Course of Study Choice Based Credit System B. Tech. (Electrical Engineering) (Effective for Academic Year 2018-19 Only)

Department of Electrical Engineering, SGGS Institute of Engineering and Technology, Vishnupuri, Nanded-431606 (MS), India

(An autonomous institute established by Govt. of Maharashtra)

SGGS Institute of Engineering and Technology, Vishnupuri, Nanded

Department of Electrical Engineering Choice Based Credit System

Semester-VII					
Course Code	Name of the Course	Lectures	Tutorials	Practical	Credits
EE401	Industrial Drives and Control	4	-	2	5
EE403	Switchgear and Protection	4	-	2	5
EE405	Electrical Machine Design	3	-	2	4
EE407	Industrial Economics and	3	-	-	3
	Management				
EE409	Elective –IV	3	-	2	4
	Sub Total	17	-	08	21

B. Tech. (Electrical Engineering) For Academic Year 2018-19 only

Semester-VIII(STRUCTURE A)

			1	1	
Course Code	Name of the Course	Lectures	Tutorials	Practical	Credits
EE402	Elective –V	4	-	-	4
EE404	Elective – VI	3	-	2	4
EE406	Seminar on Industrial Training	-	-	2	1
EE408	Project (In house)	-	-	16	8
	Sub Total	07	-	20	17
	Total	24	-	28	38

	Semester-VIII (STRUCTURE B)				
Course Code	Name of the Course	Lectures	Tutorials	Practical	Credits
EE406	Seminar on Industrial Training	-	-	2	1
EE410	Project (Industry/Research Institute)	-	-	32	16
	Sub Total	0	-	34	17
	Total	17	-	42	38

A student can opt for any one from the structure A and B. Structure A is for students doing the project in institute and structure B is for students carrying project in industry.

Elective IV:

EE409A: High Voltage Engineering EE409B: PLC and SCADA EE409C: Artificial Neural Networks and Deep Learning

Elective V:

EE402A: HVDC and FACTS EE402B:Power System Restructuring and Deregulation EE402C: Smart Electric Grid

Elective VI:

EE404A: Power Quality and Harmonics EE404B: Embedded System Design EE404C: Advanced Control System

• Attendance Criteria: Students have to maintain 75% attendance in all the registered courses in a semester to be eligible for appearing examinations.

SEMESTER-VII

EE401 Ind	lustrial E	Drives and Contr	·ol	
Teaching So	cheme :		Examination Scheme:	
Lectures		4 Hrs/ Week	Theory:	
Tutorials			Mid Term:30 Marks	
Practical		2 Hrs/Week	End Sem. Exam :70 Marks	
Credits (Th)		4	Credits(P) 1	
Prerequisite	es Courses			
1			electronics & Control System	
Course Obj			•	
1		he basics of DC and	AC variable speed drives.	
2			of variable speed drives for various applications in	
	industry.		1 11	
3	2	the ability to repair a	and maintain the drive panels.	
4	-	· · ·	search avenues in the field of Electrical Drives.	
Course Out	comes: Stu	idents' will be able	to:	
1			cal machines & drives.	
2		÷	tical industrial systems	
3			of electrical drives.	
4			problems on electrical drives.	
5	Write technical reports & give presentation on industrial drive systems.			
6		Describe the modern electric machines, drives, power converters, and control		
_	circuits for specific application.			
Syllabus :	1	1 11		
Unit 1	Introduc	tion:	(06 Hours)	
	Advantag	ges of Electrical D	rives, Parts of Electrical drive, Choice of Electric	
	drives Dy	namics of Electrica	l drives: fundamental torque equations, multiquadrant	
			ication of load torques, steady state stability, concept	
	of load ed	qualization in drives		
Unit 2	Control	of Electrical Drives	:: (06 Hours)	
	Modes of	f operation: Steady	state, Acceleration, Deceleration, Drive classification	
	Closed lo	op control of drives	s: Current limit control, torque control, speed control,	
	position of	control and control	of multi motor drives, speed sensing, current sensing	
		•	eria for selection of motor.	
Unit 3	DC moto		(08 Hours)	
		f basic characteristic		
		-	phase half wave converter drives, semi converter	
			s, Dual converter drives. Three phase drives: Three	
	-		converter drives, full converter drives, dual converter	
			ves: Principle of Rheostatic and regenerative braking	
			wo and four quadrant DC-DC converter fed drives.	
.		ion to closed loop co		
Unit 4		n motor drives: (08		
	Review o	of starting, braking a	nd speed control of three phase induction motors.	

r			
	Induction motor drives: Stator voltage control, Rotor voltage control, frequency		
	control, Voltage and frequency control, Current control. Closed loop control of		
	Induction motors. Principle of Scalar and Vector control of Induction motor.		
	Multiquadrant operation of induction motor drives fed from Voltage Source		
	Inverters. Static rotor resistance control method, static slip power recovery		
	control-Static Scherbius drive and Static Kramer drive.		
Unit 5	Synchronous Motor Drives and Brushless DC drives:(06 Hours)		
	Review of starting, pull in and braking of Synchronous motor, Static variable		
	frequency control for Synchronous motors. Load commutated inverter fed		
	Synchronous motor drive, Introduction to closed loop control of Load commutated		
	inverter fed Synchronous motor drive and Brushless DC drives.		
Unit 6	Drives for Specific Applications: (06 Hours)		
	Construction and operation of switched reluctance motor, torque equation		
	converter circuits for SRM drives, closed loop motor operation, solar and battery		
	power drive. Textile Mill: various stages and drive requirements control of ac		
	motors for controlling torque. Steel Rolling Mill: reversing and continuous hot and		
	cold rolling mills, Drive requirements, motors for mill drive. Cement mill: Stages		
	in cement production, requirements of mill motors, Kiln drives, crusher drives,		
	fan/blower drives and compressor drive. Sugar Mill: Requirements for various		
	drive motors, selection of motors for various processes.		
	drive motors, selection of motors for various processes.		

1. Power Electronics by M.H. Rashid, 3rd Ed, PHI Pub. 2004.

2. Fundamentals of Electrical Drives by G. K. Dubey, Narosa Publishing house Books.

3. Modern Power Electronics and AC Drives by B. K. Bose, Pearson Education, Asia, 2003.

4. De N. K., Sen P. K., "Electric Drives", Prentice Hall of India.

Term Work:

At least eight experiments based on the curriculum from the following list should be performed.

1. Speed – torque characteristics of chopper fed D. C. series motor

2. Closed – loop speed control of chopper fed D. C. drive (Simulation)

3. Open loop speed control of single phase full wave, half controlled converter fed D. C. shunt motor

4. Open loop speed control of single phase full wave, full controlled converter fed D. C. shunt motor

5. Closed loop speed control of converter fed D. C. drive

6. Two quadrant single phase converter fed 5 HP DC drive (simulation)

7. Four quadrant single phase converter fed 5 HP DC drive (simulation)

8. Four quadrant chopper fed DC drive (simulation)

9. Speed control of slip – ring induction motor by rotor resistance control

10. Six – step VSI fed induction motor drive, (simulation)

- 11. Simulation of brushless DC motor drive
- 12. Speed control of induction motor drive
- 13. Study of Kramer speed control
- 14. Speed control of induction motor drive (simulation)

Practical Examination:

EE403 Sw	EE403 Switchgear and Protection				
Teaching Sc			Examination Scheme:		
Lectures		4 Hrs/ Week	Theory:		
Tutorials			Mid Term: 30 Marks		
Practical		2 Hrs/Week	End Sem. Exam :70 Ma	arks	
Credits (Th)		4	Credits(P) 1		
Prerequisite	es Courses				
1	Power Sy	stem Engineering			
Course Obj	ective:				
1	To Introd	luce students to power system	stem protection and swite	chgear	
2	To Teach	students the protection s	systems used for electric	machines, transformers,	
	bus bars,	overhead and undergroun	nd feeders		
3	Develop	in students an ability and	d skill to design the feas	sible protection systems	
		or each main part of a pov			
4		students' knowledge of o	ver- voltage protection a	nd data transmission	
Course Out		idents' will be able to:			
1		geable in field of power	• •	uit breakers, protective	
	relaying and instrument transformer				
2	Comprehensive study of various relays used in power system protection.				
3	Discuss types of circuit breakers with their applications				
4		otor, stator faults, interte		ction	
5		elevant protection system			
6	Ability to	participate in profession	al multi-disciplinary tear	ns	
Syllabus :	T				
Unit 1		entals of Switchgear and		(06 Hours)	
		s of protection and swite			
		tion, ratings and specific			
	• •	e construction and appli		atings, rewirable and H.	
		es, their characteristics ar			
Unit 2		nomenon and Circuit B		(08 Hours)	
		s of circuit interruption			
	-	Arc quenching metho	-		
	resistance switching, Auto reclosing. Circuit Breakers: - Classification of C.B.s -				
TI 4 2		air blast, vacuum, minin	num oil and bulk oil, SF6		
Unit 3		e Relays:	taatiwa malavina in a	(06 Hours)	
		e Relaying: Need of pro		•	
	-	otective zone, Primary		-	
	-	e relaying .Classificat	•		
	character	istics of attracted armatu	ie, balanced beam, indu	cuon, disc and cup type	

	relays, induction relays, Setting characteristics of over current; directional,		
	differential, percentage differential and distance (impedance, reactance, mho)		
	relays, introduction to static relays, advantages & disadvantages.		
Unit 4	Transmission System Protection : (08 Hours)		
	Bus bar: Feeder and Transmission line protection. Bus bar protection, Frame		
	leakage protection circulating current protection. Overcurrent relays, philosophy,		
	ORCD.Principles of distance relaying, choice between impedance, reactance and		
	mho types, pilot wire and carrier pilot protection, Zones of protection. Distance		
	relay philosophy and coordination.		
Unit 5	Unit Protection(06 Hours)		
	Unit protection schemes, protection of transformer, generator.Alternators – Stator		
	fault, stator inter turn protection. Unbalanced load, protection (Negative phase		
	sequence [NPS] protection). Transformer – Use of Buccholz relay, differential		
	protection, connection of C. T. and calculation of C.T.ratio needed for differential		
	relaying, balanced and unbalanced restricted earth fault protection, frame leakage		
	protection.		
Unit 6	Insulation Co-Ordination : (06 Hours)		
	Definitions (Dry flashover voltage FOV), WEF FOV, Impulse FOV, insulation,		
	co-ordinating insulation and protective devices. Basic impulse insulation (BIL),		
	Determination of line insulation. Insulation levels of substation equipment.		
	Lightning arrester selection and location. Modern surge diverters and Necessity of		
	power system earthing, Method of earthing the neutral, Peterson coil, earthing of		
	transformer.Overvoltage studies.		
Unit 7	Advancements in Protection: (06 Hours)		
	Introduction to Wide Area Monitoring System (WAMS) infrastructure. WAMS		
	based protection schemes, Automated fault analysis.		

- 1. Patara Basu & Chaudhary Power System Protection. (New Delhi Oxford and IBH).
- 2. Sunil S. Rao Switchgear & Protection. (Tata McGraw Hill).
- 3. A Web Course on 'Digital protection of power system':-Prof. Dr. S.A.Soman, IITBombay.
- 4. Protection of power systems: Blackburn.
- 5. Fundamentals of power system protection: Y.G.Paithankar, S.R.Bhide. -Prentice hall,India.

Term Work:

Minimum of Eight experiments based on the curriculum from the following list should be performed.

- 1. Current versus time characteristics of over current relays
- 2. Study of Electromechanical phase/earth/directional relays
- 3. Short circuit analysis of a simple power system up to six buses (usingMATLAB/MiPower software)
- 4. Relay coordination: Over current (using MATLAB/MiPower software)
- 5. Distance relay coordination (using MiPower/ MATLAB software)

- 6. Motor protection design (using MiPower/ MATLAB software)
- 7. Merz-Price protection of transformer.
- 8. Transmission line protection.
- 9. Study and use of relay testing kit.
- 10. Study and testing of moulded case circuit breaker.
- 11. Study of typical oil circuit breaker.
- 12. Characteristics of rewirable fuse and H.R.C. fuses.
- 13. Over voltage studies: line/transformer energization, capacitor switching (using MiPower software)

Practical Examination:

EE405 Electrical Machine Design				
Teaching Sc	heme :		Examination Scheme:	
Lectures		3 Hrs/ Week	Theory:	
Tutorials			Mid Term:30 Marks	
Practical		2 Hrs/Week	End Sem. Exam :70 Ma	arks
Credits (Th)		3	Credits(P)	1
Prerequisite	Prerequisites Courses:			
1	Electrical	machines		
Course Obj	ective:			
1	To make	student understand basic	of Electrical Machine de	sign.
2	To develo	op the capabilities in the s	student to apply basics of	Electrical Engineering
	for design	n of Electrical machines.		
3	To make	To make the student conversant with the design process of Electrical machines and		
	-	Computer aided design of the Electrical machines.		
4		students capable for design	gning Electrical machine	with high efficiency.
Course Out	Course Outcomes:Students' will be able to:			
1	Design Distribution and Power transformer with high efficiency.			
2	Evaluate performance of transformer related to temperature rise.			
3		Understand design of various induction motor.		
4	Analyse t	he performance of Induc	tion motor and Synchron	ous motor.
5	Apply Co	mputer software for desi	gn of various Electrical N	Machines.
Syllabus :	1			
Unit 1		ctional Details and Desig		(08 Hours)
		l shell types. Distribut		,
		, cooling of cores, windir		
	Output equation, EMF per turn. Ratio of iron loss to copper loss, Relation between			
	core area and weights of iron and copper, optimum designs Core design. Design of			
		Design of insulation over		
Unit 2		ance Evaluation of Tran		(06 Hours)
		e of windings. Leakage r		
	load curre	ent. Equivalent circuit and	d performance characteri	stics, Temperature rise,

	Design of tank and radiators			
Unit 3	Constructional Details and Design of Three Phase Induction Motors: (08			
	Hours)			
	Constructional details of Stator and Rotor, Output equation. Specific electric and			
	magnetic loadings. Efficiency and power factor, main dimensions, Stato			
	windings. Type of winding and connection. Turns per phase, shape of stator slots.			
	Number of stator slots, Design of stator stampings. Calculation of air gap length.			
	Design of squirrel cage rotor, Rotor bar current. Shape and size of rotor slots. End			
	ring current. Area of end rings, slip. Design of wound rotor. Rotor windings. Use			
	of standard stampings			
Unit 4	Operating Characteristics of Three Phase Induction Motors: (06 Hours)			
	No load current Magnetizing current, loss component short circuit current.			
	Resistances, leakage reactance. Use of circle diagram to obtain performance			
	figures. Calculation of static torque, maximum torque, maximum output,			
	maximum power factor. Dispersion coefficient. Effect of dispersion coefficient on			
	maximum p.f. and overload capacity			
Unit 5	Design of Synchronous Machines: (06 Hours)			
	Review of construction of water wheel and turbo alternators. Different parts and			
	materials used for different parts, choice of electric and magnetic loadings, Output			
	equation Determination of diameter and length. Length of air gap and effect of			
	short circuit ratio on machine performance			
Unit 6	Computer Aided Design of Electrical Machines:(06 Hours)			
	Benefits of computer in machine design, methods of approach, optimization and			
	computer aided design of induction motor and three phase transformer			

"A Course in Electrical Machine Design" - by A. K. Sawhney, Dhanpat Rai and Sons, Delhi.
 V.N. Mittle and A. Mittle, "Design of Electrical Machines", Standard Publications & Distributors, Delhi, 2002

3. R.K. Agarwal, "Principles of Electrical Machine Design", S.K.Kataria& Sons, Delhi, 2002 4. S.K. Sen, "Principles of Electrical Machine Design with Computer Programmes", Oxford and IBH Publishing Co. Pvt Ltd., New Delhi, 1987.

Term Work:

The term work consists of the design reports along with the drawing sheets of assembly of Machines and the details there of in case of

- 1. Single phase transformer
- 2. Three phase transformer
- 3. Single phase induction motor
- 4. Three phase induction motor
- 5. Synchronous machines
- Any two software base calculation of transformer or induction motor design.

A teacher may add or replace any appropriate experiment / design calculation / Sheets to the Experiments list.

EE407 Industrial Economics and Management Teaching Scheme : Examination Scheme: Lectures 3 Hrs/ Week Theory: Tutorials Mid Term: 30 Marks Practical End Sem. Exam :70 Marks Credits (Th) 3 Credits(P) Prerequisites Courses: 1 NA Course Objective: 1 Study the management concept, its functions and responsibility. 2 2 Understand the human resource management in industry. 3 3 Understand the store and purchase management.			
Lectures 3 Hrs/ Week Theory: Tutorials Mid Term:30 Marks Practical End Sem. Exam :70 Marks Credits (Th) 3 Credits(P) Prerequisites Courses: 1 NA 1 Study the management concept, its functions and responsibility. 2 2 Understand the human resource management in industry.			
Tutorials Mid Term: 30 Marks Practical End Sem. Exam :70 Marks Credits (Th) 3 Credits(P) Prerequisites Courses: 1 NA Course Objective: 1 Study the management concept, its functions and responsibility. 2 Understand the human resource management in industry.			
Practical End Sem. Exam :70 Marks Credits (Th) 3 Credits(P) Prerequisites Courses: 1 NA Course Objective: 1 Study the management concept, its functions and responsibility. 2 Understand the human resource management in industry.			
Credits (Th) 3 Credits(P) Prerequisites Courses: 1 NA Course Objective: 1 Study the management concept, its functions and responsibility. 2 Understand the human resource management in industry.			
Prerequisites Courses: 1 NA Course Objective: 1 Study the management concept, its functions and responsibility. 2 Understand the human resource management in industry.			
1 NA Course Objective: 1 Study the management concept, its functions and responsibility. 2 Understand the human resource management in industry.	Credits(P)		
Course Objective:1Study the management concept, its functions and responsibility.2Understand the human resource management in industry.			
1Study the management concept, its functions and responsibility.2Understand the human resource management in industry.			
2 Understand the human resource management in industry.			
1 1 Inderstand the store and purchase management			
4 Study the management laws			
Course Outcomes: Students' will be able to:			
1 Understand the management process and structure in the industry so that	it it will		
help them to work in a better way			
2 Develop an efficient methodology for industrial management			
3 Cater the issues related to current industrial amendments			
Syllabus :			
Unit-1Management Concepts :Management its growth, Concepts, Principles & Managerial objectives	Management Concepts : Management its growth, Concepts, Principles & Managerial objectives		
	Industrial Ownership & Forms of Organization :		
1 0	Types : Single, Partnership, J.S.C. Co-operative, Public Sector, Private Sector,		
Different Organizational Structure, Line Organization, Functional Organ	nization,		
Line & Staff Organization			
Unit-3 Personnel Management :	Personnel Management :		
Man Power Planning : Aims objectives, Principles of Personal Mana	Man Power Planning : Aims objectives, Principles of Personal Management,		
Recruitment, Selection, Interviews, Techniques, Performance appraisal, In	tensives		
& Motivation, Job Evaluation and merit rating.			
Unit-4 Management Laws & Intensives :	Management Laws & Intensives :		
Concept of Contract Act, Offer & acceptance of guarantee and warranty. N	IRTP &		
FERA, Current Package Scheme of incentive for new projects.			
Unit-5 Engineering Economic & Import Export Management :			
Utility, Want, Wealth, Demand price determination & business cycle, Con	cepts of		
International Trade, Duties, anti dumping duty, cost involved in exporting a			
product "MODVAT".			
Unit-6 Purchase Management & Theory "i" in Management :			
Concepts of quotation, tenders, inspection & quality control.			
Global Management Practices'MIS' Management information system			

Practical Examination: The examination will be of three hours duration and will consist of an experiment based on term work and followed by an oral based on above syllabus

Text/ Reference Books:

Textbook:

1. Industrial Engineering and Management-O.P.Khanna

References:

- 1. .Management for Business and Industry-C.S.George Jr.
- 2. Principles of management -Knootsand O.Donnell.
- 3. Business Organization and Management- M.C. Shulka.

Elective IV

EE409A High Voltage Engineering				
Teaching Sc	<u> </u>	0 0 0	Examination Scheme:	
Lectures		3 Hrs/ Week	Theory:	
Tutorials			Mid Term:30 Marks	
Practical		2 Hrs / Week	End Sem. Exam :70 Marks	
Credits (Th)		3	Credits(P) 1	
Prerequisite	s Courses:			
1	Engineeri	ing Physics, Basic Electr	onics and Network Analysis	
Course Obje	ective:			
1	The course insulation		mechanisms in gaseous, liquid and solid	
2	Methods	of generation and measu	rement of high voltage, impulse voltage and	
	impulse			
		e also covered		
3			higher studies in high voltage engineering.	
4		the measurement of High	n Voltages.	
Course Out		dents' will be able to:		
1		Observe the breakdown mechanism in gaseous, liquid and solid insulations		
2	Illustrate the methods of High voltage generation, Impulse voltage and current			
3	Describe the methods of Measurement High voltage, Impulse voltage and current.			
4	Design various circuits for the measurement of high frequency voltages and currents.			
5	Apply the different tests done on insulators, circuit breakers, cables, transformers ,LA etc.			
6	Discuss t	he principles behind the	partial discharges	
Syllabus :				
Unit 1	Breakdo	wn in Gaseous Medium	: (06 Hours)	
	Townsen	d mechanism of breakd	own in gases, streamer (kanal) mechanism of	
			breakdown criterion for Townsend and streamer	
	mechanis	ms. Paschen's law for br	reakdown voltage in gases, effect of pressure and	
	01	nce on breakdown voltag		
Unit 2		wn In Liquid and Solid		
			rcial liquids for insulation, breakdown in pure	
			essure on breakdown strength. Breakdown in	
			particle theory, cavitation and bubble theory,	
	thermal b	reakdown, stressed oil v	olume theory. Types of breakdown mechanisms	

	in solids - intrinsic, electromechanical, treeing and tracking, thermal breakdown,		
	electrochemical, breakdown due to internal discharges. Breakdown in composite		
	dielectrics, applications of solid dielectrics like paper, mica, glass and ceramics		
Unit 3	Generation of High Voltages: (06 Hours)		
	Generation of high D.C. voltages by rectifiers, voltage doubler and multiplier		
	circuits, electrostatic machines - Van de Graaff generator, electrostatic generator.		
	Generation of high A.C. voltages by cascade transformer set, resonant transformer,		
	Tesla coil for generation of high frequency A.C. voltage		
Unit 4	Generation Of Impulse Voltage and Current: (06 Hours)		
	Standard impulse wave shape, analysis of model and commercial impulse		
	generation circuits, wave shape control, Marx circuit, tripping and control of		
	impulse generation. Generation of switching surges, generation of impulse current		
Unit 5	Measurement Of High Voltage and Current: (06 Hours)		
	Peak voltage measurement by Chubb - Fortescue method, spark gaps, sphere gap, uniform field gap, rod gap, electrostatic voltmeter, measurement of high voltage		
	by an ammeter in series with high impedance, use of rectifier and voltage divider.		
	Measurement of high A.C., D.C. and impulse currents by resistive shunts- Hall		
	generator, current transformer with electro-optical signal converter, squirrel-cage		
	shunt, Rogowski coil		
Unit 6	High Voltage Testing and Partial Discharges: (06 Hours)		
Unit U			
	High voltage testing of-insulators, bushings, circuit breakers, cables, transformers,		
	lightning arrestors and power capacitors. Phenomenon of partial discharges (PD),		
	internal and surface discharges, effects of PD, equivalent circuit of PD		
	phenomenon, measurement of apparent charge. PD detection - straight detection		
	method, wide band and narrow band detection circuits. Bridge detection method,		
	calibration of PD detectors		

- 'High Voltage Engineering Fundamentals' by E. Kuffel& W.S. Zaengl, Pergamon Press, 1992
- 2. 'High Voltage Engineering' by M.S. Naidu & V. Kamaraju, Tata Mc-Graw Hill, 2002
- 3. 'High Voltage Engineering' by C.L. Wadhwa, New Age, 2007
- 4. 'High Voltage Engineering' by E. Kuffel& Abdullah

Term Work:

It will consist of a record of at least eight experiment from the following based on the prescribed Syllabus:

- 1. Simulation study of voltage doubler circuits using PSpice.
- 2. Simulation study of impulse voltage generation circuits using PSpice.
- 3. Experimental study of HVAC generation.
- 4. Verification of Paschen's law.
- 5. Experimental study of Greinacher voltage doubler.
- 6. Experimental study of impulse voltage generation.
- 7. Breakdown test of insulating oil using Oil Test Kit.
- 8. Break down test of hardboard insulation plate
- 9. PD measurement for needle-plane electrode system.

- 10. To observe the corona using horn gap apparatus.
- 11. Plane to plane test for breakdown of air.
- 12. Hemisphere to plane test for breakdown of air.
- 13. Point to plane test for breakdown of air.
- 14. Study of tesla coil.

Practical Examination:

EE409B P	LC and S	SCADA		
Teaching Sc	heme :		Examination Scheme:	
Lectures		3 Hrs/ Week	Theory:	
Tutorials		Mid Term:30 Marks		
Practical		2 Hrs/Week	End Sem. Exam :70 Ma	ırks
Credits (Th)		3	Credits(P)	1
Prerequisite	s Courses:			
1	Electrical	Machines, Power electro	onics & Control System	
Course Obje	ective:			
1	To unders	stand the role of industria	al automation for differen	t processes
2	To learn t	he application of PLC ar	nd SCADA based system	in process control.
3		· · ·	programmed the PLCs f	
4			h avenues in the field of a	automation.
Course Outo		dents' will be able to:		
1		knowledge of automatic		
2		basics and working prine	*	
3	Know the basics of PLC and ladder diagram programming.			
4	Design the automation system for fast and value added quality product for economic growth through technological development			
5	Design and conduct practical in realistic constrain on motors such that it is			
	applicable in manufacturing, testing and maintenance field.			
6	Solve engineering solution for fast growing industrial sector with reliable			
	atomized system using PLC and SCADA system.			
Syllabus :				
Unit 1		Automation:		(06 Hours)
			tomation, Feedback and	•
	Hierarchical levels of automation, introduction to plant automation.			
Unit 2	0	mable Logic Controller		(06 Hours)
			ple along with block	
	Programming languages, basic instruction for programming like bit, Arithmetic			
	file and Mathematical. Demonstration of PLC functioning and development of ladder for sequencing of motors, tank level control, ON-OFF temperature control.			
11.4.2		<u> </u>		A
Unit 3		ents and Systems of PL		(08 Hours)
			Power Supply and Prog ction, The Discrete inp	

	Analog input/output System, Logical Sensors, Logical Actuators.			
Unit 4	PLC PROGRAMMING : (08 Hours)			
	Introduction to Programming Languages, ladder diagram elements, ladder diagram			
	examples, programmable controllers: relay sequencer, programmable controllers,			
	programmable controller operation, programming, advanced features, ladder			
	diagrams and programming for some typical examples of process control using			
	ABB PLC, Timers and Counters			
Unit 5	Industrial PLC- ABB, GE Fanuc and Siemens make PLC: (08 Hours)			
	Introduction and programming of Allen Bradely make Micrologix1200c and 1100			
	PLC, siemens make PLC			
	Supervisory Control And Data Acquisition(SCADA): (06			
Unit 6	Hours)Introduction to supervisory control and data acquisition (SCADA) as			
	applied to process control systems: Introduction to various SCADA packages,			
	study of RSVIEW32 (AB make package) development of mimics using			
	RSVIEW32 SCADA package, Study of iFix SCADA package, WinCC.			
Unit 7	Use of SCADA in Power Systems, Concept of Load dispatch, Role of Energy			
	Management System applications in Power Management, Indian load dispatch			
	structure			

1. Gary Dunning, "Introduction to Programmable Logic Controllers" Second Edition, Thomson Delmar learning, 2002.

2. C. D. Johnson, "Process Control Instrumentation Technology" Seventh Edition, Pearson Education, New Delhi 2003.

3. B. G. Liptak,"Instrument Engineers Handbook" (Edition) Vol-II and III, Chilton book Company.

4. Technical Manual – Yokogoawa, centum VP.

5. Webb J. W. and Ronald A. Reis "Programmable Controllers: Principles and Applications", Prentice Hall of India Pvt. Ltd. Fifth Edition, 2005.

6. John R. Hackworth and Frederick D. Hackworth "Programmable Logic Controllers", Jr. Third India Reprint 2005.

7. Parr A., Newnes, "Programmable Controllers: An Engineer's Guide", Butterwoth-Heinmen Ltd. 1993.

8. C. D. Johnson, "Microprocessor based Process Control", Prentice Hall International Edition.

9. Mini Thomas and John Douglas McDonald "Power System SCADA and Smart Grids" CRC Press

Term Work

Term work shall consist of at least six to eight assignment/tutorials/practical based on above syllabus. Some of the experiments may be from the following list:-

1. Study of AB Micrologix 1200c and 1100 PLC.

- 2. Development of simple ladder diagrams like AND/OR gate.
- 3. Developments of ladder diagram for the controlling motor operation.
- 4. Development of ladder diagram and simulation for the level control system.
- 5. Development of ladder diagram for bottling plant.

6. Study of software package RSVIEW32 (AB make) for SCADA.

- 7. Development of mimic diagram for a particular process using SCADA software.
- 8. Study of Hybrid controller control logix (AB MAKE).
- 9. Development of programs for control of processes using Hybrid controller.
- 10. Study of Yokogowa Centum VP.
- 11. Development of FBD programs on Centum VP for ON/OFF control.
- 12. Development of FBD programs on Centum VP for simple process control applications.
- 13. Visit to Load Dispatch Centre at ALDC, Nagpur or SLDC Kalwa, Mumbai

Practical Examination:

EE409 C Artificial Neural Networks and Deep Learning				
Teaching Scheme :		Examination Scheme:		
Lectures 4 Hrs/ Week		Theory:		
Tutorials -			Mid Term:30 Marks	
Practical			End Sem. Exam :70 Ma	urks
Credits (Th)		4	Credits(P)	0
Prerequisite	s Courses			
1		lgebra, Matrix Calculu	s, Feedback Control S	ystems, Digital Signal
	Processin	g		
Course Obje				
1		nding of basic concepts o		orks and Architectures.
2		ion to different training a		
3	Understanding the applications of ANN			
4	Understanding the concept of Deep Learning			
	ourse Outcomes:Students' will be able to:			
1	Understand and explain the basic concepts of Artificial Neural Networks.			
2	Analyse different ANN architectures.			
3	Understand and analyse the different training algorithms.			
4	Design and develop ANN applications in real world pattern recognition problems.			
5	Understand about Deep Learning Concepts.			
Syllabus :	I			
Unit 1		tion to Neural Network	· · · · · · · · · · · · · · · · · · ·	
		l perspective, the biol		
		architecture, Perceptron architecture, Hamming Network, Linear Vector Spaces,		
	Linear Dependence, Inner Product, Norm, Orthogonality			
Unit 2	Linear Transformations and Performance Surface Optimization for Neural			
	Networks: (08 Hours)			
	Linear Transformations, Matrix Representations, Change of Basis, Eigenvalues and Eigenvectors, Performance Surfaces and Optimum Points, Taylor Series,			
		al Derivatives, Minima,	•	1
		s, Performance Optimiz	Lation, Steepest Descer	in, mewion's method,
	Conjugat	e Gradient		

Unit 3	Windrow-Hoff and Backpropagation: (07 Hours)				
	Windrow-Hoff, ADALINE Network, MSE, LMS algorithm, Multilayer				
	Perceptron, Pattern Classification, Back propagation algorithm. Performance				
	Index, Chain Rule, Batch vs. Incremental Training, Convergence				
Unit 4	Variations on Backpropagation and Generalization: (07 Hours)				
	Drawbacks, Heuristic Modifications, Numerical Optimization Techniques,				
	Generalization, Methods for improving Generalization: Estimation of Error, Early				
	stopping, Regularization, Bayesian Analysis, Relationship between early stopping				
	and regularization				
Unit 5	Associative Learning, Competitive Networks and Radial Basis Networks: (06				
	Hours)				
	Associative Learning, Unsupervised Hebb Rule, Simple Recognition Network,				
	Instar Rule, Simple Recall Network, Outstar Rule, Competitive Networks,				
	Hamming Network, Competitive Layer, Competitive rule in biology Self-				
	organizing Feature Maps, Learning Vector Quantization, Radial Basis Function				
	Networks, Training RBFN				
Unit 6	Understanding of Deep Learning: (06 Hours)				
	Restricted Boltzmann machine, Auto-encoder, Convolutional Neural Networks.				

- 1. Martin T. Hagan, Howard B. Demuth, Mark Hudson Beale, Orlando De Jesus, "Neural Network Design", 2nd Editon.
- Hinton, Geoffrey. "A practical guide to training restricted Boltzmann machines." Momentum 9.1 (2010): 926.Volume 7700 of the series Lecture Notes in Computer Science pp 599-619.
- 3. Le, Quoc V. "A Tutorial on Deep Learning Part 1: Nonlinear Classifiers and The Backpropagation Algorithm." (2015).
- 4. Le, Quoc V. "A Tutorial on Deep Learning Part 2: Autoencoders, Convolutional Neural Networks and Recurrent Neural Networks." (2015).
- 5. Simon Haykin, "Neural Networks: A Comprehensive Foundation", 2nd Edition, PearsonEducation.
- 6. Simon Haykin, "Neural Network and Learning Machines", 3rd Edition, Pearson Education.
- 7. Jacek Zurada, "Introduction to Artificial Neural Network", Jaico Publishing House India

SEMESTER- VIII (STRUCTURE A)

Elective V

EE402A I	TVDC an	DI FACTS		
Teaching Sc			Examination Scheme:	
Lectures 4 Hrs/ Week		Theory:		
Tutorials			Mid Term:30 Marks	
Practical			End Sem. Exam :70 Marks	
Credits (Th)		4	Credits(P)	
Prerequisite	s Courses:			
1		stems, Power Electronic	s	
Course Obj	ective:	,		
1		se the operation of shunt	and series compensators	
2			controllers to improve A	C Transmission
	-	y and Stability	-	
3			nd working of HVDC & EHVA	AC systems
4			erstand the different protection	
		c filters for HVDC Syste		
Course Out	comes: At	the end of the course st	udents' will be able to:	
1	Understau	nd the power system ope	ration and management.	
2	Differentiate between EHVAC and HVDC systems and their suitability in case of			
	power system installation.			
3	Understand the technical and economic considerations of both EHVAC and			
		HVDC systems.		
4	Analyse various methods for Harmonic elimination.			
5	Design various Reactive Power compensation schemes for AC systems.			
6	Apply the concepts to electrical power transmission systems.			
Syllabus :				
Unit 1	Introduc			(08 Hours)
		1	ission: Constitution of EHVA	
			projects in India and abroad	
	advantages of HVDC transmission over EHVAC, Layout of HVDC station.			
Unit 2		trol and Protection:	(10 Hours)	1 9
			asic means of control, Power 1	,
	-	-	nction Angle control, Constant	
		-	verters short circuit on a recti	
			otection of HVDC system, d. o	c. rectors, damper
II:4 3			nd overvoltage protection.	
Unit 3		power compensation:	manastion reactive Dower h	(06 Hours)
			npensation reactive Power ba	
		ent of converters.	dvance and extinction angle of	In reactive power
Unit 4	-	ics and Filters and MT	DC systems	(08 Hours)
		tes and Phiers and MIT		(00 110013)

	Characteristic and uncharacteristic harmonics causes, consequences and suppression troubles caused by harmonics, Definitions used in Harmonic distortion calculations, Harmonic filters: Types, Location, Criteria for adequacy, MTDC systems: Introduction, Potential Applications of MTDC Systems, Types of MTDC Systems, Control and Protection of MTDC Systems			
Unit 5	General considerations of FACTS (08 Hours)			
	FACTS Concept and General system Considerations, Limits of line loading capability(St. Clair curve of EHVAC Line loading), Power Flow and Dynamic Stability considerations of a transmission interconnection, Significance of			
	controllable parameters, Comparison between HVDC and EHVAC(FACTS)			
Unit 6	Shunt, series and combined FACTS controllers:(08 Hours)Shunt Controllers: Operation of SVC and STATCOM, Operation of TSC, TCR, STATCOM - Comparison between SVC and STATCOM, Series Controllers: GCSC, TSSC, TCSC and SSSC operation and control, Sub-synchronous Resonance (SSR) and its damping, Combined series-shunt controllers: UPFC and IPFC			

- 1. "HVDC Power Transmission System" K.R. Padiyar, Wiley Eastern Ltd., New Delhi.
- 2. "EHVAC and HVDC Transmission" S. Rao, Khanna Pub. Delhi.
- 3. Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems, IEEE Press, 2000 by N.G. Hingorani & L. Gyugyi

EE402B Power System Restructuring and Deregulation				
Teaching Scheme :			Examination Scheme:	
Lectures		4 Hrs/ Week	Theory:	
Tutorials			Mid Term:30 Marks	
Practical			End Sem. Exam :70 Marks	
Credits (Th)		4	Credits(P)	
Prerequisite	s Courses:			
1	Power Sy	stem Engineering, P	ower System Analysis and Stability	
Course Obje	ective:			
1	To educat	te about the process	of restructuring of Power System	
2	To analyse the concept of location marginal pricing and transmission rights			
3	To illustrate in-depth understanding of operation of deregulated electricity market			
	system			
4	To gain knowledge of fundamental concept of congestion management			
Course Outcomes:Students' will be able to:				
1	Describe	the process of restru-	cturing of power system	
2	Identify various operation of restructured power system			
3	Analyse pricing and transmission rights of Electricity.			
4	Analyse various cost components in Generation, transmission, distribution sector			
	and tariff			
Syllabus :	Syllabus :			

Unit 1	Power Scenario in India : (06 Hrs)
	Institutional structure before reforms. Roles of various key entities in India.
	Necessity of Deregulation or Restructuring. RC Act 1998 and Electricity Act 2003
	and its implications for Restructuring & Deregulation. Institutional structure
	during reform. National Energy policy. Introduction to Energy Exchange and
	trading of Renewable Energy Credits and Carbon Credits.
Unit 2	Economics of Power Sector: (06 Hrs)
Cint 2	Introduction to various concepts such as capital cost, debt and equity, depreciation,
	fixed and variable costs, working capital, profitability indices etc. Typical cost
	components of utilities such as return in equity, depreciation, interest and finance
	charges, O and M expenses etc. Key Indices for assessment of utility
	performances. Principles of Tariff setting, Phases of Tariff determination,
	consumer tariff & non-price issues.
Unit 3	Power Sector Regulation : (04 Hrs)
	Regulatory process in India, types and methods of Regulation, cost plus,
	performance-basedregulation, price cap, revenue cap regulation, rate of return
	regulation, benchmarking or yardstick regulation. Role of regulatory commission.
	Considerations of socio economic aspects in regulation.
Unit 4	Introduction to Power Sector Restructuring : (06 Hrs)
	Introduction, models based on energy trading or structural models – monopoly,
	single buyer, wholesale competition, retail competition. Models based on
	contractual arrangements – pool model, bilateral dispatch, pool and bilateral
	trades, multilateral trades, ownership models, ISO models. Competition for the
	market vs competition in the market, International experience
	With electricity reform – Latin America, Nordic Pool, UK, USA, China and India.
	California Energy Crisis.
Unit 5	Electricity Markets:(06 Hrs)
	Trading – electricity market places, rules that govern electricity markets,
	peculiarity of electricity as a commodity, various models of trading arrangements
	- integrated tradingmodel, wheeling trading model, decentralized trading model.
	Various electricity markets such as spot, day ahead, forward, future options,
	reserve, and ancillary services market. Market operation, settlement process,
	Market Clearing Price (MCP), Market power, market efficiency. Spot, dynamic
	and locational pricing.
	Overview of Electricity Market structure in India, power trending exchanges (Ref
TI	: NLDC website)
Unit 6	Transmission Pricing & Transmission Congestion Issues:(06 Hrs)Cost components of transmission system, Transmission pricing methods. Cost of
	transmissionservices, physical transmission rights. Pricing and related issues.
	Congestion in power network, reasons for congestion, classification of congestion
	management, useful definitions. Methods of congestion management, Locational
	marginal Pricing (LMR), Firm Transmission Right (FTR).
	Availability based Tariff (ABT) in India.

- 1. Lei Lee Lai, "Power System Restructuring and Deregulation" John Wiley and Sons UK, 2001
- 2. "Know Your Power:, A citizen Primer on the electricity Sector, Prayas Energy Group, Pune
- 3. Mohammad Shahidehpour, Hatim Yamin, Zuyi Li, "Market operations in Electric Power System" A John Wiley & Sons Publications
- 4. Kankar Bhattacharya, Math Bollen, Jaap E. Daalder, "Operation of Restructured Power Systems" Springer US, 2012
- 5. H. Lee Willis, Lorrin Philipson, "Understanding Electric Utilities and De-regulation" CRC Press, 31-Oct-2014.

Websites:

- 1. Indian energy exchange: <u>http://www.iexindia.com/</u>
- 2. Indian power India limited: <u>http://www.powerexindia.com/</u>
- 3. Indian Electricity Regulations: <u>http://www.cercind.gov.in/</u>

EE402C S	EE402C Smart Electric Grid				
Teaching Sc	cheme :		Examination Scheme:		
Lectures		4 Hrs/ Week	Theory:		
Tutorials			Mid Term:30 Marks		
Practical			End Sem. Exam :70 Marks		
Credits (Th)		4	Credits(P)		
Course Obj	ective:				
1			hy Smart Grids are critical to the		
	Sustainab	ility and growth of India	's electricity network.		
2	To enable	e a shift from today's situ	ation to the intelligent, profitable, efficient,		
	reliable				
3		-	rid required to meet the challenges of the future		
	with minimum impact to the environment.				
Course Outcomes:Students' will be able to:					
1	Understand what is the concept of Smart Grid				
2	Understand working of main components involved in Smart Electric Grid				
3	Analyse how electricity problem can be solved by Smart Electric Grid technology				
4		Observe and find solution on power quality issues on Smart Electric Grid			
5	Know ab	Know about importance of communication technology in smart Electric Grid			
6	Understand what is the concept of Smart Grid				
Syllabus :					
Unit 1	Introduction: (06 Hours)				
	What is c	driving the move toward	s Smart Grids globally and in India? What is a		
	Smart G	rid? Overview of how In	ndian power market is organized, operated and		
	challenge	s being faced, Over	view of how the Indian GENERATION,		
	TRANSMISSION and DISTRIBUTION businessis operated and controlled and				
		some of the challenges being faced. Role of Wind and Solar generation in power			
		system operations, Importance of Load Management			
Unit 2	Smart G	rid Technologies: (10 H	ours)		

	Introduction to Smart Meters, Real Time Pricing, Smart Appliances, Automatic MeterReading(AMR), Outage Management System(OMS), Plug in Hybrid Electric Vehicles(PHEV), Vehicle to Grid, Smart Sensors, Home & Building Automation, Phase Shifting Transformers. Smart Substations, Substation Automation, Feeder Automation. Geographic InformationSystem(GIS), Intelligent Electronic Devices(IED) & their application for monitoring &protection, Smart storage like Battery, SMES, Pumped Hydro, Compressed Air Energy Storage,Wide Area Measurement System(WAMS), Phase Measurement Unit(PMU).
Unit 3	Electrifying rural India through Smart grid: (06 Hours) Electrifying India's rural community and the challenges being faced.(Developing technology andsystems that will enable smarter rural electrification, Financing programmes, Virtual powerplants, Solar power, Geothermic power), Smart Utilities (case studies), Presentation on the Smart Grid Maturity Model (SGMM), Architecture for smart grids.
Unit 4	Power Quality Issues in Smart Grid: (06 Hours)Power Quality & EMC in Smart Grid, Power Quality issues of Grid connectedRenewableEnergy Sources, Power Quality Conditioners for Smart Grid, Webbased Power Qualitymonitoring, Power Quality Audit.
Unit 5	Information and Communication Technology for Smart Grid: (06 Hours) Advanced Metering Infrastructure (AMI), Home Area Network (HAN), Neighbourhood AreaNetwork (NAN), Wide Area Network (WAN). Bluetooth, ZigBee, GPS, Wi-Fi, Wi-Max basedcommunication, Wireless Mesh Network, Basics of CLOUD Computing & Cyber Security for Smart Grid. Broadband over Power line (BPL). IP based protocols.

1. Ali Keyhani, Mohammad N. Marwali, Min Dai "Integration of Green and RenewableEnergy in Electric Power Systems", Wiley

2. Clark W. Gellings, "The Smart Grid: Enabling Energy Efficiency and Demand Response", CRC Press

3. Peter S. Fox Penner, "Smart Power: Climate Changes, the Smart Grid, and the Future of Electric Utilities", Island Press; 1 edition 8 Jun 2010

4. S. Chowdhury, S. P. Chowdhury, P. Crossley, "Microgrids and Active Distribution Networks." Institution of Engineering and Technology, 30 Jun 2009

5. Gil Masters, Renewable and Efficient Electric Power System, Wiley-IEEE Press, 2004.

6. A.G. Phadke and J.S. Thorp, Synchronized Phasor Measurements and their Applications, Springer Edition, 2010.

7. Grid wise Alliance website http://www.gridwise.org/

Elective VI

EE404A P	ower Quality and Harmon	ics			
Teaching Sc	heme :	Examination Scheme:			
Lectures	3 Hrs/ Week	Theory:			
Tutorials		Mid Term:30 Marks			
Practical	02 Hrs/ Week	End Sem. Exam :70 Marks			
Credits (Th)	3	Credits(P) 1			
Prerequisite	s Courses:	· · · · · · · · · · · · · · · · · · ·			
1	Power Electronics, Power Syste	em			
Course Obj	ective:				
1	Understand electrical power qua	ality problems.			
2	Understand voltage sag and swe	ell problem.			
3	Understand harmonic problem i	n system.			
4	Overcome harmonics in system	by designing harmonic filters.			
5		y measuring instruments /devices.			
6	Develop ability for effective me	easurement of power quality problems.			
Course Out	comes:Students' will be able to:				
1	Understand definitions of powe	r quality, power quality standards.			
2	Distinguish between voltage sag and swell.				
3	Identify power quality disturbances & classify power quality problems.				
4	Understand the methods to mitigate harmonics in system.				
5	Design Active and Passive filters.				
6	Know test locations and duration for power quality measurements.				
Syllabus :					
Unit 1	Power Quality-Introduction:(06 Hours)				
	Introduction, Electromagnetic phenomena-Transients, Long and short duration				
	voltage variations, wave form distortion.				
Unit 2	Voltage Sag and Interruption				
		nt Transformers, UPS systems Voltage Tolerance			
	envelops of CBEMA & ITIC, R				
Unit 3	Power Quality Monitoring:	(06 Hours)			
		d their use, wiring and grounding: Typical wiring			
		tions with proper grounding practices and use of			
	signal reference grid.				
Unit 4		Fundamentals of Harmonics:(06 Hours)			
	Representation characteristic harmonics, Harmonic indices Harmonic sources-				
	6&12 pulse related harmonics, harmonic effects on power apparatus and on				
	measurements, interference with				
Unit 5	Harmonic Elimination:	(06 Hours)			
		Design considerations and illustrative examples,			
	• -	and voltage source active filters, shunt, series &			
	Hybrid active filters.				

Unit 6	Harmonic Measurements:	(06 Hours)
	Analysis and Digital methods, presentation of Harmonic data,	Response and
	standards for their limitation.	

1. "Electrical Power Systems Quality" by Roger C. Dugan, Mark F. Mc Granton & H. Wayne Beety – McGraw Hill.

2." Power System harmonics" by J. Arillaga, DA Bradley & PS Bodger – John Wiley Sons

3. "Power System Harmonics - Fundamentals, Analysis & filter Design" by George J. Wakileh – Springel.

4. "Uninterruptible Power Supplies and Active Filters" by Ali Emadi, Abdolhorein Nasiri & Stoyon B. Bekiarov, CRC Press.

5. "Electric Power Distribution Reliability" 2nd Edition Richard E. Brown, CRC Press.

Term Work:

At least six experiments based on the curriculum from the following list should be performed.

1. Study of Electrical power quality as per IEEE /IEC standard.

2. Interpret IEEE /IEC standard for recommended practices and requirements for Harmonic control in electrical power systems.

3.Simulation of voltage sag and swell by using MATLAB SIMULINK.

4. Analyze the performance of a three phase(star and delta) balanced and unbalanced system supplying R-L loadsby plotting phase currents, real, reactive and apparent power and power factor.

5. Measurement of harmonics using power Analyzer.

6.Study of different type of filters for harmonic elimination (using MiPower).

7. Analyze the harmonic spectrum of a single phase system with sinusoidal voltage source supplying a non-linear (rectifier) load.

Practical Examination:

EE404B Embedded System Design				
Teaching Scheme :		Examination Scheme:		
Lectures 3 Hrs/ Week		Theory:		
Tutorials	Tutorials Mid Term:30 Marks			
Practical 2 Hrs/ Week End Sem. Exam :70		End Sem. Exam :70 Ma	arks	
Credits (Th) 3 Credits(P) 1		1		
Prerequisites Courses:				
1	Digital Electronics, Microprocessors, Microcontrollers, C programming			
Course Objective:				
1	Study of RISC architecture.			
2	Understanding and usage of ARM development tools.			

2	The densities of the second second densities define an experimental second		
3	Understanding linux kernel and device driver programming.		
4	Study, design and develop various embedded applications using ARM processor.		
-	comes: Students will be able to:		
$\frac{1}{2}$	Understanding of RISC architecture of processor, its features and applications.		
	Hands on usage of IDE of processors and algorithm development.		
3	To understand concept of OS, RTOS and application perspectives.		
4 C-11-h	Study, design, analyze and prototype various embedded systems.		
Syllabus : Unit 1	Introduction to Embedded Systems: (08 Hours)		
	Embedded system definition, different scales of embedded systems, design with small scale embedded systems, CISC and RISC architecture, 32 bit Microcontrollers: Internal Block Diagram, CPU, ALU, address bus, data bus, control signals, Working Registers, SFRs, Clock and Reset circuits, Stack and use		
	of Stack Pointer, Program Counter. I/O Ports, Memory structure, Data Memory, Program Memory, Architecture, Instruction set, different addressing modes, I/O ports, TIMER2 and interrupts, UART, External Interrupts and Timers.		
Unit 2	ARM processor: (06 Hours) Architecture, Processor modes, Register organization, Exceptions and its handling, Memory and memory management, ARM and THUMB instruction sets, addressing modes, ARM floating point architecture. Real-Time system (RTOS) concepts, Kernel structure, Task management, Inter task communication &synchronization, Understanding Device Drivers.		
Unit 3	Assembly language programming and hardware interfacing techniques:		
	(06 Hours) Introduction to development tools like cross assembler, simulator, HLL cross compilers and in circuit emulators for system development. On-chip interfaces: Digital I/O pins, ADC, DAC, timers, counters, PWM, watchdog timers, LCD, LEDs, seven segment displays, I2C E2 PROM and their applications. External Interfaces: Stepper motor interfacing, DC Motor interfacing, sensor interfacing, SPI, CAN Protocols, USB protocol, Blue-tooth protocol. Writing application level programs for these interfaces using High level languages.		
Unit 4	Introduction to Real-Time /Embedded Operating Systems: (06 Hours)		
	Real Time Scheduling, Inter process communication, Programming paradigms: FSM and concurrent process models, Performance Metrics of RTOS, Linux &RTLinux Internals, Programming in Linux &RTLinux, Configuring & Compiling RTLinux, Overview of other RTOS.		
Unit 5	Advanced Embedded programming:(08 Hours)		
	Advanced C programming, Function calls, passing / returning values, Advance Pointers and Arrays, Hashing and Bitwise operation, Dynamic memory allocation, Introduction to OS services, Process, memory & I/O management, Socket and Thread programming, Data structure, Creating a linked list, linked stack and queue, double and circular linked list, sparse matrices, binary tree, Interrupt handling in C, Code optimization issues in Embedded C.		
Unit 6	Introduction to Raspberry Pi: (06 Hours)		
	Operational Basics, Hardware Dependencies for running OS n minimalist Setup, Getting started with Linux Shell scripting, Basics of kernel based hardware		

control, Device control from shell terminal, Remote access to device.

Text /Reference Books:

- 1. Frank Vahid and Tony Givargis, Embedded system design: A unified hardware/software introduction, John Wiley and sons, 2002
- 2. Raj Kamal, "Embedded Systems" TATA McGraw Hill Edition.
- 3. Sloss Andrew N, Symes Dominic, Wright Chris; ARM System Developer's Guide: Designing and Optimizing; Morgan Kaufman Publication.
- 4. An Implementation guide to Real Time Programming David L. Ripps, Yourdon Press, 1990.
- 5. D. E. Simon, An embedded software primer, Pearson Education, 2002
- 6. D. W. Lewis, Fundamentals of embedded software, Pearson Education
- 7. J. W. S. Liu, Real time systems, Pearson Education
- 8. Silberchatz, Galvin, Gagne, Operating system concepts, John Wiley
- 9. Dr. K. V. K. K. Prasad, "Embedded / Real Time Systems: Concept, Design & Programming", Dreamtech Press.
- 10. Technical references on <u>www.arm.com</u>

Term Work:

The term work shall consist of Embedded "C" programming for ARM processor using Keil Cross Compiler or SCARM compiler. Minimum 8 of the following Interfacings of following with LPC2148 are required along with some experiments on Raspberry Pi.

- 1. Digital input output.
- 2. Flashing LEDs.
- 3. 7-segment display.
- 4. LCD display.
- 5. Use of ADC for voltage measurement.
- 6. Waveform generation using DAC.
- 7. Sensor interfacing.
- 8. RTC interfacing.
- 9. E2PROM interfacing.
- 10. Stepper motor
- 11. DC Motor

Practical Examination:

EE404C Advanced Control System			
Teaching Scheme :Examination Scheme:			
Lectures	3 Hrs/ Week	Theory:	
Tutorials		Mid Term:30 Marks	
Practical	2 Hrs/Week	End Sem. Exam :70 Marks	
Credits (Th)	3	Credits(P)	1

Prerequisit	tes Courses:
1	Feedback Control System, Control system design
Course Ob	
1	Apply advance control techniques to electrical systems
2	Explain Control system design by frequency response.
3	Explain design of nonlinear control system using describing function concepts and phase plane techniques.
4	Design optimal controller, Intelligent Controllers
5	To know basic mathematical modelling of system
Course Ou	tcomes:Students' will be able to:
1	Understand the concepts of nonlinear control system
2	Understand the concepts of advance control theory using state-feedback approach
3	Compare and analyze the classical control system with advance control system.
3	Develop advanced controllers to the existing system using advanced control design techniques.
4	Formulate optimal control problem.
5	Understand process control system.
6	Develop system modelling using stochastic process.
Syllabus :	
Unit 1	Non-linear Control system:(06 Hours)
	Introduction to non-linear systems, Describing function analysis, phase plane
	analysis, bang bang control system, Lyapunovs stability analysis.
Unit 2	State feedback control system::(06 Hours)
	Concepts of state, state variable, state model, state models for linear continuous
	time functions, diagonalization of transfer function, solution of state equations, physical systems and state assignment concept of controllability & observability,
T T 1 / 0	State feedback by pole placement, observers, Lag and Lead compensator design.
Unit 3	Robust control system: (06 Hours)
	Robust control systems and system sensitivity, Analysis of robustness, system
TT. A	with uncertain parameters, design of robust control system.
Unit 4	Optimal Control System: (06 Hours)
	Introduction to Adaptive control
Unit 5	Introduction to Adaptive control (06 Hours)
Unit 5	Process control system: (06 Hours) Introduction to process control, various control configuration such as:
	feedforward, cascaded etc. PID controller and implementation
Unit 6	System Modeling (06 Hours)
UIII U	Introduction, types of modelling, modelling of time-varying, distributed,
	stochastic, nonlinear, discrete event and hybrid systems.
	stornastie, noniniear, alsorete event and nyoria systems.

1. S. Sastry and M. Bodson, "Adaptive Control: Stability, Convergence, and Robustness", Prentice-Hall, 1989.

- 2. Gopal. M., "Control Systems: Principles and Design", Tata McGraw-Hill, 1997.
- 3. Kuo, B.C., "Automatic Control System", Prentice Hall, sixth edition, 1993.
- 4. Ogata, K., "Modern Control Engineering", Prentice Hall, second edition, 1991.

5. Nagrath& Gopal, "Modern Control Engineering", New Age International.

Term Work:

At least six experiments based on the curriculum from the following list should be performed.

1. To design and study the effect of different Compensation for given system using MATLAB

2. To design and study the effect of different Compensation for given system using experimental kit

3. MATLAB program for state space analysis to transfer function, transfer function to state space analysis, controllability, observability, diagonalization of the system

4. Study of magnetic levitation using kit

5. To study transfer function of any one physical system

6. To study describing function analysis using MATLAB

7. To study 2nd order pole placement controller using MATLB

8. Experimentally evaluate the closed loop performance of the control setup for different P and PI controller settings and compare with simulation results.

EE406: Seminar on Industrial Training				
Teaching Scheme :		Examination Sch	Examination Scheme:	
Lectures		Theory:		
Tutorials		Mid Term:30 Mar	Mid Term:30 Marks	
Practical	2 Hrs / Week	End Sem. Exam :7	End Sem. Exam :70 Marks	
Credits (Th)		Credits(P)	1	
Students has to deliver seminar on industrial training along with submission of its report				
completed by them in summer vacation				

EE408 : Project (In house)				
Teaching Scheme :		Examination Scheme:		
Lectures		Theory:		
Tutorials		Mid Term: 30 Marks		
Practical	16 Hrs / Week	End Sem. Exam :70 Marks		
Credits (Th)		Credits(P)	8	

SEMESTER VIII (STRUCTURE B)

EE406: Seminar on Industrial Training				
Teaching Scheme : Examination Scheme:				
Lectures		Theory:		
Tutorials		Mid Term:30 Mar	Mid Term: 30 Marks	
Practical	2 Hrs / Week	End Sem. Exam :	End Sem. Exam :70 Marks	
Credits (Th)		Credits(P)	1	
Students has to deliver seminar on industrial training along with submission of its report				
completed by them in summer vacation				

EE410: Project (Industry / Research Institute)			
Examination Scheme:			
Lectures		Theory:	
Tutorials		Mid Term:30 Marks	
Practical	32 Hrs / Week	End Sem. Exam :70 Marks	
Credits (Th)		Credits(P)	16