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Image classification is the task of classifying an image into one of the given categories based 

on visual content of an image. Neural networks are able to make predictions by learning the 

relationship between features of an image and some observed responses. In recent years, 

Convolutional neural networks (CNN) have achieved unprecedented performance in the field 

of image classification.  

If you are a CNN rookie, it is advisable to go through the part of understanding CNN first and 

then continue on to know how to implement CNN using MATLAB. Else, you can skip to: 

Training CNN from scratch. 

Understanding Convolutional neural network 

So to start with CNN,  let us first understand how computer sees an image. When an image is 

provided as input to a computer, it sees image as an array of pixel values. The size of array 

being m x n x r. Here, m, n represents height and width of the image respectively and r 

represents number of color channels. For instance, r value for rgb image is 3 (Figure 1) and 

that for gray is 1. 

 

Figure 1: RGB image as seen by computer 

Coming back, To build CNN, we use four main types of layers : Convolutional layer, 

Activation Layer, Pooling Layer and Fully Connected layer. The architecture of CNN may vary 

depending on the types and number of layers included. The types and number of layers included 

depend on application or data. For example, a smaller network with only one or two 

convolutional layers might be sufficient to learn small number of gray scale images. However, 

more complicated network with multiple convolutional and fully connected layers might be 



needed for large number of colored images. 

We will now discuss all these layers with their connectivity and parameters individually. 

Convolutional Layer 

The convolutional layer is the core building block of CNN. Input to convolutional layer is m x 

n x r dimensional array of pixel values. 

In typical neural network, each neuron in previous layer is connected to every other neuron in 

hidden layer (Figure 2). When dealing with high-dimensional inputs such as images, it is 

impractical to connect hidden layer neurons to all neurons in the input layer. However, in CNN, 

only small region of neurons in input layer connect to neurons in hidden layer. These regions 

are referred to as local receptive fields (Figure 3). 

 

Figure 2: Typical neural network 

 

Figure 3: Convolutional neural network 

These receptive local fields also know as kernels or filters, are the parameters of this layer. 

Every kernel is small along width and height as compared to input image size but is similar in 

depth to that of input. For example, given rgb input image of dimension 28 x 28 x 3, kernel 

might be of size 5 x 5 x 3 and that for gray image of same dimension, it might be of size 5 x 5 

x 1. 

So, what happens when an image is passed through convolutional layer ? 

While passing an image through convolutional layer, we slide each kernel across the width and 

height of the input image. We compute element wise dot products between the entries of the 

kernel and the input image and add a bias term to it. This same computation is repeated across 

entire image i.e. convolving the input. The step size with which the kernel moves through a 

image is called a stride. After we slide the filter over the width and height of the input image, 

we form a 2-dimensional feature map. We have a set of these kernels and bias terms in a 

convolutional layer. Each feature map has a different set of kernel and a bias. Therefore, the 



number of kernels determine the number of feature maps in the output of a convolutional layer. 

For eg, 6 different kernels convolved over an input image would produce 6 different feature 

maps. 

 

Figure 4: Sliding kernel 1 over input image to obtain feature map 1 

 

Figure 5: Sliding kernel 2 over input image to obtain feature map 2 

The kernels consists of a set of learn-able weights which are randomly initialized with some 

small values at first. These weight matrices in form of kernel when slid over input image 

extracts some features from image. When we have multiple convolutional layers, these features 

at initial layers maybe some types of edge orientations or patches of colors and eventually at 

higher levels it consists of more complex or entire pattern itself. 

Feature maps are the output from convolutional layer. The size and number of feature maps 

produced depends on size of kernels, stride rate and number of kernels. 

For instance, consider a simple example where input is 2 dimensional 7 x 7 image. Now lets 

see how above mentioned parameters affect the size of output feature maps. 

Size of kernels : 

 

                                                                                                               Figure 6 

 

                                                                                                               Figure 7 



  

  

Stride rate : 

 

                                                                                                                Figure 8 

 

                                                                                                                   Figure 9 

Number of kernels : 

Number of kernels decide number of feature maps produced. For example, 6 kernels produce 

6 feature maps. 

The problem seen in figure 9 can be solved by zero padding. Zero padding is basically adding 

rows or columns of zeros to the borders of an image input. It helps us control the output size 

of feature map. 

 



Figure 10: 9 x 9 image obtained after padding 7 x 7 image with zeros along the borders 

Now, to sum up how these parameters affect output of convolutional layer i.e. feature maps, 

consider N x N image, K x K kernel, stride rate S and zero padding P. The size of output feature 

map can be given as: 

Output size = ( (N - K + 2 * P) / S ) + 1 

Activation Layer 

In CNN it is convention to apply activation layer (non linear layer) after every convolutional 

layer. This is done in order to bring non linearity to the architecture after performing linear 

operations in convolutional layer. There are many types of nonlinear activation function such 

as a rectified linear unit (ReLU), tanh and sigmoid. 

Pooling Layer 

Pooling layers too are introduced between subsequent convolutional layers. These layers donot 

perform any learning tasks. It is a way of down-sampling i.e. reducing the dimension of the 

input to reduce amount of computation and parameters needed. Input to pooling layer are the 

series of features maps generated by convolutional layer. Basically what pooling layer does is, 

it groups a fixed number of units of a region and get a single value for that group. The region 

is selected using a window which in general is of size 2 x 2. This window slides with fixed 

stride which is most of the times fixed to two. It is worth noting that there are only two common 

variations of the pooling layer in practice: A pooling layer more commonly with window size 

= 2 and stride = 2  and  window size = 3 and stride = 2. The pooling layer operates 

independently on every feature map and resizes it spatially. Therefore, number of pooled maps 

is equal to number of feature maps from previous convolutional layer. 

Output size of pooling layer with n number of F x F dimensional feature maps as input, W as 

window size, S as stride rate can be given as n number of pooled maps with dimension P x P 

where, 

P = ((F - W) / S) + 1 

Note that it is uncommon to use zero padding in pooling layer. 

Max- and average-pooling are two of the types of pooling. Max-pooling returns the maximum 

values whereas average-pooling outputs the average values of the fixed regions of its input. 

 

Figure 11: Pooling with window size 2 x 2 and stride 2 

The main use of pooling is to make feature detection location independent. For example, 

assume we have two images on very large white background. In first image the letter is written 

in middle of image and in second image it is present at bottom right corner. Now, after we pass 

these two images through pooling layer we get reduced images which are nearly similar with 



letters somewhere in middle. This controls over-fitting. When we have over-fitting, our 

network is great with training set but is not good with testing set i.e. it is bad at generalization. 

Fully Connected Layer 

The convolutional and pooling layers are followed by one or more fully connected layers. All 

neurons in a fully connected layer connect to all the neurons in the previous layer. This layer 

combines all of the features learned by the previous layers across the network to identify the 

images. The way this fully connected layer works is that it looks at the output of the previous 

layer (which are the activation maps of high level features) and determines which features most 

correlate to a particular class. It then outputs the highest probability for that class. The output 

size of the fully connected layer of the network is equal to the number of classes of the data 

set. 

Summary 

 

Figure 12: Complete CNN architecture 

Now lets sum up how our network transforms the original image layer by layer from the 

original pixel values to the final class scores. 

Input holds the pixel values of the image. For example 28x28x3 image. 

Convolutional layer computes the output by computing dot product between kernels and a 

small region they are connected to in the input volume. This may result in output such as 

24x24x6 if we decided to use 6 kernels of size 5x5x3. 

Activation layer applies an element-wise activation function. This leaves the size of the output 

unchanged to 24x24x6. 

Pooling layer performs a down-sampling operation along the width and height resulting in 

output such as 12x12x6. 

Fully-connected layer computes the class scores resulting in output of size 10x1, where each 

of the 10 numbers correspond to a class score. 

Back-propagation (Training CNN) 

Our goal with back-propagation is to update each of the weights in the network so that they 

cause the actual output to be closer the target output, thereby minimizing the error for each 

output neuron and the network as a whole. When training the network, there is additional layer 

called loss layer. This layer provides feedback to the neural network on whether it identified 

inputs correctly, and if not, how far off its guesses were. Here we define a loss function which 

quantifies our unhappiness with the scores across the training data. The function takes in 

desired output from user and the output produced by network and computes its badness. Loss 

over dataset is sum of loss over all inputs. This helps to guide the neural network to reinforce 

the right concepts at the time of train. 

To learn more about how back-propagation in CNN updates weights throughout the network, 

you can refer:  ''Derivation of Back-propagation in Convolutional Neural Network (CNN)''. 



Training CNN from scratch 

The first step of creating and training a new convolutional neural network is to define the 

network architecture. For this purpose we have used architecture as depicted in Figure 13. This 

is refereed from paper:  ''Derivation of Back-propagation in Convolutional Neural Network 

(CNN)''. It consists of two convolutional and pooling layer and activation layers with uni polar 

sigmoid function. Also refer this paper for back-propagation algorithm further used in this 

guide for training the network. 

 

Figure 13: CNN Architecture 

In this guide we will train our CNN model to identify Disguised faces for demo purpose. 

However, below implementation can be used to train network on any dataset. 

Step 1: Data and Preprocessing 

The dataset we used in this guide is cropped version of the IIIT-Delhi Disguise Version 1 face 

database (ID V1). 

Note : This database can be cited in - 

T. I. Dhamecha, R. Singh, M. Vatsa, and A. Kumar, Recognizing Disguised Faces: Human and 

Machine Evaluation, PLoS ONE, 9(7): e99212, 2014. 

T. I. Dhamecha, A. Nigam, R. Singh, and M. Vatsa Disguise Detection and Face Recognition 

in Visible and Thermal Spectrums, In proceedings of International Conference on Biometrics, 

2013 ( Poster) ) 

We manually split the entire dataset into two parts: disguised and undisguised. Moreover, the 

dataset doesn’t come with an official train and test split, so we simply use 10% of the both 

disguised and undisguised data as a train set. Now, we have four data folders: Train_disguised, 

Train_Undisguised, Test_disguised, Test_Undisguised. 

These are the examples of some of the images in dataset. 

Disguised : 

 

Undisguised : 



 

Data reprocessing for this data-set will involve loading train data, resizing all images to same 

size, labeling images with desired output (for undisguised: 1,0 and for disguised: 0,1 since we 

would have two classes in output layer for undisguised and disguised) and then storing it in an 

array. 
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% Loading dataset images from train folder 
disguised_src_file = 

dir('C:\Users\SHREE\Documents\MATLAB\train_disguised\*.jpg'); 
undisguised_src_file = 

dir('C:\Users\SHREE\Documents\MATLAB\train_undisguised\*.jpg'); 
  
% Initialising number of patterns 
number_of_disguised_images = length(disguised_src_file); 
number_of_undisguised_images = length(undisguised_src_file); 
  
number_of_patterns = number_of_disguised_images + 

number_of_undisguised_images; 

  
image_size = 28; 
  
number_of_classes = 2; 

  
% Initialising dataset and desired output matrix  
dataset = zeros(image_size, image_size , number_of_patterns); 
desired_output = zeros(number_of_classes , number_of_patterns); 

  
pattern = 1; 
  
% Reading image one by one from undisguised train folder     
for i = 1 : number_of_undisguised_images 
    filename = 

strcat('C:\Users\SHREE\Documents\MATLAB\train_undisguised\',undisguised_s

rc_file(i).name); 
    image = imread(filename); 

  
    % Converting RGB image to black and white image 
    black_white_image = im2bw(image); 
     
    % Resizing obtained black and white image to required size  
    black_white_resizeimage = imresize(black_white_image, [image_size 

image_size]); 
  
    % Storing resized image to dataset array 
    dataset(:,:,pattern)= black_white_resizeimage; 
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    % Setting desired output of first neuron to 1 
    desired_output(1,pattern)=1; 
     
    pattern = pattern + 1; 
end 
  
% Reading image one by one from disguised train folder     
for j = 1 : number_of_disguised_images 
    filename = 

strcat('C:\Users\SHREE\Documents\MATLAB\train_disguised\',disguised_src_f

ile(j).name); 
    image = imread(filename); 
  
    % Converting RGB image to black and white image 
    black_white_image = im2bw(image); 
     
    % Resizing obtained black and white image to required size  
    black_white_resizeimage = imresize(black_white_image, [image_size 

image_size]); 

  
    % Storing resized image to dataset array 
    dataset(:,:,pattern)= black_white_resizeimage; 
     
    % Setting desired output of second neuron to 1 
    desired_output(2,pattern)=1; 
     
    pattern = pattern + 1; 
end 
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Step 2: Defining hyperparameters 

In this example we use two convolutional and pooling layers. Therefore, we define two set of 

hyperparameters for two convolutional and pooling layers. Here, we also define other 

hyperparameters like number of training cycles, learning rate and max tolerable error. 
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number_of_training_cycles=1000000; 
learning_rate = 0.1;  
% Max tolerable error 
emax = 0.01;  

  
% Defining hyperparameters for convolutional layer 1 
number_of_feature_maps_for_conv_layer1 = 12; 
kernel_size_for_conv_layer1 = 5;  
  
% Defining hyperparameters for pooling layer 1 
window_size_for_pooling_layer1 = 2; 

  
% Defining hyperparameters for convolutional layer 2 
number_of_feature_maps_for_conv_layer2 = 12; 
kernel_size_for_conv_layer2 = 5;  
  
% Defining hyperparameters for pooling layer 2 
window_size_for_pooling_layer2 = 2; 



Step 3: Initialization of parameters and sizes of outputs of all layers 

We initialize all biases with zeros, kernels and weights with random uniform distribution. We 

also define output sizes of each layer by assuming stride rate as one and no zero padding. 
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% Initialization of parameters and defining sizes of output layers 
  
% Convolutional layer 1:  
  
    % Initialization of kernels and biases with all zeros  
    bias_weight_for_convolutional_layer1 = 

zeros(number_of_feature_maps_for_conv_layer1, 1); 
    kernel_for_convolutional_layer1 = zeros(kernel_size_for_conv_layer1, 

kernel_size_for_conv_layer1, number_of_feature_maps_for_conv_layer1); 
  
    % Initialising kernels with random uniform distribution  
    kernel_initialisation_value_for_conv_layer1 = 

sqrt(number_of_feature_maps_for_conv_layer1 /( (1 + 

number_of_feature_maps_for_conv_layer1) * 

kernel_size_for_conv_layer1^2)); 
    kernel_initialisation_range_for_conv_layer1 = 

kernel_initialisation_value_for_conv_layer1 * 2; 
  
    for i=1:number_of_feature_maps_for_conv_layer1 
    kernel_for_convolutional_layer1(:,:,i) = 

rand(kernel_size_for_conv_layer1 , kernel_size_for_conv_layer1) * 

kernel_initialisation_range_for_conv_layer1 - 

kernel_initialisation_value_for_conv_layer1; 
    end 

  
    % Initialising output feature maps of convolutional layer 1 with 

zeros 
    % Assuming stride rate as one and no zero padding 
    size_of_conv_output1_image = image_size - kernel_size_for_conv_layer1 

+ 1; 
    output_of_conv_layer1 = zeros(size_of_conv_output1_image, 

size_of_conv_output1_image, number_of_feature_maps_for_conv_layer1);   
  

  
% Pooling layer 1:  

  
    % Initialising output matrices with all zeros 
    % Assuming stride rate as one and no zero padding 
    size_of_pooling1_output_image = size_of_conv_output1_image / 

window_size_for_pooling_layer1 ; 
    pooling1_output=zeros(size_of_pooling1_output_image, 

size_of_pooling1_output_image, number_of_feature_maps_for_conv_layer1); 
  
% Convolutional layer 2:   

  
    % Initialization of kernels and biases with all zeros 
    kernel_for_conv_layer2 = zeros( kernel_size_for_conv_layer2 , 

kernel_size_for_conv_layer2 , number_of_feature_maps_for_conv_layer1 , 

number_of_feature_maps_for_conv_layer2 ); 
    bias_weight_for_conv_layer2 = zeros( 

number_of_feature_maps_for_conv_layer2, 1 ); 
  
    % Convolutional layer 2 -- Initialising kernels with random uniform 

distribution 
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    kernel_initialisation_value_for_conv_layer2 = 

sqrt(number_of_feature_maps_for_conv_layer2 /( 

(number_of_feature_maps_for_conv_layer1 + 

number_of_feature_maps_for_conv_layer2) * (kernel_size_for_conv_layer2 * 

kernel_size_for_conv_layer2))); 
    kernel_initialisation_range_for_conv_layer2 = 

kernel_initialisation_value_for_conv_layer2 * 2; 

  
    for i = 1 : number_of_feature_maps_for_conv_layer2 
    kernel_for_conv_layer2(:,:,:,i) = rand(kernel_size_for_conv_layer2 , 

kernel_size_for_conv_layer2 , number_of_feature_maps_for_conv_layer1) * 

kernel_initialisation_range_for_conv_layer2 - 

kernel_initialisation_value_for_conv_layer2; 
    end 
  
    % Initialising output feature maps of convolutional layer 2 with 

zeros 
    size_of_conv2_output = size_of_pooling1_output_image - 

kernel_size_for_conv_layer2 + 1; 
    conv2_output = zeros( size_of_conv2_output, size_of_conv2_output, 

number_of_feature_maps_for_conv_layer2 ); 

  
% Pooling layer 2  
     
    % Initialising output matrices with all zeros 
    size_of_pooling2_output_image = size_of_conv2_output / 

window_size_for_pooling_layer2 ; 
    pooling2_output = zeros(size_of_pooling2_output_image, 

size_of_pooling2_output_image, number_of_feature_maps_for_conv_layer2); 
  
% Vectorization layer 
     
    % Initialising vectorization output matrix with zeros 
    vectorization_output_size = size_of_pooling2_output_image * 

size_of_pooling2_output_image; 
    vectorization_output = zeros(vectorization_output_size, 1, 

number_of_feature_maps_for_conv_layer2); 
  
% Concatenation layer 

  
    % Initialising concatenation output matrix with zeros 
    concatenation_output_size = vectorization_output_size * 

number_of_feature_maps_for_conv_layer2 ; 
    concatenation_output = zeros(concatenation_output_size , 1); 
  
% Fully Connected Layer  
     
    % Weight matrix initialized with zeros and then with random uniform 

distribution 
    weight_matrix_for_fully_connected_layer = zeros(number_of_classes, 

concatenation_output_size); 

  
    weight_initialisation_value_for_fully_connected_layer = 

sqrt(number_of_classes /(concatenation_output_size + number_of_classes)); 
    weight_initialisation_range_for_fully_connected_layer = 

weight_initialisation_value_for_fully_connected_layer * 2; 
  
    weight_matrix_for_fully_connected_layer(:,:)=rand(number_of_classes, 

concatenation_output_size).* 



weight_initialisation_range_for_fully_connected_layer - 

weight_initialisation_value_for_fully_connected_layer; 

  
% Output Layer  
     
    % Bias vector and output vector initialization 
    bias_for_output_of_cnn = zeros(number_of_classes, 1); 
    output_of_cnn = zeros (number_of_classes, 1); 

Step 4: Defining adjustment vectors 

This is a part of back-propagation. Here, we define adjustment vectors for each layer which 

tune parameters of each layer while training the network. 
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% Initialisation of adjustment vectors with zeros 
     
    % Adjustment vector for weight 
    delta_W_ij = zeros(number_of_classes, concatenation_output_size);      
     
    % Adjustment vector for output of cnn 
    Y_i = zeros(number_of_classes, 1); 
     
    % Adjustment vector for bias at output layer 
    delta_bias_i = zeros(number_of_classes, 1); 
     
    % Adjustment vector for concatenation output 
    delta_F = zeros(concatenation_output_size, 1); 
     
    % Adjustment vector for pooling layer 2 
    delta_S2_q = zeros(size_of_pooling2_output_image, 

size_of_pooling2_output_image, number_of_feature_maps_for_conv_layer2); 
     
    % Adjustment vector for convolutional layer 2  
    delta_C2_q = zeros( size_of_conv2_output, size_of_conv2_output, 

number_of_feature_maps_for_conv_layer2 ); 
     
    % Adjustment vector for convolutional layer 2 before sigmoid 

function(activation function)  
    delta_c2_q_sigmoid = zeros( size_of_conv2_output, 

size_of_conv2_output, number_of_feature_maps_for_conv_layer2 );       
     
    % Adjustment vector for rotated pooling layer 1 
    delta_S1_rotate_p = zeros(size_of_pooling1_output_image, 

size_of_pooling1_output_image, number_of_feature_maps_for_conv_layer1);   
     
    % Adjustment vector for kernel of convolutional layer 2 
    delta_k2_pq = zeros( kernel_size_for_conv_layer2, 

kernel_size_for_conv_layer2, number_of_feature_maps_for_conv_layer1, 

number_of_feature_maps_for_conv_layer2 );   
     
    % Adjustment vector for bias of convolutional layer 2  
    delta_b2_q = zeros( number_of_feature_maps_for_conv_layer2, 1 );    
     
    % Adjustment vector for pooling layer 1 
    delta_s1_p = zeros(size_of_pooling1_output_image, 

size_of_pooling1_output_image, 

number_of_feature_maps_for_conv_layer1);      
     
    % Adjustment vector for convolutioal layer 1 
    delta_c1_p = zeros( size_of_conv_output1_image, 

size_of_conv_output1_image, number_of_feature_maps_for_conv_layer1 );      



39 

40 

41 

42 

43 

44 

45 

46 

     
    % Adjustment vector for convolutional layer 1 before sigmoid 

function(activation function) 
    delta_c1_p_sigmoid = zeros( size_of_conv_output1_image, 

size_of_conv_output1_image, number_of_feature_maps_for_conv_layer1 );      
     
    % Adjustment vector for kernel of convolutional layer 1 
    delta_k1_p = zeros( kernel_size_for_conv_layer1, 

kernel_size_for_conv_layer1, number_of_feature_maps_for_conv_layer1 

);      
     
    % Adjustment vector for bias of convolutional layer 1 
    delta_b1_p = zeros(number_of_feature_maps_for_conv_layer1, 1); 

Step 5: Convolutional layer 1 

This part of the program takes in input image matrix and one kernel at a time,  convolves kernel 

over input and returns the output by applying activation on each element of output. 

We make a call to this function using a for loop. We send input image matrix, expected size of 

output (as calculated in step 3 so that there is no need of function to calculate it), kernel size, 

kernel and bias as parameters. The function returns a feature map with activation applied on it. 

We store each of this output along depth of 3D array. 

Original image as input: 
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% Processing image through Convolutional layer 1 
  
    for i = 1 : number_of_feature_maps_for_conv_layer1 
        % Function call to convolutional layer 
        output_of_conv_layer1(:,:,i) = convolutional_layer(image, 

size_of_conv_output1_image, kernel_size_for_conv_layer1, 

kernel_for_convolutional_layer1(:,:,i), 

bias_weight_for_convolutional_layer1(i,1)); 
    end 
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% Function for Convolutional layer 1 
  
function conv_output = convolutional_layer(input_image , 
size_of_output_image , kernel_size , kernel , bias_weight) 
         
    conv_output = zeros(size_of_output_image , size_of_output_image); 
     
    for rows = 1 : size_of_output_image 
        for cols = 1 : size_of_output_image 
            temp = 0; 
            for kernelrows = 0 : (kernel_size - 1) 
                for kernelcols = 0 : (kernel_size - 1) 
                    temp = temp + input_image( rows + kernelrows , cols + 

kernelcols ) * kernel( 1 + kernelrows , 1 + kernelcols); 
                end 
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            end 
            net = bias_weight + temp; 
            conv_output(rows,cols) = activation(net); 
        end 
    end 
end 
  
function result = activation(net) 
    result = 1/(1+exp(-net)); 
end 

Convolved image as output: 

 

In above image since all the edges are highlighted, we can roughly infer that first convolutional 

layer acts as edge detector. 

Step 6: Pooling layer 1 

This part of the program takes in output of convolutional layer 1 one by one and window 

size,  does average pooling with stride rate as 2 and returns the pooled output. 

We pass size of convolutional layer output, expected size of pooled output, window size for 

pooling layer 1, convolutional layer output. 

Convolved image as input: 
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% Function for pooling layer 

  
function pooling_output = pooling_layer(size_of_conv_output_image , 
size_of_output_image , window_size_for_pooling_layer , conv_layer_output) 
     
    pooling_output = zeros(size_of_output_image,size_of_output_image); 
    
    pooling_output_rows=1; 
    pooling_output_cols=1; 
     
    for rows = 1 : 2 : size_of_conv_output_image 
        for cols = 1 : 2 : size_of_conv_output_image 
            temp = 0; 
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            for windowrows = 0 : (window_size_for_pooling_layer - 1) 
                for windowcols = 0 :(window_size_for_pooling_layer - 1) 
                    temp = temp + 

conv_layer_output(rows+windowrows,cols+windowcols); 
                end 
            end 
            average=temp/(window_size_for_pooling_layer * 

window_size_for_pooling_layer); 
            pooling_output(pooling_output_rows , pooling_output_cols) = 

average; 
            pooling_output_cols = pooling_output_cols + 1 ; 
        end 
        pooling_output_cols=1; 
        pooling_output_rows = pooling_output_rows + 1 ; 
    end 
end 

Pooled image as output: 

 

Pooling layer does not participate in feature detection. We can see that information in retained 

in above image. Only the dimensions change. 

Step 7: Convolutional layer 2 

In this layer, set of kernels operate over pooled maps. Each pooled map has its own set of 

kernels. Here, number of set of kernels = number of pooled maps from previous pooling layer. 

A set of kernel consists of kernels = number of feature maps for convolutional layer 2. 

Activation applied on summation of values after convolving ith kernel of each set over its 

pooled map at each position gives value of ith feature map at that position. To understand more 

precisely refer Figure 13. 

Pooled map as input: 
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% Processing image through Convolutional layer 2 
  
    for i = 1 : number_of_feature_maps_for_conv_layer2 
        conv2_output(:,:,i) = 

convolutional_layer2(bias_weight_for_conv_layer2(i,1), 

size_of_conv2_output, number_of_feature_maps_for_conv_layer1, 



kernel_size_for_conv_layer2, kernel_for_conv_layer2(:,:,:,i) , 

pooling1_output); 
    end 
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% Function for convolutional layer 2 

  
function conv_output2 = convolutional_layer2(bias_weight_for_conv_layer2 
, size_of_conv2_output , number_of_feature_maps_for_conv_layer1 

,kernel_size_for_conv_layer2, kernel_for_conv_layer, pooling1_output) 

  
    conv_output2 = zeros(size_of_conv2_output , size_of_conv2_output); 
  
    for rows = 1 : size_of_conv2_output 
        for cols = 1 : size_of_conv2_output 
            temp = 0; 
            for feature_map_number = 1 
:  number_of_feature_maps_for_conv_layer1 
                for kernelrows = 0 : (kernel_size_for_conv_layer2 - 1) 
                    for kernelcols = 0 : (kernel_size_for_conv_layer2 - 
1) 
                        temp = temp + pooling1_output( rows + kernelrows 

, cols + kernelcols , feature_map_number) * kernel_for_conv_layer( 1 + 

kernelrows , 1 + kernelcols , feature_map_number); 
                    end 
                end 
  
            end 
            net = bias_weight_for_conv_layer2 + temp; 
            conv_output2(rows,cols) = activation(net); 
        end 
    end 
    figure;imshow(conv_output2); 
end 
  

  
function result = activation(net) 
    result = 1/(1+exp(-net)); 
end 

Convolved image as output: 

 

This layer detects more complex features. For example, curves detection. 

Step 8: Pooling layer 2 

Pooling layer remains same as in step 6. 

Pooled image as output: 



 

Step 9: Vectorization and Concatenation layer 

Here, vectorization layer is used to vectorize pooled maps. For example, if 12 pooled maps of 

size 4 x 4 are present, each pooled map produces a vector of size 16 which is obtained by 

scanning each of them column by column. Now, these 12 vectors of size 16 are concatenated 

one after other to produce a vector of size 12 x 16 = 192. This is done in concatenation layer. 

Output of concatenation layer is input to fully connected layer. 
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% Vectorizing image 
    for i = 1 : number_of_feature_maps_for_conv_layer2 
        vectorization_output(:,:,i) = 

vectorization(size_of_pooling2_output_image, pooling2_output(:,:,i)); 
    end 
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% Function for Vectorization layer    
function vectorization_output = 
vectorization(size_of_pooling2_output_image , pooling2_output) 
  
    vectorization_output=zeros(size_of_pooling2_output_image * 

size_of_pooling2_output_image , 1); 
     
    index=0; 
     
    for cols = 1 : size_of_pooling2_output_image 
        for rows = 1 : size_of_pooling2_output_image 
           index=index+1; 
           vectorization_output(index,1)= pooling2_output(rows,cols); 
        end 
    end 
end 
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% Concatenating image  
  
index=0; 
for i=1:number_of_feature_maps_for_conv_layer2 
    for j = 1:vectorization_output_size 
        index = index+1; 
        concatenation_output(index) = vectorization_output(j, 1, i); 
    end 
end 

Step 10: Fully connected layer 

In this step, we multiply weight matrix initialized by random uniform distribution and 

concatenation output. We then add bias and apply activation function on it. 
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% Computing Output of CNN 
     
    output_of_cnn = weight_matrix_for_fully_connected_layer * 

concatenation_output ; 
    output_of_cnn = output_of_cnn + bias_for_output_of_cnn; 
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    for i=1:number_of_classes       % Applying activation function on net 
        net=output_of_cnn(i,1); 
        result = 1/(1+exp(-net)); 
        output_of_cnn(i,1)=result; 
    end 

Step 11: Training cycle 

After passing image through all the above layers, we calculate loss function to check how much 

the actual output deviate from our desired output. We then start computing adjustment vectors 

using formulas in this paper.  

Here, we use two for loops. One for training cycles to train the network until error lowers down 

to maximum tolerable error and other for number of patterns in our data-set. 
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for training_cycle = 1 : number_of_training_cycles 
    error = 0; 
    for pattern = 1:number_of_patterns 

  
        image = dataset(:,:,pattern);     
  
        % Processing image through Convolutional layer 1 
        for i = 1 : number_of_feature_maps_for_conv_layer1 
            output_of_conv_layer1(:,:,i) = convolutional_layer(image, 

size_of_conv_output1_image, kernel_size_for_conv_layer1, 

kernel_for_convolutional_layer1(:,:,i), 

bias_weight_for_convolutional_layer1(i,1)); 
        end 

  
        % Processing image through Pooling layer 1 
        for i = 1 : number_of_feature_maps_for_conv_layer1 
            pooling1_output(:,:,i) = 

pooling_layer(size_of_conv_output1_image, size_of_pooling1_output_image, 

window_size_for_pooling_layer1, output_of_conv_layer1(:,:,i)); 
        end 
  
        % Processing image through Convolutional layer 2 
        for i = 1 : number_of_feature_maps_for_conv_layer2 
            conv2_output(:,:,i) = 

convolutional_layer2(bias_weight_for_conv_layer2(i,1), 

size_of_conv2_output, number_of_feature_maps_for_conv_layer1, 

kernel_size_for_conv_layer2, kernel_for_conv_layer2(:,:,:,i) , 

pooling1_output); 
        end 
  

  
        % Processing image through Pooling layer 2 
        for i = 1 : number_of_feature_maps_for_conv_layer2 
            pooling2_output(:,:,i) = pooling_layer(size_of_conv2_output 

, size_of_pooling2_output_image , window_size_for_pooling_layer2 , 

conv2_output(:,:,i)); 
        end 

  
        % Vectorizing image 
        for i = 1 : number_of_feature_maps_for_conv_layer2 
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            vectorization_output(:,:,i) = 

vectorization(size_of_pooling2_output_image, pooling2_output(:,:,i)); 
        end 
  
        % Concatenating image  
        index=0; 
        for i=1:number_of_feature_maps_for_conv_layer2 
            for j = 1:vectorization_output_size 
                index = index+1; 
                concatenation_output(index) = vectorization_output(j, 1, 

i); 
            end 
        end 

  
        % Computing Output of CNN 
        output_of_cnn = weight_matrix_for_fully_connected_layer * 

concatenation_output ; 
        output_of_cnn = output_of_cnn + bias_for_output_of_cnn; 
  

  
        for i=1:number_of_classes       % Applying activation function 
on net 
            net=output_of_cnn(i,1); 
            result = 1/(1+exp(-net)); 
            output_of_cnn(i,1)=result; 
        end 

  
        % Calculating Loss and error 
        loss=0.5*(norm(output_of_cnn - desired_output(:,pattern)))^2; 
        error = error + loss; 
  
        % Computing adjustment vector Y i.e vector of error signal terms 

requird to calculate weight and bias adjustment vectors 
        for i = 1 : number_of_classes 
            Y_i(i) = (output_of_cnn(i,1) - desired_output(i,pattern)) * 

output_of_cnn(i,1) * (1 - output_of_cnn(i,1)); 
        end 
        delta_W_ij = Y_i * transpose(concatenation_output); % Computing 

weight adjustment vector 
        delta_bias_i = Y_i;                                 % Computing 

bias adjustment vector 
  

  
        % Computing adjustment vector for concatenation output  
         delta_F = transpose(weight_matrix_for_fully_connected_layer) * 

Y_i; 
  
        % Computing adjustment vector for pooling layer 2 
        delta_S2_q = reshape(delta_F, size_of_pooling2_output_image, 

size_of_pooling2_output_image, number_of_feature_maps_for_conv_layer2); 
  
        % Computing adjustment vector for convolutional layer 2 by 

upsampling 
        for q = 1 : number_of_feature_maps_for_conv_layer2   
            for i = 1 : size_of_conv2_output 
                for j = 1 : size_of_conv2_output 
                   delta_C2_q(i,j,q) = (1/4) * delta_S2_q(ceil(i/2), 

ceil(j/2),q); 
                end 
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            end 
        end 

  
        % computing adjustment vector for convolutional layer 2 before 

sigmoid function   
        for q = 1 : number_of_feature_maps_for_conv_layer2 
            for i = 1 : size_of_conv2_output 
                for j = 1 : size_of_conv2_output 
                    delta_c2_q_sigmoid(i, j, q) = delta_C2_q(i, j, q) * 

conv2_output(i, j, q) * (1 - conv2_output(i, j, q)); 
                end 
            end 
        end 

  
        % Computing adjustment vector for rotated pooling layer 1 
        delta_S1_rotate_p = rot90(pooling1_output, 2); 

  
        % computing adjustment vector for kernels of convolutional layer 

2 
        for p = 1 : number_of_feature_maps_for_conv_layer1 
            for q = 1 : number_of_feature_maps_for_conv_layer2 
                delta_k2_pq(:,:,p,q)=conv2(delta_S1_rotate_p(p), 

delta_c2_q_sigmoid(q),'valid'); 
            end 
        end 

  
        % Computing adjustment vector for bias of convolutional layer 2 
        for q = 1 : number_of_feature_maps_for_conv_layer2 
        temp=0; 
            for i = 1 : size_of_conv2_output 
                for j = 1 : size_of_conv2_output 
                    temp = temp + delta_c2_q_sigmoid(i,j,q);  
                end 
            end 
            delta_b2_q(q,1)=temp; 
        end 

  
        % Rotating kernel of layer 2 by 180 
        k2_pq_rotate = rot90(kernel_for_conv_layer2, 2); 

  
        % Computing adjustment vector for pooling layer 1 
        for p = 1 : number_of_feature_maps_for_conv_layer1 
            temp = zeros(size_of_pooling1_output_image, 

size_of_pooling1_output_image); 
            for q = 1 : number_of_feature_maps_for_conv_layer2 
                temp(:,:)=temp + conv2(delta_c2_q_sigmoid(:,:,q), 

k2_pq_rotate(:,:,p,q), 'full'); 
            end 
            delta_s1_p(:,:,p) = temp; 
        end 

  
        % Computing adjustment vector for convolutional layer 1 by 

upsampling 
        for p = 1 : number_of_feature_maps_for_conv_layer1 
            for i = 1 : size_of_conv_output1_image 
                for j = 1 : size_of_conv_output1_image 
                    delta_c1_p(i, j, p) = (1/4) * delta_s1_p( ceil(i/2), 

ceil(j/2), p ); 
                end 
            end 
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        end 
  
        % computing adjustment vector for convolutional layer 1 before 

sigmoid function  
        for p = 1 : number_of_feature_maps_for_conv_layer1 
            for i = 1 : size_of_conv_output1_image 
                for j = 1 : size_of_conv_output1_image 
                    delta_c1_p_sigmoid(i, j, p) = delta_c1_p(i, j, p) * 

output_of_conv_layer1(i , j , p) * (1 - output_of_conv_layer1(i , j , 

p)); 
                end 
            end 
        end 

  
        % Rotating input pattern 
         input_pattern_rotate = rot90(image, 2); 

  
        % Computing adjustment vector for kernel of convolutional layer 

1 
        for p = 1: number_of_feature_maps_for_conv_layer1 
            delta_k1_p(:,:,p) = conv2(input_pattern_rotate, 

delta_c1_p_sigmoid(:,:,p) , 'valid'); 
        end 
  
        % Computing adjustment vector for bias of convolutional layer 1 
        for p = 1 : number_of_feature_maps_for_conv_layer1 
            temp=0; 
            for i = 1 : size_of_conv_output1_image 
                for j = 1 : size_of_conv_output1_image 
                    temp = temp + delta_c1_p_sigmoid(i,j,p);  
                end 
            end 
            delta_b1_p(p,1)=temp; 
        end 
  

  
        % Parameter Update 
  
        % Adjusting kernel for convolutional layer 1 
        for p = 1 : number_of_feature_maps_for_conv_layer1 
            kernel_for_convolutional_layer1(:,:,p) = 

kernel_for_convolutional_layer1(:,:,p) - learning_rate * 

delta_k1_p(:,:,p); 
        end 

  
        % Adjusting bias for convolutional layer 1 
        for p = 1 : number_of_feature_maps_for_conv_layer1 
            bias_weight_for_convolutional_layer1(p,1) = 

bias_weight_for_convolutional_layer1(p,1) - learning_rate * 

delta_b1_p(p,1); 
        end 
  
        % Adjusting kernel for convolutional layer 2 
         for p = 1 : number_of_feature_maps_for_conv_layer1 
            for q = 1 : number_of_feature_maps_for_conv_layer2 
                kernel_for_conv_layer2(:,:,p,q) = 

kernel_for_conv_layer2(:,:,p,q) - learning_rate * delta_k2_pq(:,:,p,q); 
            end 
         end 
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        % Adjusting bias for convolutional layer 2 
        for q = 1 : number_of_feature_maps_for_conv_layer2 
            bias_weight_for_conv_layer2(q,1) = 

bias_weight_for_conv_layer2(q,1) - learning_rate * delta_b2_q(q,1); 
        end 
  
        % Adjusting weight matrix 
        weight_matrix_for_fully_connected_layer = 

weight_matrix_for_fully_connected_layer - learning_rate * delta_W_ij; 
  
        % Adjusting bias 
        bias_for_output_of_cnn = bias_for_output_of_cnn - learning_rate 

* delta_bias_i; 
  

  
    end 
     
    % Printing error after 1000 training cycles 
    if (mod (training_cycle,1000))==1  
    fprintf('error for training cycle %i is ',training_cycle); 
    disp(error); 
    end 
    if(error <= emax) 
        fprintf('error for training cycle %i is ',training_cycle); 
        disp(error); 
        break 
    end 
end 

  
save C:\Users\SHREE\Documents\MATLAB\Test_CNN_2CLASS.mat;   

Output: 

 

 



 

Above are some snippets of errors obtained for training cycles. Instead of printing error after 

each training cycle, we print it after finishing 1000 training cycles so that it is easy to monitor 

errors on screen. Training stops after reaching specified tolerable error. We then save all 

kernels, weights and biases obtained after training in .mat file to use while testing. At this stage 

our model is ready to test. 

Step 12: Testing model 

In order to test model, we need to take test data (data not used in training), label it and then 

evaluate accuracy of results. 

To label and create test data-set we use same code snippet as in step 1 by just changing train 

folder names to test folder names. 

Now, we load kernels, weights and biases obtained after training from .mat file and pass our 

testing data through feed-forward part of network. We check obtained outputs against our 

desired outputs for each testing data and calculate accuracy. 
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% Load trained parameters 
    load C:\Users\SHREE\Documents\MATLAB\Test_CNN_2CLASS.mat; 
         
% Load test dataset and its desired output  
    load C:\Users\SHREE\Documents\MATLAB\disguiseddataset.mat; 
     
    for pattern = 1:number_of_patterns 
            fprintf('Pattern %i is input\n',pattern);    
            image = dataset(:,:,pattern);    
             
            % Processing image through Convolutional layer 1 
            for i = 1 : number_of_feature_maps_for_conv_layer1 
                output_of_conv_layer1(:,:,i) = convolutional_layer(image, 

size_of_conv_output1_image, kernel_size_for_conv_layer1, 

kernel_for_convolutional_layer1(:,:,i), 

bias_weight_for_convolutional_layer1(i,1)); 
            end 
  
            % Processing image through Pooling layer 1 
            for i = 1 : number_of_feature_maps_for_conv_layer1 
                pooling1_output(:,:,i) = 

pooling_layer(size_of_conv_output1_image, size_of_pooling1_output_image, 

window_size_for_pooling_layer1, output_of_conv_layer1(:,:,i)); 
            end 
  
            % Processing image through Convolutional layer 2 
            for i = 1 : number_of_feature_maps_for_conv_layer2 
                conv2_output(:,:,i) = 

convolutional_layer2(bias_weight_for_conv_layer2(i,1), 

size_of_conv2_output, number_of_feature_maps_for_conv_layer1, 
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kernel_size_for_conv_layer2, kernel_for_conv_layer2(:,:,:,i) , 

pooling1_output); 
            end 
  
  
            % Processing image through Pooling layer 2 
            for i = 1 : number_of_feature_maps_for_conv_layer2 
                pooling2_output(:,:,i) = 

pooling_layer(size_of_conv2_output , size_of_pooling2_output_image , 

window_size_for_pooling_layer2 , conv2_output(:,:,i)); 
            end 
  
            % Vectorizing image 
            for i = 1 : number_of_feature_maps_for_conv_layer2 
                vectorization_output(:,:,i) = 

vectorization(size_of_pooling2_output_image, pooling2_output(:,:,i)); 
            end 
  
            % Concatenating image  
            index=0; 
            for i=1:number_of_feature_maps_for_conv_layer2 
                for j = 1:vectorization_output_size 
                    index = index+1; 
                    concatenation_output(index) = vectorization_output(j, 

1, i); 
                end 
            end 
  
            % Computing Output of CNN for image 
            output_of_cnn = weight_matrix_for_fully_connected_layer * 

concatenation_output ; 
            output_of_cnn = output_of_cnn + bias_for_output_of_cnn; 
  
             
            for i=1:number_of_classes       % Applying activation 
function on net 
                net=output_of_cnn(i,1); 
                result = 1/(1+exp(-net)); 
                output_of_cnn(i,1)=result; 
            end 
             
            % Comparing obtained output against desired output 
            disp(transpose(output_of_cnn)); 
            disp(transpose(desired_output(:,pattern))); 
    end 

Output: 



 

 



 

 

 



 

Accuracy of CNN does get better by adding few more layers. It definitely gives better accuracy 

for training data but performs really poor on test data i.e. it causes over-fitting. On top of that, 

it also depends on number of filters used in each convolutional layer. Therefore, to train a 

model we need to find perfect trade-off with trail and error method. 

 


