haar scaling functions and function spaces, Translation and scaling of $\phi(t)$,
Unit 3	Orthogonality of translates of $\phi(t)$, Function space V0, Finer Haar scaling
	functions, Concepts of nested vector spaces, Haar wavelet function, Scaled and
	translated Haar wavelet functions, Orthogonality of $\phi(t)$ and $\psi(t)$, Normalization
	of Haar bases at different scales, Refinement relation with respect to normalized
	bases, Support of a wavelet system, Daubechies wavelets, Plotting the
	Daubechies wavelets,
T 1	Discrete Wavelet Transform and Relation to Filter Banks & MRASignal
Unit 4	decomposition (Analysis), Relation with filter banks, Frequency response, Signal
	reconstruction: Synthesis from coarse scale to fine scale, Upsampling and
	intering, Perfect reconstruction filters, QMF conditions, Computing initial sj+1
	coefficients, Concepts of Multi-Resolution Analysis (MRA) and Multi-rate
	2 D signals. The concern of Time Frequency filtering
	Designing Orthogonal Wayalat Systems A Direct Approach
Unit 5	Designing Office of a verter systems - A Direct Approach Refinement relation for orthogonal wavelet systems. Postrictions on filter
Unit 5	coefficients Condition 1: Unit area under scaling function. Condition 2:
	Orthonormality of translates of scaling functions. Condition 3: Orthonormality
	of scaling and wavelet functions. Condition A : Approximation conditions
	(Smoothness conditions) Designing Daubechies orthogonal wavelet system
	coefficients Constraints for Daubechies' 6 tan scaling function
 	Perfect Reconstruction:
Unit 6	Alice cancellation and perfect reconstruction with 2-channel filter bank (Perfect
	reconstruction filter banks).
	Designing Orthogonal Wavelet Systems-A frequency domain approach
	Designing 4-tap and 6-tap Daubechies wavelet coefficients. Conjugate
	2 congrand i up une o up Dudocomos wavelet coometents. Conjugate

	Quadrature Filter Banks (CQF) and their design.
	The wavepacket transform:
Unit 7	Wavelet packet transform, the basis used. Signal representation using Wavelet
	Packet Analysis, Selection of best basis.
	Applications of Wavelets:
	An exploration of applications (this will be a joint effort between the instructor
	and the class). Applications of wavelets in biomedical signal and image
	processing and other related engineering Fields.
	Introduction:
	The Origins of Wavelets-Are They Fundamentally New? Other Transforms. Why
Unit 8	Wavelets? The concept of scale and resolution, uncertainty, History of wavelet
	from Morlet to Daubechies via Mallat, Different communities and family of
	wavelets.
	Fundamentals of Linear Algebra:
	Vector spaces, Bases, Orthogonality, Orthonormality, Projection, Functions and
	function spaces, Orthogonal functions, Orthonormal functions, Orthogonal basis
	functions.
Text/Reference B	ooks:
1.	K. P. Soman, K. I. Rmachandran, N. G. Resmi, "Insight into Wavelets: From
	Theory to Practice, (Third Edition)", PHI Learning Pvt. Ltd., 2010.
2.	C. S. Burrus, Ramose and A. Gopinath, Introduction to Wavelets and Wavelet
	Transform, Prentice Hall Inc.
3.	Rafael C. Gonzalez, Richard E. Woods "Digital Image Processing (Third
	Edition)", Pearson International Edition, 2009.
4.	John G. Proakis, Dimitris G. Manolakis, "Digital Signal Processing", Pearson
	Prentice Hall, 2007.
5.	Raghuveer M. Rao, Ajit S. Bopardikar, "Wavelet Transforms: Introduction to
	Theory and Applications", Pearson Education, (1998) Low Price Edition
6.	Barbara Burke Hubbard, "The World according to Wavelets – A Story of a
	Mathematical Technique in the making", Second Edition, Universities Press
	(Private) India Limited 2003, Mathematics, Copyright 1998, ISBN 81-7371-450-
	9, Published by Universities Press (India) Private Limited, 3-5-819, Hyderguda,
	Hyderabad 500 029 (AP), India.
MOOC/NPTE	L Equivalent Course
	Web Resources:
	http://users.rowan.edu/~polikar/WTtutorial.html
	http://www.wavelet.org/

OEC-EC-40)7		Artificial 1	Intelligence and Neural Network	S					
Teaching scheme	e:			Examination scheme:						
Lecture		3	hrs /week	Theory						
Tutorial		0	hrs/week	In Semester Evaluation	: 20 Marks					
Practical		2	hrs/week	Mid Semester Examination : 30 Marks						
Credit		4		In Semester Evaluation after Mid Term	1 : 20 Marks					
				End Semester Examination	: 30 Marks					
Course Objectiv	es:									
1.	To underst	and	d the fundamental	theory and concepts of Artificial Intelli	igence.					
2.	To provide	e kr	nowledge of artifi	cial neural network modeling, several a	rtificial neural					
	network pa	arac	digms, its application	tions and recent trends.						
3.	To analyze	e fe	ed forward and fe	edback artificial neural networks.						
4.	To apply a	uto	associative and r	recurrent neural networks for pattern sto	rage and					
	retrieval	retrieval								
5.	To analyze	e se	lf-organizing maj	58						
Course Outcom	es: On succes	ssfu	l completion of th	nis course, students will be able to						
1.	Understand	din	g the basics of Ar	tificial Intelligence, artificial neural net	work, their					
	limitations	s, ba	asic pattern analy	sis tasks such as classification and clust	ering, learning					
	and adapta	tio	n using the learning	ng rules, implementation of learning rul	e.					
2.	Describe tl	he o	concepts of feed f	orward neural networks using single lay	ver and					
	multilayer	net	tworks to solve cl	assification problem, and its implement	ation, single					
	layer feedb	bac	k networks to stud	dy the concept of memory using neural	networks.					
3.	Analyze ar	nd i	mplement the app	plications of neural networks in characte	er recognition					
	and contro	and control systems.								
4.	Understand	d A	uto associative n	eural networks, Pattern storage and retri	eval, Hopfield					
	model, rec	urr	ent neural networ	ks						
5.	Analyze B	aye	esian neural netwo	orks, Radial basis function networks						
6.	Understand	d se	elf-organizing ma	ps and recent trends in neural networks						

PO/PSO⇒	PO	Р	PO	PO	PO	PSO	PSO	PSO							
↓ CO	1	2	3	4	5	6	7	8	0	10	11	12	1	2	3
									9						
CO1	3	1	1	1	2	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	2	3	2	-	-	-	-	-	-	-	3	3	2
CO4	2	2	3	2	2	-	-	-	-	-	-	-	3	3	2
CO5	3	3	2	3	2	-	-	-	-	-	-	-	3	2	2
CO6	3	2	2	2	2	-	-	-	-	-		-	2	3	3
СО	16	13	12	14	12	-	-	-	-	-	-	-	17	16	13
(total)															
CO(avg)	3	2	2	2	2	-	-	-	-	-	-	-	3	3	2

Syllabus	
Unit 1	Introduction to Artificial Intelligence, Brain Style Computing: Origins and
	Issues, Biological neural networks, Neuron Abstraction, Neuron Signal
	Functions, Mathematical Preliminaries, Artificial Neurons, Neural Networks and

	Architectures Pattern analysis tasks: Classification, Clustering, mathematical
	models of neurons, Structures of neural networks, Learning principles.
	Feed forward neural networks: Pattern classification using perceptron, Multilayer
Unit 2	feedforward neural networks (MLFFNNs), Pattern classification and regression
	using MLFFNNs, Error backpropagation learning.
	Fast learning methods: Conjugate gradient method. Autoassociative neural
	networks, Pattern storage and retrieval, Hopfield model, recurrent neural
Unit 3	networks Bayesian neural networks, Radial basis function networks:
	Regularization theory, RBF networks for function approximation, RBF networks
	for pattern classification.
	Self-organizing maps: Pattern clustering, Topological mapping, Kohonen's
Unit 4	selforganizing map.
	Recent Trends in neural networks: Introduction to deep neural network,
Unit 5	convolutional neural network, RNN, LSTM, etc.
Text/Reference B	ooks:
1.	Jacek Zurada, Introduction to Artificial Neural Networks, Jaico Publishing
	House, 1997.
2.	Satish Kumar, Neural Networks, A Classroom Approach, Tata McGraw-Hill,
	2003
3.	S.Haykin, Neural Networks, A Comprehensive Foundation, Prentice Hall, 1998.
4.	C.M.Bishop, Pattern Recognition and Machine Learning, Springer, 2006.
5.	Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning, MIT
	Press, 2016

List of Equivalent Subjects from SWAYAM/NPTEL for Credit Transfer

Sr.	Institute	Course	Details of Course from SWAYAM/NPTEL
	Course	Title of the Course	Deep Learning - Part 1 By Prof. Sudarshan
	Code		Iyengar, Prof. Padmavati
1.		Artificial Neural Network and Applications	https://swayam.gov.in/nd1_noc20_cs50/preview

OEC-EC-408		Digital Image Processing							
Teaching scheme:		Examination scheme:							
Lecture	3 hrs /week	Theory							
Tutorial	0 hrs/week	In Semester Evaluation : 20	0 Marks						
Practical	2 hrs/week	Mid Semester Examination: 30) Marks						
Credit	4	In Semester Evaluation after Mid Term : 20) Marks						
		End Semester Examination : 3	0 Marks						
Course Objectives:									
1.	To study the im	age fundamentals and mathematical transfor	rms necessary for						
	image processir	ng.							
2.	To study the im	To study the image enhancement techniques							
3.	To study the im	To study the image compression procedures							
4.	To study the im	age segmentation procedures							
5.	To study the Vi	deo coding and Segmentation procedures							
Course Outcomes:	On successful comp	letion of this course, students will be able to							
1.	Review the fund	damental concepts of a digital image process	sing system and						
	representation t	echniques							
2.	Analyze images	in the frequency domain using Fourier and	Wavelet transforms						
3.	Evaluate the tec	chniques for image enhancement.							
4.	Categorize vari	ous compression techniques and interpret Im	nage compression						
	standards								
5.	Evaluate the tec	chniques for video segmentation							

PO/PSO	PO	PO	PO	РО	PO	PO	PO	PO	PO	РО	PO	PO	PSO1	PSO2	PSO3
CO	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	2	2	2	1	2	1	1	1	2	-	2	2	3	3	2
CO2	3	2	2	3	2	1	-	1	2	-	2	2	3	2	2
CO3	3	3	2	3	2	2	-	1	2	-	2	2	3	3	2
CO4	3	2	3	2	2	2	-	1	2	-	2	2	3	3	2
CO5	2	3	3	2	2	2		2	2		2	2	3	3	2
CO	13	12	12	12	10	8	1	6	10	0	10	10	15	14	10
(total)															
CO(avg)	3	2	2	2	2	2	1	1	2	0	2	2	3	3	2

Syllabu	S
	Digital Image Fundamentals-Elements of visual perception, image sensing and acquisition,
	image sampling and quantization, basic relationships between pixels – neighborhood,
Unit 1	adjacency, connectivity, distance measures.
	Image Enhancements and Filtering-Gray level transformations, histogram equalization and
Unit 2	specifications, pixel-domain smoothing filters – linear and order-statistics, pixel-domain
	sharpening filters – first and second derivative, two-dimensional DFT and its inverse,
	frequency domain filters – low-pass and high-pass.
	Color Image Processing-Color models-RGB, YUV, HSI; Color transformations-
	formulation, color complements, color slicing, tone and color corrections; Color image
Unit 3	smoothing and sharpening; Color Segmentation.

	Image Segmentation- Detection of discontinuities, edge linking and boundary detection,
Unit 4	thresholding – global and adaptive, region-based segmentation
	Wavelets and Multi-resolution image processing- Uncertainty principles of Fourier
Unit 5	Transform, Time-frequency localization, continuous wavelet transforms, wavelet bases and
	multi-resolution analysis, wavelets and Sub band filter banks, wavelet packets.
	Image Compression-Redundancy-inter-pixel and psycho-visual; Lossless compression -
Unit 6	Predictive, entropy; Lossy compression- predictive and transform coding; Discrete Cosine
	Transform; Still image compression standards – JPEG and JPEG-2000.
	Fundamentals of Video Coding- Inter-frame redundancy, motion estimation techniques – full
Unit 7	search, fast search strategies, forward and backward motion prediction, frame classification –
	I, P and B; Video sequence hierarchy – Group of pictures, frames, slices, macro-blocks and
	blocks; Elements of a video encoder and decoder; Video coding standards – MPEG and
	H.26X.
T	ext/Reference Books:
1.	R.C. Gonzalez and R.E. Woods, Digital Image Processing, Second Edition, Pearson
	Education 3rd edition 2008
2.	Anil Kumar Jain, Fundamentals of Digital Image Processing, Prentice Hall of
	India.2ndedition 2004
3.	Murat Tekalp, Digital Video Processing" Prentice Hall, 2nd edition 2015
MOC	OC/NPTEL Equivalent Course
	Digital Image Processing, Prof. P.K. Biswas, Department of Electrical Engineering IIT
	Kharagpur
	https://onlinecourses.nptel.ac.in/noc20_ee/5/preview

HS/BS Elective- V (Cr-2, L-2,T-0 P-0) (Any One from following)

HMC-EC-40	9		Entrepreneurial economics							
Teaching schem	e:		Examination scheme:							
Lecture	2	hrs /week	Theory							
Tutorial	0	hrs/week	In Semester Evaluation : 20 Marks							
Practical	0	hrs/week	Mid Semester Examination : 30 Marks							
Credit	2		In Semester Evaluation after Mid Term : 20 Marks							
			End Semester Examination : 30 Marks							
Course Objectiv	es:									
1.	Unde	rstand entrepren	eurship							
2.	Knov	v examples of en	repreneurship							
3.	Appl	y practical expen	ience and traits of an entrepreneur							
4.	Unde	rstand the impor	ance of the entrepreneur's role in society							
5.	Asses	s examples of ho	w to serve needs in their own community through							
	entre	preneurial action								
6.	Reco	gnize opportuniti	es to be entrepreneurial in their daily lives							
Course Outcom	es: On s	successful compl	etion of this course, students will be able to							
1.	Defin	e entrepreneursh	ip							
2.	Ident	ify examples of e	entrepreneurship							
3.	Artic	ulate the traits of	an entrepreneur							
4.	Desci	ribe the importan	ice of the entrepreneur's role in society							
5.	Provi	de examples of h	now to serve needs in their own community through							
	entre	preneurial action								

PO/PSO⇒	PO	Р	PO	PO	PO	PSO	PSO	PSO							
↓ CO	1	2	3	4	5	6	7	8	0	10	11	12	1	2	3
									9						
CO1	3	-	2	-	3	3	-	-	-	-	2	3	3	-	3
CO2	3	1	2	-	2	2	-	-	-	-	2	3	3	-	3
CO3	3	2	2	-	1	3	-	-	-	-	2	3	3	-	3
CO4	3	1	2	-	3	3	-	-	-	-	1	3	3	-	1
CO5	3	2	2	-	3	2	-	-	-	-	1	3	3	-	3
CO	15	6	10	-	12	13	-	-	-	-	8	15	15	-	13
(total)															
CO(avg)	3	1	2	0	2	2	-	-	-	-	1	3	3	0	3

Syllabus	
	WHAT IS ENTREPRENEURSHIP? The Heroic Entrepreneur, Key Traits of an
	Entrepreneur, Discovering an Opportunity, Serving a Need, The Entrepreneurial
Unit 1	Society, Entrepreneurship Defined
	WHAT IS THE ENTREPRENEUR'S ROLE IN CREATING VALUE? Value is
Unit 2	in the Eye of the Beholder, Value Must Be Produced, Creating Value and
	Serving Others, Shareholder vs. Stakeholder Value, Economic Growth and the
	Entrepreneur
	HOW CAN ENTREPRENEURS USE ECONOMICS TO MAKE BETTER

	DECISIONS? Scarcity, Choice, Tradeoffs, Thinking at the Margin, Opportunity
Unit 3	Cost, Decision-Making Techniques for Entrepreneurs, Using Economics to Make
	Better Decisions
	HOW DOES TRADE CREATE WEALTH? Gains from Trade, Why We
Unit 4	Exchange, Division of Labor and Specialization, Competition as Cooperation,
	Economic Freedom and Prosperity
	WHAT DO PROFIT AND LOSS TELL US? Role of Prices, How Market Prices
Unit 5	Emerge, The Function of Profits, The Importance of Loss, Profits: A Sign of
	Serving Others Well
	WHAT INSTITUTIONAL FACTORS ENCOURAGE ENTREPRENEURSHIP?
Unit 6	The Marvel of the Market, When Order Emerges, The Rules of the Game,
	Incentives Matter, Entrepreneurship Stifled
	WHAT ARE THE LINKS BETWEEN ENTREPRENEURSHIP, PERSONAL
Unit 7	CHARACTER, AND CIVIL SOCIETY? Virtue and Entrepreneurship,
	Connected by Commerce, Markets and Morality, Individualism & Civil Society,
	Business Ethics
Unit 8	MODULE 8 – HOW DO I BECOME AN ENTREPRENEUR? Getting Started,
	Developing Your Business Model, Advice for Young Entrepreneurs, Learning
	From Failure, Tools for Building Your Business
Text/Reference Bo	ooks:
1.	THE ECONOMICS OF ENTREPRENEURSHIP-Facilitator Guide Compiled
	by: Marianna Brashear Ruby Clohessy Jason Riddle William Smith
2.	The Rising Indiapreneur: Instilling Entrepreneurial Skills Published On :
	2004, Satish Khanna
MOOC/NPTE	L Equivalent Course
	https://pptal.ac.ip/courses/110/105/110105067/#
	nups://npiei.ac.in/courses/110/105/11010500//#

HMC-EC-41	.0		Paten	ent Law for Engineers and Scientists						
Teaching schem	e:			Examination scheme:						
Lecture		2	hrs /week	Theory						
Tutorial		0	hrs/week	In Semester Evaluation : 20						
Practical		0	hrs/week	Mid Semester Examination : 30 M						
Credit		2		In Semester Evaluation after Mid Term	n : 20 Marks					
				End Semester Examination	: 30 Marks					
Course Objectiv	'es:									
1.	Understar	nd th	nat Intellectual p	property is the product or creation of the mind						
2.	Understar their cons	nd h ent	ow to protects th	neir invention from being copied or imit	ated without					
3.	Understar	nd P	atentable subjec	t matter						
Course Outcom	es: On succe	essfi	l completion of	this course, students will be able to						
1.	File an app	olica	tion for patent							
2.	Appear for	· Ind	ain Patent Agent e	examination						
3.	Enabled to	be p	patent examiners a	and scientists						

PO/PSO⇒	PO	Р	PO	PO	PO	PSO	PSO	PSO							
↓ CO	1	2	3	4	5	6	7	8	0	10	11	12	1	2	3
									9						
CO1	3	-	-	-	-	1	-	3	-	1	3	3	3	-	-
CO2	3	-	-	-	-	2	-	3	-	2	3	3	3	-	-
CO3	3	-	-	-	-	1	-	3	-	3	3	3	3	-	-
CO	9	-	-	-	-	4	-	9	-	6	9	9	9	-	3
(total)															
CO(avg)	3	-	-	-	-	1	-	3	-	2	3	3	3	-	3

Syllabus								
Unit 1	Importance of Indian Patent Act in the field of R & D and innovation.							
	IP is an important element of the institutional fabric of an efficiently organized							
Unit 2	society. Indian Patent Act is an attempt to safeguard the rights of original							
	contributor of ideas, concept, and creativity of individuals.							
	Indian Patent Act are regarded as a source of national wealth and mark of an							
	economic leadership in the context of global market scenario. Created internal							
Unit 3	vigilance and enlightenment among students to generate new ideas.							
	Indian Patent Act protection provides an incentive to inventors for further							
Unit 4	research work and investment in R & D, which leads to creation of new and							
	better products, and in turn brings about, economic growth and social benefits.							
Text/Reference Bo	ooks:							
1.	THE INDIAN PATENT ACT - 1970							
2.	Feroz Ali, The Law of Patents, LexisNexis							
3	Ronald D. Slusky, Invention Analysis and Claiming – A Patent Lawyer's Guide,							
	Second Edition, American Bar Association, 2012.							
MOOC/NPTE	L Equivalent Course							

https://onlinecourses.nptel.ac.in/noc19_hs65/preview
--

SII-EC-411 Industrial Training/Seminar (Cr-2, L-0,T-0 P-2)

Based on the industrial training for duration of one month after sixth semester examination, the student shall submit a report regarding industrial training, duly certified by the authorities from industry. The assessment of the students will be based on the confidential feedback from the industry and the seminar presented by the student.

SEMESTER VIII

PRJ-EC-412 Project (Cr-12, L-0, T-0 P-24)

A project batch may consist of two or three students. At the end of semester, students will have to submit a **Project report.** Students must maintain a **Project diary** duly signed by their guides **weekly**. It is mandatory on the part of the students to submit the project diary during the internal end semester evaluation.

Program Electives / Open Electives – VI, VII (Cr-3, L-3, T-0, P-0) (Any Two from following)

PEC-EC-413		Mobile	le & Wireless Communication						
Teaching scheme:	<u>.</u>		Examination scheme:						
Lecture	3	hrs /week	Theory						
Tutorial	0	hrs/week	In Semester Evaluation	: 20 Marks					
Practical	0	hrs/week	Mid Semester Examination	: 30 Marks					
Credit	3		In Semester Evaluation after Mid Terr	m : 20 Marks					
			End Semester Examination	: 30 Marks					
Course Objectives:									
1.	n understan	ding on functioning	g of various example wireless commun	ication					
S	ystems, their	evolution and stan	ndards.						
2. <i>A</i>	n understan	ding on cellular con	mmunication system, architecture, fund	ctioning,					
v	arious stand	ards.							
3. A	n understan	ding on signal prop	bagation in cellular environment.						
4. <i>A</i>	In ability to	explain multiple ac	cess techniques for Wireless Commun	ication					
5. <i>A</i>	n understan	ding on architectur	e, functioning, protocols, capabilities, a	and application					
C	f various wi	reless communicati	on networks.						
Course Outcomes:	On successfu	ul completion of thi	s course, students will be able to						
1. I	Demonstrate	an understanding o	n functioning of various example wire	less					
С	ommunicati	on systems, their ev	volution, and standards.						
2. I	Demonstrate	an understanding o	n cellular communication system, arch	itecture,					
f	unctioning, v	various standards							
3. I)emonstrate	an understanding o	n signal propagation in cellular environ	nment.					
4. I	emonstrate	an ability explain n	nultiple access techniques for Wireless						
	ommunicati	on	-						
5. I	emonstrate	an understanding o	n architecture, functioning, protocols,	capabilities,					
a	nd application	on of various wirele	ess communication networks.	-					

PO/PSO⇒	PO	Р	PO	PO	PO	PSO	PSO	PSO							
↓ CO	1	2	3	4	5	6	7	8	0	10	11	12	1	2	3
									9						
CO1	2	1	1	1	2	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	2	3	2	-	-	-	-	-	-	-	3	3	2
CO4	2	2	3	2	2	-	-	-	-	-	-	-	3	3	2

CO5	3	3	2	3	2	-	-	-	-	-	-	-	3	2	2
CO	17	15	15	16	14	-	-	-	-	-	-	-	19	18	16
(total)															
CO(avg)	2	2	2	2	2	-	-	-	-	-	-	-	3	3	3

Syllabus	
	Introduction to Wireless Communication (02 hours)
	Evolution of Wireless Communication, Advantages and Disadvantages, Wireless
Unit 1	Network Generations, Different Types of Wireless Systems, Evolution to Next-
	Generation Wireless Networks, and Applications.
	Cellular Concept (08 hours)
Unit 2	Frequency Reuse, Channel Assignment Strategies, Handoff Strategies,
	Interference and System Capacity, Trunking and Grade of Service, Improving
	Coverage and Capacity in Cellular Systems.
	Mobile Radio propagation (Large-Scale Path Loss) (08 hours)
	Introduction to Radio Propagation, Free Space Propagation Model, The Basic
Unit 3	Propagation Mechanisms, Reflection, Ground Reflection (Two-Ray) Model,
	Diffraction, Scattering, Practical link budget design using path loss model.
	Outdoor Propagation Models, Indoor Propagation Models.
	Mobile Radio propagation (Small-Scale Fading and Multipath) (08 hours)
Unit 4	Small-Scale Multipath Propagation, Parameters of Mobile Multipath Channels,
	Types of Small-Scale Fading, Rayleigh and Ricean Distribution.
	Equalization and diversity (06 hours)
Unit 5	Fundamentals of Equalizers, Linear equalizers, Non-linear equalizers,
	Decision feedback equalizers, MLSE. Diversity Techniques, Types of
	diversity.
	Multiple Access Techniques for Wireless Communication (06 hours)
Unit 6	Frequency division multiple access (FDMA), Time division multiple access
	(TDMA), Spread spectrum multiple access, Space division multiple access
	(SDMA), Packet radio, Capacity of cellular systems.
	Emerging Wireless Network Technologies (02 hours)
Unit 7	IEEE 802.11 WLAN Technology, ETSI HIPERLAN Technology, IEEE 802.15
	WPAN Technology, IEEE 802.16 WMAN Technology, and Mobile Adhoc
	Network (MANET).
Text/Reference B	ooks:
1.	Theodore S Rappaport, Wireless Communications, second edition, Pearson
	Education
2.	Andrea Goldsmith, "Wireless Communications", Cambridge University Press, 2005
3.	T L Singal, Wireless Communications, Tata McGraw Hill Education
4.	Jochen Schiller, Mobile Communications, Pearson Education

PEC-EC-41	14			Multimedia Systems					
Teaching schem	e:			Examination scheme:					
Lecture		3	hrs /week	Theory					
Tutorial		0	hrs/week	In Semester Evaluation	: 20 Marks				
Practical		0	hrs/week	Mid Semester Examination	: 30 Marks				
Credit		3		In Semester Evaluation after Mid Term	1:20 Marks				
				End Semester Examination	: 30 Marks				
Course Objectiv	ves:								
1.	To underst	and	multimedia infor	rmation representation and relevant sign	nal				
	processing	asp	ects, multimedia	networking and communications, and n	nultimedia				
	standards	espe	cially on the audi	io, image and video compression.					
2.	To achieve	e a b	asic understandir	ng of multimedia systems.					
3.	To evaluat	e mo	ore advanced or f	future multimedia systems.					
4.	To motiva	te sti	idents towards d	eveloping their career in the area of mu	ltimedia and				
	internet ap	plica	ations.						
Course Outcom	es: On succ	essfi	ul completion of	this course, students will be able to					
1.	Understan	d dif	ferent types of m	nultimedia data and basics of image and	video.				
2.	Understand color models of image and video.								
3.	Analyze and design different compression algorithms.								
4.	Analyze and implement different compression standards for image and video.								
5.	Understan	d the	transmission of	multimedia data over communication n	etworks.				

PO/PSO⇒	PO	Р	PO	PO	PO	PSO	PSO	PSO							
↓ CO	1	2	3	4	5	6	7	8	Ο	10	11	12	1	2	3
									9						
CO1	2	1	1	1	3	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	3	3	2	-	-	-	-	-	-	-	2	3	2
CO4	2	3	3	2	2	-	-	-	-	-	-	-	3	3	2
CO5	3	3	2	3	2	-	-	-	-	-	-	-	3	2	2
CO	17	16	16	16	15	-	-	-	-	-	-	-	18	18	16
(total)															
CO(avg)	3	2	2	2	2	-	-	-	-	-	-	-	3	3	3

Syllabus	
	Introduction to multimedia and data representation: Introduction to multimedia:
	what is multimedia?, multimedia and hypermedia, world wide web, overview of
Unit 1	multimedia software tools, fundamentals of audio, image and video processing,
	graphics and image data representations: graphics image data types, popular file
	formats, color in image and video: color science, color models in images, color
	models in video, fundamental concepts in audio and video.
	Multimedia data compression: Lossless compression algorithms: introduction,
Unit 2	basics of information theory, run-length coding, variable-length coding (VLC),
	dictionary-based coding, arithmetic coding, and lossless image compression.
	Lossy compression algorithms: Introduction, distortion measures, the rate-
	distortion theory, quantization, transform coding, wavelet-based coding, wavelet

Unit 3	packets, embedded zerotree of wavelet coefficients, set partitioning in hierarchical
	trees (SPIHT).
	Image compression standards: The JPEG Standard, JPEG2000 standard, JPEG-LS
Unit 4	standard, bilevel image compression standards
	Basic video compression techniques: Introduction to video compression, video
Unit 5	compression based on motion compensation, H.261, H.263, MPEG video coding I
	- MPEG-1 and 2: overview, MPEG-1, MPEG-2
	Multimedia communication and retrieval: Computer and multimedia networks:
Unit 6	basics of computer and multimedia networks, multiplexing technologies, LAN and
	WAN, access networks, common peripheral interfaces. content-based retrieval in
	digital libraries: - how should we retrieve images?, C-BIRD - a case study,
	synopsis of current image search systems.
Text/Reference B	ooks:
1.	Zi-Niam Li and Mark Drew, Fundamentals of Multimedia, Pearson, 2004.
2.	Khalid Sayood, Data Compression, PHI

PEC-EC-415		Optical	Communication Engineering					
Teaching scheme:		^	Examination scheme:					
Lecture	3	hrs /week	Theory					
Tutorial	0	hrs/week	In Semester Evaluation : 20 Ma					
Practical	0	hrs/week	Mid Semester Examination	: 30 Marks				
Credit	3		In Semester Evaluation after Mid Terr	m : 20 Marks				
			End Semester Examination	: 30 Marks				
Course Objectives	•							
1.	To learn the basic concepts of optical communication, elements of optical fiber							
	transmission link, fiber modes configurations and structures.							
2.	To understand the different kind of losses, signal distortion, SM fibers.							
3.	To study the	various optical so	urces, materials and fiber splicing.					
4.	To learn the	fiber optical receiv	vers and noise performance in photo de	tector.				
5.	To study not	nlinear effects, WI	DM, Solitons and SONET/SDH networ	k.				
Course Outcomes	: On success	ful completion of th	his course, students will be able to					
1.	Demonstrate	e an understanding	of optical fiber communication link, st	ructure,				
	propagation	and transmission p	properties of an optical fiber.					
2.	Estimate the	losses and analyze	e the propagation characteristics of an o	optical signal				
	in different t	types of fibers.						
3.	Describe the principles of optical sources and detectors.							
4.	Study of the characteristics of fiber optic receivers.							
5.	Design a fiber optic link based on budgets.							
6.	Assess non	linear effects.						
7.	Understand	l, Time division m	ultiplexed systems, Important WDM co	omponents.				

PO/PSO⇒	PO	Р	PO	PO	PO	PSO	PSO	PSO							
↓ CO	1	2	3	4	5	6	7	8	0	10	11	12	1	2	3
									9						
CO1	2	2	1	1	1	-	3	1	1	1	1	1	2	2	2
CO2	2	3	2	3	1	-	-	1	1	-	1	-	3	2	2
CO3	3	3	3	3	1	-	-	1	1	1	1	1	3	3	2
CO4	2	2	3	2	3	-	-	-	1	-	1	1	3	3	2
CO5	2	3	1	3	2	-	-	1	1	1	1	1	3	2	2
CO6	3	2	3	2	2	-	-	-	1	1	1	-	2	3	3
CO7	3	3	3	2	2	-	-	1	1	1	1	1	2	2	3
СО	17	18	16	16	12	-	-	-	-	-	-	-	18	17	16
(total)															
CO(avg)	2	2	2	2	1	-	-	-	1	-	1	-	2	2	2

Syllabus	
	Overview of Optical Fiber Communication: Forms of communication systems,
	Electromagnetic spectrum, Evolution of optical fiber systems, Elements of
Unit 1	optical fiber transmission link, Introduction to vector nature of light, Importance
	of optical fiber for communication.
	General digital communication system, Line coding, Digital modulation formats:
Unit 2	ASK, PSK, and QAM

	Optical Sources: Light-emitting diodes, Laser diodes, Modal, partition and
	reflection noise, Power Launching and Coupling, Source to fiber power
Unit 3	launching, lensing schemes for coupling improvement, fiber-to-fiber joints, LED
	coupling to single-mode fibers, fiber splicing, optical fiber connectors.
	Photo detectors: Physical principles of photodiodes, Review of PIN diode:
Unit 4	structure and performance, hetero-junction diode - materials systems, avalanche
	photodiodes, Photodetector noise, Detector noise, Detector response time,
	Avalanche multiplication noise
	Optical fiber modes, Single and multimode fibers single and multi- core fibers,
Unit 5	attenuation and dispersion.
	Optical Receiver Operation: Optical receiver principles, Fundamental receiver
Unit 6	operation, Digital receiver performance calculation, Pre-amplifier types, Analog
	receivers.
	Nonlinear effects (SPM, XPM, FWM), Multiplexing: Polarization, Wavelength,
Unit 7	and Time division multiplexed systems, Important WDM components
Text/Reference Bo	ooks:
1.	J. Gowar, Optical communication systems, Prentice Hall India, 1987.
2.	G. Agrawal, Nonlinear fiber optics, Academic Press, 2nd Ed. 1994.
3.	G. Agrawal, Fiber optic Communication Systems, John Wiley and sons, New
	York, 1992

OEC-EC-41	16			Internet of Things		
Teaching scheme	e:			Examination scheme:		
Lecture		3	hrs /week	Theory		
Tutorial		0	hrs/week	In Semester Evaluation	: 20 Marks	
Practical		0	hrs/week	Mid Semester Examination	: 30 Marks	
Credit		3		In Semester Evaluation after Mid Terr	n : 20 Marks	
				End Semester Examination	: 30 Marks	
Course Objectiv	es:					
1.	To unders	stan	d the architectur	al overview of IoT		
2.	To unders	stan	d the various ser	nsors, actuators, and embedded platform	ns	
3.	To unders	stan	d various Interne	et protocols for IoT		
4.	To unders	stan	d different cloud	l platform services		
5.	To unders	stan	d real world IoT	Applications and design constraints		
Course Outcom	es: On succe	essfi	al completion of	this course, students will be able to		
1.	Recogniz	e va	rious devices, se	ensors and IoT applications.		
2.	Apply design concept to IoT Solutions and IoT architectures					
3.	Analyse basic protocols in wireless sensor network.					
4.	Lesign IoT applications in different domain and able to analyse their performa					
5.	Design ar	nd ir	nplementation o	f IoT solutions using embedded boards	, sensors,	
	actuators.	•		-		

PO/PSO⇒	PO	Р	PO	PO	PO	PSO	PSO	PSO							
↓ CO	1	2	3	4	5	6	7	8	0	10	11	12	1	2	3
									9						
CO1	2	1	1	1	2	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	2	3	2	-	-	-	-	-	-	-	3	3	2
CO4	2	2	3	2	2	-	-	-	-	-	-	-	2	2	2
CO5	3	3	2	3	2	-	-	-	-	-	-	-	3	2	3
СО	16	15	15	15	14	-	-	-	-	-	-	-	18	17	17
(total)															
CO(avg)	2	2	2	2	2	-	-	-	-	-	-	-	3	3	3

Syllabus	
	Introduction to IoT:
	Introduction, Definition and characteristics of IoT, IoT Architecture, Physical and
Unit 1	Logical Design of IoT, Enabling Technologies in IoT, History of IoT, About Things
	in IoT, The identification of Iot, About the Internet in IoT, IoT framework
	M2M to IoT:
Unit 2	Machine to Machine, Difference between IoT and M2M, Software defined Networks
	Internet Communication:
	TCP/IP protocol suit, IP addresses, Static IP address assignment, MAC addresses,
Unit 3	TCP/UDP ports, Application Layer protocol: HTTP
	Sensor Networks:

Unit 4	Definition, Types of sensors, Sensor characteristics, Types of actuators, Examples
	and working, RFID principles and components, Wireless Sensor networks: History
	and context, The node, connecting node, Networking nodes, WSN and IoT
	Communication Protocols: WPAN Technologies for IoT: IEEE 802.15.4, Zigbee,
Unit 5	6Low PAN, Wireless HART, NFC, Z-Wave, BLE, Bacnet, Modbus
	CAN, I2C,USB
Unit 6	IP based Protocols for IoT:IPV6, RPL,REST, MQTT,SMQTT, CoAP, AMQP
	Interoperability in IoT, Introduction to Arduino Programming, Integration of
Unit 7	Sensors and Actuators with Arduino, Introduction to Python programming,
	Introduction to Raspberry pi board, Implementation of IoT with Raspberry Pi/Beagle
	Black board/
Unit 8	Introduction to SDN, SDN for IoT, Data Handling and Analytics, Cloud Computing,
	Sensor-Cloud, Fog computing, Fog Computing
Text/Reference Bo	ooks:
1.	Vijay Madisetti, Arshdeep Bahga, "Internet of Things: A Handbook-on Approach,
	VPT, 2014
2.	Waltenegus Dargie, Chistain Poellabauer: Fundamnetals of Wireless Sensor
	Network: Theory and Practice
3.	Francis daCosta, Rethinking the Internet of Things: A Scalable Approach to
	Connecting Everything, Apress Pub, 2013

List of Equivalent Subjects from SWAYAM/NPTEL for Credit Transfer

Sr.	Institute	Course	Details of Course from SWAYAM/NPTEL					
	Course	Title of the Course	Deep Learning - Part 1 By Prof. Sudarshan					
	Code		Iyengar, Prof. Padmavati					
1.		Internet of Things	https://nptel.ac.in/courses/106/105/106105166/					
		_						

OEC-EC-417		Mac	hine Vision and Learning			
Teaching scheme:			Examination scheme:			
Lecture	3	hrs /week	Theory			
Tutorial	0	hrs/week	In Semester Evaluation	: 20 Marks		
Practical	0	hrs/week	Mid Semester Examination	: 30 Marks		
Credit	3		In Semester Evaluation after Mid Term	n : 20 Marks		
			End Semester Examination	: 30 Marks		
Course Objectives:						
1.	o understan	d Machine Vision	and Learning aspects			
2.	o understan	ding low, mid and	l high level Machine vision systems.			
3.	o understan	d concepts of Mac	chine Learning.			
4.	o evaluate 1	more advanced or	future Machine Vision and Learning sy	stems		
5.	o motivate	students towards d	leveloping their career in the area of Machine			
	vision and L	earning and its ap	plications for solving the real-world pro	oblems		
Course Outcomes:	On successf	ul completion of th	nis course, students will be able to			
1. 5	tudents sho	uld have the skills	and knowledge to develop computer vi	sion		
6	pplications	using some comm	on machine learning methods			
2. 1	Ioreover, th	ey will be able to	analyze and make objective comparisor	n between		
(different approaches from the state of the art					
3. 1	Jnderstand o	lifferent types of N	Machine Vision systems and basics of in	nage and		
v	ideo and mo	otion analysis.				
4. 1	Jnderstand f	of image and video				
5.	Analyze and	design different co	omputer Vision Systems			
6.	Jnderstand o	lifferent types of N	Machine Learning approaches			

PO/PSO⇒	PO	Р	PO	PO	PO	PSO	PSO	PSO							
↓ CO	1	2	3	4	5	6	7	8	0	10	11	12	1	2	3
									9						
CO1	2	1	1	1	2	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	2	3	2	-	-	-	-	-	-	-	3	3	2
CO4	2	2	3	2	2	-	-	-	-	-	-	-	3	3	2
CO5	3	3	2	3	2	-	-	-	-	-	-	-	3	2	2
CO6	3	2	2	2	2	-	-	-	-	-		-	2	3	3
СО	15	13	12	14	12	-	-	-	-	-	-	-	17	16	13
(total)															
CO(avg)	2	2	2	2	2	-	-	-	-	-	-	-	3	3	3

Syllabus	
	Introduction:
Unit 1	Introduction to CV, low level and high level CV, applications of computer vision.
	Low and Mid-Level Machine Vision :
Unit 2	Image preprocessing, Noise Removal, Scale in image processing, canny edge detection, parametric edge models, edge in multi spectral image, other local preprocessing operators, adoptive neighborhood preprocessing
	Feature Extraction

Unit 3	Feature Extraction, Feature Selection, Texture and Colour, Shape
	representation and description, Region identification, contour based shape
	representation and description, region based shape representation and
	description, shape classes
	Machine Learning:
Unit 4	Knowledge representation, Machine learning approaches, Machine Learning
	Cycle, Supervised Learning, Statistical pattern recognition, Bays classifier,
	KNN classifier, Support Vector Machine, Unsupervised learning, hierarchical
	and nonhierarchical approach, clustering, Dimensionality Reduction,
	Syntactic pattern recognition, recognition as a graph matching, recognition by
	using neural network.
	Motion Analysis:
Unit 5	Differential motion analysis methods, optical flow analysis based on
	correspondence of interest points, Kalman filters.
	Case Studies:
Unit 6	Application of machine vision and learning in biomedical imaging, digital libraries,
	Biometrics, Surveillance.
Text/Reference B	ooks:
1.	Milan Sonka, V. Hlavac and Roger Boyle, "Image Processing, Analysis and
	Machine Vision" – Second edition, Thomson Asia Pvt. Ltd., ISBN -981 -240-
	061 -3.
2.	Christopher M. Bishop, "Pattern Recognition and Machine Learning",
	Springer Publication.
3.	R. Jain, "Computer Vision" –TMH.

OEC-EC-4	18	Data M	lining and Data Warehousing				
Teaching schem	e:		Examination scheme:				
Lecture		3 hrs /week	Theory				
Tutorial		0 hrs/week	In Semester Evaluation : 20 Marks				
Practical		0 hrs/week	Mid Semester Examination : 30 Marks				
Credit		3	In Semester Evaluation after Mid Term : 20 Marks				
			End Semester Examination : 30 Marks				
Course Objectiv	ves:						
1.	To identify	the scope and essen	tiality of Data Warehousing and Mining.				
2.	To analyse	e data, choose rele	evant models and algorithms for respective				
	application	S.					
3.	Apply data	pre-processing tech	niques.				
4.	Discover as	ssociations and corre	lations in given data.				
5.	To develop	research interest toy	vards advances in data mining.				
Course Outcom	es: On succe	essful completion of	this course, students will be able to				
1.	Discuss bas	sic concepts of Data	Warehouse fundamentals, data analytics, data				
	mining usi	ng professional lang	guage associated with data analytics and data				
	mining.						
2.	Design da	ta warehouse with	dimensional modelling and apply OLAP				
	operations.						
3.	Pre- proces	ss the data so that it o	can be analysed further using sophisticated data				
	analytics ar	nd mining algorithms	S				
4.	Identify a	ppropriate data mini	ng algorithms to solve real world problems				
5.	Benefit the	user experiences to	vards research and innovation integration.				

PO/PSO⇒	PO	Р	PO	PO	PO	PSO	PSO	PSO							
↓ CO	1	2	3	4	5	6	7	8	0	10	11	12	1	2	3
									9						
CO1	2	1	1	1	3	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	3	3	2	-	-	-	-	-	-	-	2	3	2
CO4	2	3	3	2	2	-	-	-	-	-	-	-	3	3	2
CO5	3	3	2	3	2	-	-	-	-	-	-	-	3	2	2
CO	17	16	16	16	15	-	-	-	-	-	-	-	18	18	16
(total)															
CO(avg)	3	2	2	2	2	-	-	-	-	-	-	-	3	3	3

Syllabus	
	Data Warehouse: Introduction, a Multi-dimensional data model, Data
Unit 1	Warehouse Architecture, Data Warehouse Implementation.
	Data Mining: Introduction, Data Mining, on what kind of Data, Data Mining
Unit 2	Functionalities, Classification of Data Mining Systems, Major issues in Data
	Mining.
	Data Preprocessing: Data cleaning, Data Integration & Transformation, Data
Unit 3	Reduction, Discretization & Concept Hierarchy Generation, Data Mining
	Primitives

	Mining Association roles in large databases: Association rule mining, mining
Unit 4	single-dimensional Boolean Association rules from Transactional Databases,
	Mining Multi-dimensional Association rules from relational databases & Data
	Warehouses.
	Classification & Prediction: Introduction, Classification by Decision tree
Unit 5	induction, Bayesian Classification.
	Other Classification Methods, Classification by Back propagation, Prediction,
Unit 6	Classifier accuracy.
	Cluster Analysis: Introduction, Types of data in Cluster analysis, A categorization
Unit 7	of major clustering methods, partitioning methods, Hierarchical methods, Density-
	Based Methods: DBSCAN, Gridbased Method: STING; Model-based Clustering
	Method: Statistical approach, Outlier analysis.
Text/Reference B	ooks:
1.	Data Mining Concepts & Techniques, Jiawei Han Micheline Kamber, Morgan
	Kaufmann Publishers.
2.	Data Warehouse Toolkit, Ralph Kinball, John Wiley Publishers.
3.	Data Mining, Introductory and Advanced Topics, Margaret H.Dunham, Pearson
	Education.
4.	Data warehousing in the real world, A Practical guide for Building decision
	support systems, Sam Anahory, Dennis Murray, Pearson Education.