Course of Study Choice Based Credit System T. Y. B. Tech. (Electrical Engineering) (Effective from Academic Year 2016-17)

Department of Electrical Engineering, SGGS Institute of Engineering and Technology, Vishnupuri, Nanded-431606 (MS), India

(An autonomous institute established by Govt. of Maharashtra)

SGGS Institute of Engineering and Technology, Vishnupuri, Nanded Department of Electrical Engineering Choice Based Credit System

T. Y. B. Tech. (Electrical Engineering)

From Academic Year 2016-17

STRUCTURE

Semester-V							
Course	Name of the Course	Lectures	Tutorials	Practical	Credits		
Code							
EE301	Power System Analysis and Stability	4	-	2	5		
EE303	Feedback Control System	3	1	2	5		
EE305	Digital Signal Processing	3		2	4		
EE307	Microprocessors Fundamental and	3	-	2	4		
EE309	Flective-II	3		_	3		
EE311	Mini Project and Seminar-I	5		4	2		
	Sub Total	16	1	12	23		
	Semester-VI						
Course	Name of the Course	Lectures	Tutorials	Practical	Credits		
Code							
EE302	Microcontroller and Applications	3	-	2	4		
EE304	Control System Design	4	-	2	5		
EE306	Power Electronics	3	1	2	5		
EE308	Electromagnetic Fields	3	1	-	4		
EE310	Elective-III	3	-	-	3		
EE312	Mini Project and Seminar-II	-	_	4	2		
	Sub Total	16	2	10	23		
	Total	32	3	22	46		

Elective-II

EE309A-Power Plant Engineering EE309B-Renewable Energy Technologies EE309C-Electrical Installation and Design

Elective-III:

EE310A: Utilization of Energy and Management EE310B: Electrical Machine Analysis EE310C: Communication Engineering OPEN ELECTIVES: SEMESTER- V EEO 301: Renewable Energy Technologies. (L-3), (Pr-0) EEO 302: Power Plant Engineering. (L-3), (Pr-0) EEO 303: Electrical Installation and Design (Skill) (L-3), (Pr-0)

SEMESTER -VI

EEO 304: Advances in Solar Energy (L-3), (Pr-0)

Attendance Criteria: Students have to maintain 75% attendance in all the registered courses in a semester to be eligible for appearing examinations.

SEMESTER-V

EE301 Power System Analysis and Stability					
Teaching Sc	heme :		Examination Scheme:		
Lectures		4 Hrs/ Week	Theory:		
Tutorials			Mid Term: 30 Marks		
Practical		2 Hrs/Week	End Sem. Exam :70 Marks		
Credits (Th)		4	Credits(P) 1		
Prerequisite	s Courses				
1	Power Sy	stem Engineering, Elect	rical Machine-II		
Course Obj	ective:				
1	To under	stand the need of load flo	w and short circuit analysis		
2	To impa	rt knowledge of Load f	low Analysis, Short circuit studies and power		
	system st	ability			
3	To develo	op skills for performing s	tability studies		
4	To illustr	ate the automatic frequen	cy and voltage control strategies for single and		
	two area	case and analyse the effect	cts, knowing the necessity of generation control		
Course Out	comes: Stu	idents' will be able to:			
1	Summari	ze the use of different lo	ad flow analysis method and assess the power		
	system ur	nder symmetrical fault.			
2	Understand symmetrical components of network and analyze the power system				
2	under unbalanced fault.				
3	Evaluate the rotor angle, voltage stability and solve swing equation by variou				
1	Develop and simulate newer system in any evoilable software for load flow				
4	analysis				
5	Study an	Study and analyze stability of nower system when subjected to electrical or			
5	mechanical disturbance				
6	Produce	report of load flow ana	lysis and stability analysis of practical power		
0	system ne	etwork in software	ijsis and stability analysis of practical power		
Syllabus :	system				
Unit 1	Network	Representation and Po	wer Flow Analysis: (06 Hours)		
	Loop Equ	uations and Node Equation	ons, Bus admittance and bus impedance matrix,		
	network s	solution using matrix alge	ebra.		
	Load Flo	w Studies: Load flow	problem Bus classification, Nodal admittance		
	matrix, N	Network model formulat	ion and development of load flow equations.		
	Iterative	methods of solution a) G	auss Sidel method b) Newton Raphson method		
	c) Fast de	ecoupled method.			
Unit 2	Symmetr	rical Fault Analysis and	Components: (06 Hours)		
	Transient	in RL series circuits,	short circuit of synchronous machines, Short		
	Circuit o	f a loaded synchronous	machine, The bus impedance matrix in fault		
	calculatio	ons, selection of circ	uit breaker, Symmetrical Components of		
	Unsymme	etrical phasors and powe	r in terms of symmetrical components sequence		
	impedanc	es and sequence netwo	ork of unloaded alternators and other power		
	systems components network.				

Unit 3	Unsymmetrical Fault Analysis: (08Hours)
	Unsymmetrical faults on unloaded alternator and three phase power system with a)
	line to ground b) line to line c) double line to ground d) one conductor open fault
	e) Two conductor open fault, Simplified models of synchronous machines for
	transient analysis.
Unit 4	Power System Stability:(08 Hours)
	Introduction to Power system stability problem, Rotor dynamics, m/c
	representation, Swing equation, power angle equation for two m/c system, Steady
	state stability and transient state stability, equal area criterion for stability and its
	application. Numerical solution of swing equation, factors affecting transient
	stability, methods for improving stability of Power system.
Unit 5	Load Frequency Control: (06 Hours)
	Objectives, the line bias control, flat frequency control, supplementary control,
	Interconnected areas, two area three area systems, state variable model for single,
	of modern control theory Application of artificial intelligence ACC using
	Kalman methods
Unit 6	Automatic Generation Control: (06 Hours)
Chit U	AGC turbine generator models for real reactive powers and frequency control
	excitation systems, governor types and control, block schematics for alternator
	voltage regulator schemes and governors.
Text Books:	
1.	William Stevenson, "Elements of Power System Analysis", Tata McGraw-Hill
	$(2001), 4^{\text{m}}$ Edition.
2.	"Power System Analysis", I.J. Nagrath and D.P. Kothari, Tata McGraw Hill- Education (2007) 2 nd Edition
Reference B	ooks.
1	Hadi Sadat "Power System Analysis" Tata McGraw Hill Edition Conv 1999
2	O I Elgerd "Electrical energy systems theory: An introduction" Tata McGraw
2	Hill. edition 1999
3	A. R. Bergen and Vijay Vittal, "Power system analysis", (2nd edition), Pearson
	Education Asia, 2001
Term Work	: It will consist of a record of the following experiments based on the prescribed
syllabus.	
1.	Determination of sequence n/w of synchronous m/c.
2.	Determination of sequence n/w of Induction motor.
3.	Solution to load flow problem using GS, NR and FD method using software.
4.	Component analysis and component synthesis using various software tools.
5.	Fault analysis of various faults like LG, LLG and LL faults at least 3 sets of
6	sontware experiments.
0. 7	Four problems on stability using Equal area criteria.
/.	Four problems on stability using swing curve plot.
MATIAR S	bove set of computational work is to be carried preferably using software like
winter LAD, S	

Practical Ex	amination	1:			
The examina	tion will be	e of three hours duration	and will consist of an experiment based on te	rm-	
work and fol	lowed by a	n oral based on above sy	llabus.		
EE303 Fee	dback C	ontrol System			
Teaching Scheme : Examination Scheme:					
Lectures		3Hrs/ Week	Theory:		
Tutorials		1 Hrs/ Week	Mid Term:30 Marks		
Practical		2 Hrs/Week	End Sem. Exam :70 Marks		
Credits (Th)		4	Credits(P) 1		
Prerequisite	s Courses:				
1	Laplace 7	Fransform			
2	Fundame	ntals Circuit Theory			
Course Obje	ective:				
1	Introduct	ion to concepts of modell	ing of physical systems.		
2	Introduct	ion to time domain and fr	equency domain modelling.		
3	Analyse t	the system response in tin	ne domain and frequency domain.		
4	Understan	nd the state space concep	ts.		
<u> </u>	Understan	nd the concepts of stability	y and steady state errors.		
	A nalvao	laetromochanical system	a by mathematical modalling		
1	Analyse		s by mathematical modelling.		
	Analyse t	Analyse the systems in transfer function, state space modelling			
2	Determine transient and steady state behaviour of systems using standard test				
	signals.				
3	Analyse linear and non-linear systems for steady state errors, absolute stability and				
	relative stability.				
4	Identify and design a control system satisfying requirements.				
5	Evaluate the performance of control systems in time domain and frequency domain.				
6	Apply sta control st	ate space analysis conce rategies	ept different system and will able to devel	ope	
Syllabus :		6			
Unit 1	Basic concept, Modelling and representation of control system and Components: (06 Hours) Open and closed -loop systems. Laplace transform review, transfer function of electrical, mechanical, thermal, Hydraulic system with dead time elements, Electric circuit analog. Block diagram analysis and design of feedback systems, signal flow graph, mason's rule, signal flow graphs of state equation.				
Unit 2	Time Do State spa space to response additiona Time dom	main Analysis: ce representation, conve transfer function, time of first, second and gene l poles additional zeros, I nain solution of state equ	(07 Hou rting transfer function to state space and s response, poles, zero and system respon- eral second order system, system response v Laplace transform solution of state equations. ations.	rs) tate nse, vith	

Unit 3	Stability and Steady State Error: (08 Hours)
Omt 5	Concept of stability for linear systems. Absolute and relative stability Routh and
	Hurwitz criterion for stability and stability in state space steady state error for
	unity feedback systems & disturbances non unity feedback systems static error
	constants and system type steady state error specifications sensitivity steady
	state error for systems in state space
Unit 4	Root Locus Techniques: (06 Hours)
Omt 4	Definition of root locus Rules for plotting root loci Root contour stability
	analysis using root locus. Effect of addition of poles and zeros. Transient response
	design via gain adjustment. Root locus for positive feedback system, pole
	sensitivity.
Unit 5	Frequency Domain Analysis: (08 Hours)
	Frequency domain specification, Correlation between time and Frequency domain
	specifications, Bode plot, gain and phase margin, Effect of gain variation and
	addition of poles and zeros on Bode plot, Determination of transfer function from
	Bode plot, Concept of stability for linear systems, Absolute and relative stability,
	Routh stability criterion and its application in special cases. Nyquist stability
	criterion and stability margin, Polar plots.
Unit 6	State Space Concept:(06 Hours)
	Concept of state and state variable, state equations of linear time-invariant and
	continuous data system. Matrix representation of state equation, Conversion of
	state variable model to transfer function, Canonical form, companion form, Jordan
	Canonical form, Solution of state equations. Concept of controllability and
	observability, Eigen values and stability.
Text Books:	the second se
1.	Norman S. Nise, "Control System Engineering", John Wiley and sons, 2004, 4 th Edition.
2.	I.J. Nagrath and M. Gopal "Control System Engineering", Wiley Eastern Ltd. (3rd Edition), 2000.
Reference B	ooks:
1.	Franklin Powel, "Feedback Control Dynamic System", , Pearson Education, 2002, 5 th Edition.
2.	Dorf and Bishop, Adison Wesley Longm "Modern Control System", an, 1998, 8 th
	Edition.
3.	"Modern Control Engineering Eastern Economy", K. Ogata, Prentice Hall of
	India Pvt Ltd. 2002, 4th Edition.
4.	M. Gopal, "Control System- Principles and Design", (2nd Edition).2002
Term Work	: It will consist of a record of the following experiments based on the prescribed
syllabus.	
1.	Stability Analysis of First, Second and Higher order system using MATLAB
2.	Plotting Bode and Nyquist plot using MATLAB
3.	Plotting of root locus using MATLAB
4.	Calculation of state transition matrix, state X (t), Eigen values using MATLAB
5.	To evaluate the effect of pole and zero location upon the time response of first and
	second order systems using MATLAB.

6.	To evaluate the effect of additional poles and zeros upon the time response of					
	second order system					
7.	To convert the given state space equation into diagonal form using MATLAB and to determine stability of a system using MATLAB					
8.	To verify	the effect of open loop p	oles and zeros upon the shape of the root locus,			
	and to de	sign a system by varying	gain with the help of root locus in MATLAB.			
Note: The	computatio	onal work is to be car	ried preferably by using software tools like			
MATLAB, S	cilab.					
Practical Ex	amination	1:				
The examina	tion will be	e of three hours duration	and will consist of an experiment based on term-			
work and foll	lowed by a	n oral based on above syl	labus.			
E305 Digit	al Signal	Processing				
Teaching Sc	heme :	0	Examination Scheme:			
Lectures		3 Hrs/ Week	Theory:			
Tutorials			Mid Term:30 Marks			
Practical		2 Hrs/Week	End Sem. Exam :70 Marks			
Credits (Th)		4	Credits(P) 1			
Prerequisite	s Courses					
1	Signals an	nd Systems				
Course Obje	ective:					
1	To elabor	rate Sampling theorem, cl	assification of discrete signals and systems			
2	To analyz	ze DT signals with Z trans	sform, inverse Z transform and DTFT			
3	To describe Frequency response of LTI system					
4	To introduce Digital filters and analyze the response					
5	To demonstrate DSP Applications in electrical engineering					
Course Outo	comes: Stu	idents' will be able to:				
1	Sample and reconstruct any analog signal					
2	Find frequency response of LTI system					
3	Find Four	Find Fourier Transform of discrete signals				
4	Design of IIR & FIR filter					
5	Impleme	ntation of IIR and FIR fil	ter			
6	Develop	DSP Algorithm for variou	as application			
Syllabus :	1					
Unit 1	Discrete time signals and systems in the time domain: (8 Hours)					
	Introduction to signal and signal processing, classification of signals, signal					
	processing operations, examples and applications, Discrete time signals, typical					
	sequences and sequence representation, the sampling process, Discrete time					
	systems,	Time domain character	ization of LTI discrete time systems, Finite			
	dimensio	nal LTT Discrete time sys	tems, correlation of signals, Random signals.			
Unit 2	Discrete	Time signals in Transfo	rm domain: (08 Hours)			
	Discrete	time Fourier transform	n, Discrete Fourier Transform, Relationship			
	between	ule DIFI and the DFI	and their inverses, Discrete Fourier Transform			
	the DET	The Z transform BOC of	of the rational Z transform Inverse Z transform			
	transformed	The Z-transform, KOU (on the rational Z-transform, inverse Z-transform-			
	transform	transform properties, Transform domain representation of random signals.				

Unit 3	LTI Discrete time systems in Transform Domain: (6 Hours)
	Finite dimensional Discrete time systems, the frequency response, the transfer
	function, types of transfer functions, Simple digital filters, All pass Transfer
	function, Minimum phase and maximum phase transfer functions, Complementary
	transfer functions, Inverse systems, Systems identification, Digital two pairs.
Unit 4	Digital Filter Structures: (6 Hours)
	Block diagram representation, equivalent structures, Basic FIR structures,
	BasicIIR structures, All pass filters, IIR tapped cascaded lattice structures, FIR
	cascaded lattice structures
Unit 5	Digital Filter design: (6 Hours)
	IIR filter design – Bilinear transformation, Impulse invariant transformation, Low
	pass IIR digital filters, Spectral transformations, FIR filter design using
	windowing techniques, Frequency sampling technique, and Computer aided
	design.
Unit 6	DSP Algorithm Implementation: (6 Hours)
	Computation of DFT, FFT algorithms, Decimation in time, Decimation in
	frequency and Different algorithms of FFT such as DIT and DIF where input and
	output is in order, radix-n algorithms and Applications of DSP.
Text Book:	
1.	E. C. Ifeachor, B. W. Jarvis, Digital Signal Processing- A Practical Approach,
	Second Edition, Pearson Education, New Delhi, 2002.
2.	S. K. Mitra, Digital signal processing- A computer based approach, Tata McGraw
	Hill, 2002
3.	A.V. Oppenheim, R, W, Schafer, Discrete time signal processing, Prentice-Hall
4	
4.	J. G. Proakis, D. G. Manolakis, Digital signal processing –Principles, algorithms
	and applications, Prentice Hall of India, 2002.
5.	R. G. Lyons, "Understanding Digital Signal Processing", Pearson Education New
D . f D	Dem, 1999.
Reference B	00K:
1.	
<i>2</i> .	
1 erm work	: It will consist of a record of the following experiments based on the prescribed
	Digital signal gaparation
1.	Simple operations on signals
2.	Lincon Convolution
<u> </u>	Discrete time Fourier transform
<u>4.</u> 5	Disoreta Fourier Transform Direct computation DIT alcouithm DIE alcouithm
<u> </u>	EID filter design and software realization by windowing and Enguancy someling
0.	FIR filter Design and software realization by windowing and Frequency sampling
/.	IK FILE Design and software realization of Butterworth and Chebysnev approx.
ð. Natas Th	Any other experiments decided by the Course Coordinator.
MATIAD	computational work is to be carried preferably by using software tools like
WIATLAD. S	UIAD.

Practical Examination:

The examination will be of three hours duration and will consist of an experiment based on termwork and followed by an oral based on above syllabus.

EE307 Microprocessor Fundamentals and Applications						
Teaching Sc	heme :		Examination Scheme:			
Lectures		3 Hrs./ Week	Theory:			
Tutorials			Mid Term:30 Marks			
Practical		2 Hrs./Week	End Sem. Exam :70 Marks			
Credits (Th)		4	Credits(P)	1		
Prerequisite	s Courses:	•				
1	Analog a	nd Digital Circuits				
Course Obje	ective:					
1	Understan	nd the basic architecture	of 8085 microprocessor.			
2	Write ass	embly language program	s to develop microproces	sor based Design.		
3	Write inte	errupt service routines for	r all interrupt types			
4	Interface	memory and I/O devices	to 8085 using peripheral	devices		
5	Write mid	crocontroller programs ar	nd interface devices			
Course Out	comes: Stu	idents' will be able to:				
1	Identify r	nicroprocessor based syst	tems.			
2	Summariz	Summarize architecture and operation of 8085 processor				
3	Explain a	nd summarize architectur	re and operation of 8086	processor		
4	Develop a	Develop assembly language programs.				
5	Interface various I/O devices with microprocessor.					
6	Design microprocessor based systems.					
Syllabus :						
Unit 1	Introduct	ion to 8085:		(08 Hours)		
	Architect	ure and operation, pin ou	t diagram, Assembly lan	guage programming for		
	8085 mic	croprocessor instruction	classification, instruction	on set study in details,		
	addressin	g modes, writing asse	mbly language progran	ns, stacks subroutines,		
	floating p	point routines.				
Unit 2	Instructio	on set timing diagrams,	a minimum configuration	on for 8085.Interfacing		
	memories	s EPROM and RAM w	ith 8085 with exhaustiv	e and partial decoding		
TT 4 3	technique	28.	1 1	(06 Hours)		
Unit 3	Interrupt	structure of 8085, interi	hal interrupt circuit and	hardware and software		
	interrupts	s, serial data transfer.	Following structure pro	ogrammable peripheral		
	interfacin	re to be studied in detain $re to be studied in detain re to be studied in detain the second state re to be studied in the second state re to be state state state state state re to be state $	ns as regards block diag	gram, soltware for their		
	meriacin	ig with 6065. 6255, 6255	,0279, 0231.	(00 Hours)		
Unit 4	Bug inter	facing standards DS 22) IFFF 188 Interfacing	application: Interfacing		
	seven seg	ment displays keyboard.	A to D and D to A conve	erter. (06 Hours)		
Unit 5	Micropro	cessor based data acqui	sition and control system	n: Temperature control		
	system,	Flow control system et	c. Introduction to 8086	5, 80486, and Pentium		
	processor	rs.		(08 Hours)		
	• =					

Unit 6	Introduction to 8086 : (06 Hours)
	Architecture and operation, pin out diagram, Assembly language programming for
	8086 microprocessor instruction classification, instruction set study in details
Text/ Refer	ence Book:
1.	R. S. Gaonkar "Microprocessor Architecture, Programming and application with
	8085/8085A", Fourth Edition, Willey Eastern Ltd.
Reference B	Books:
1.	K. L. Short "Microprocessor and programming logic", Second Edition, Prentice-
	Hall India Pvt. Ltd.
2.	U. V. Kulkarni and T. R. Sontakke "The 8085A Basics: Programming and
	Interfacing", Sadusudha Prakashan, Nanded
3.	Intel Mcs, "8085 user's manual" Intel Corporation
4.	B. Ram "Fundamentals of microprocessor and Microcomputer", Dhanpat Rai
	publishing company Ltd.(2011).
Term Worl	c: It will consist of a record of the following experiments based on the prescribed
syllabus.	
1.	Interfacing 7-segment displays with 8255.
2.	Interfacing Keyboard matrix with 8255.
3.	Interfacing DAC
4.	Interfacing ADC
5.	Programming for 8253.
6.	Software implementation of ADC
7.	Observing timing diagram on CRO.
8.	Study of interrupts.
9.	Programming for speed and direction control of DC motor.
10.	Programming for speed and direction control of stepper motor.
11.	Assembly language programme based on lookup table concept
12.	Study of hexadecimal, modulo-9, BCD counters
13.	Assembly language programme for real time clock
Note: The co	omputational work is to be carried preferably by using software tools likeMATLAB,
Scilab.	
Practical Ex	xamination:
The examination	ation will be of three hours duration and will consist of an experiment based on term-
work and fol	llowed by an oral based on above syllabus.

ELECTIVES -II

EE309A Power Plant Engineering						
Teaching Sc	heme :	Examination Scheme:				
Lectures	3 Hrs/ Week	Theory:				
Tutorials		Mid Term:30 Marks				
Practical		End Sem. Exam :70 Marks				
Credits (Th)	3	Credits(P) NA				
Prerequisite	s Courses:					
1	Power System Engineering,					
2	Electrical machines					
Course Obj	ective:					
1	To develop fundamental unde	rstanding about various energy sources				
2	To provide knowledge about working of steam power plant, Hydro power plant					
	nuclear power plant and diese	power plant				
3	To teach Economics of combi	ned working power plants				
Course Out	comes: Students will be able to):				
1	Classify different sources of e	nergy and analyse economics of power plant				
2	Explain the working of various power plant					
3	Reproduce Economics of combined working power plants					
4	Understand mechanical and chemical aspect related to power plant engineering					
5	Analyse different components of power plants					
6	Understand tariffs related to p	ower plants				
Syllabus :						
Unit 1	Sources of Energy and Economics of Power Plant (06 Hours)					
	Sources of energy, Fuels, Ty	pes of fuels, Solid fuels, Liquid fuels, Gaseous fuels,				
	Calorific value of fuels, Ty	pes of coal, Coal selection, Requirements of fuel				
	,HydelPotential energy, Nucle	ar energy – Comparison of Sources of power – Non				
	conventional sources of energy	y Solar energy, wind energy, I dal power and Bio				
	Economic of power generation	Choice of power station Energy rates				
Unit 2	Stoom Power Plant	(1 , Choice of power station, Energy rates				
Omt 2	Thermal Station: Introduction	selection of sites. I avout of Steam power Plant				
	Fuel and ash handling Co	mbustion for burning coal Mechanical stackers				
	Pulverizes Electrostatic F	recipitators Draughts-Different types Surface				
	condensers - Types of cooling	towers. Steam turbines. Steam engines: Advantages				
	of steam turbines over steam	engines. Boilers: Types of boilers. Principles of				
	steam power plant design, Fa	ctors affecting steam plant design .Thermal power				
	plants environmental control,	simple numerical examples.				
Unit 3	Hydro Electric Power Plant	(06 Hours)				
	Lay out of Hydroelectric po	wer plant: Elements of Hydroelectric power plan,				
	Classification of Hydroelectri	c power plant, Advantages of Hydroelectric power				
	plant, Mini and Micro hydro	power plants, Types of Dams, Pen stock, Draft tube,				
	Surge tank, Hydraulic turbine	es, Classifications, Turbine governing, Cavitation's,				
	Safety measures in Hydro power stations, Control room functions, Switch gear,					

	Site selection, Comparison of Hydroelectric power plant and steam power plant.
Unit 4	Nuclear Power Plant(08 Hours)
	Review of atomic physics (atomic number, mass number, isotopes, atomic mass,
	unit rate of radioactivity, mass equivalent number, binding energy and mass
	defects), Nuclear power plant layout, Elements of Nuclear power plant, Types of
	reactors ,Pressurized water reactor, Boiling water reactor, Waste disposal and
	safety, Advantages of Nuclear power plant, Comparison of Nuclear power plant
	and steam power plant, Site selection and Commissioning procedures, simple
	numerical, India's nuclear power program.
Unit 5	Diesel Engine & Gas Turbine Power Plant(06 Hours)
	Types of diesel engine power plants, Layout and components, Diesel engine power
	plant auxiliaries, Engine starting methods, Advantages of Diesel engine power
	plant, Application of Diesel engine power plant, Site selection. Gas turbine power
	plant ,Classification, Elements of simple gas turbine power plant, Layout, Open
	and Closed cycles, Reheating, Regeneration and Inter cooling – Combined cycles -
	Applications and advantages of Gas turbine plant, simple numerical examples.
Unit 6	Combined working of power plants: (06 Hours)
	Economics of combined working power plants, base load and peak load stations,
	pumped storage plants, inter- connections of power stations. Tariff: Fixed cost,
	running cost and their interrelation for all types of conventional power plants,
	depreciable cost, different types of tariffs, numerical example based on above,
	effect of deregulation on pricing.
Text Books:	
1.	P.K. Nag, "Power Plant Engineering", Third Edition, Tata McGraw – Hill, 2007
2.	G.R. Nagpal "Power Plant Engineering", Khanna Publishers.
Reference B	ooks:
1.	Arora S.C and Domkundwar, "A Course in Power plant Engineering's, Dhanpat
	Rai, 2001.
2.	El-Wakil M.M, "Power Plant Technology", Tata McGraw-Hill
3.	Rai G.D, "Introduction to Power Plant Technology", Khanna Publishers.

EE309B Renewable Energy Technologies									
Teaching Scheme :		Examina	tion Sc	heme:					
Lectures 3Hrs/ Week			Theory:						
Tutorials				Mid Term: 30 Marks					
Practical			End Sem. Exam :70 Marks						
Credits (Th) 3			Credits(P) NA						
Prerequisites Courses:									
1	Engineering Physics, Environmental Science, Engineering Chemistry								
Course Objective:									
1 To develop fundamental unde		rstanding	about	Solar	Thermal	and	Solar		
	Photovoltaic systems.								
2	To provid	le knowledge about	devel	opment of	Wind F	Power p	lant and va	rious	

	operational as well as performance parameter/characteristics
3	To explain the contribution of Biomass Energy System in power generation
4	To teach Integration and Economics of Renewable Energy System.
Course Out	comes: Students' will be able to:
1	Explain theory of sources like solar, wind and also experiments of same
2	Analyze operating conditions like stand alone and grid connected of renewable
	sources
3	Reproduce different Storage Systems, concept of Integration and Economics of
	Renewable Energy System
4	Summarizing forthcoming renewable technologies
5	Design the solar tracking system for roof top application
6	Simulate and implement solar charge controller in practical applications
Syllabus :	
Unit 1	Introduction to Renewable Energy Sources: (06 Hours)
	Energy sources: classification of energy sources, introduction to renewable energy,
	Renewable energy trends, and key factors affecting renewable energy supply,
	advantages and disadvantages of RES and their uses, national and international
	policies on RES
Unit 2	Solar Energy: (08 Hours)
	Solar Photovoltaic :
	Technologies-Amorphous, monocrystalline, polycrystalline; V-I characteristics of
	a PV cell, PV module, array, Maximum Power Point Tracking (MPPT) algorithms.
	solar thermal conversion: basics, solar concentrator and tracking system, flat plate
	collectors-liquid and air type, theory of flat plate collectors, selective coatings,
T I ' ' O	advanced collectors: ETC, solar Pond
Unit 3	Wind Energy:: (08 Hours)
	rotors abaracteristics of wind rotor local affacts wind sheer turbulance for
	acceleration effects measurement of wind wind speed statistics energy estimation
	of wind regimes capacity factor aerodynamics of wind turbines airfoil lift &
	drag characteristics power coefficient & tip speed ratio characteristics electrical
	generator machines in wind energy systems
Unit 4	Biomass Energy: : (06 Hours)
	Overview of biomass as energy source, biomass as a fuel, physicochemical and
	thermal characteristics of biomass as fuel, biochemical conversion of biomass for
	energy production, liquid biofuel, energy plantation- overview on energy
	plantation, basis of selecting the plants for energy plantation, waste land utilization
	through energy plantation
Unit 5	Forthcoming renewable technologies:(06 Hours)
	Geothermal Energy Generation, ocean-thermal energy generation, tidal energy
	generation, magneto hydro dynamic power generation- working, layout, different
	components, advantages, limitations.
Unit 6	Storage Technologies: (06 Hours)
	Introduction, need for storage for RES, basic thermodynamic and electrochemical
	Principles, classification, traditional energy storage system- battery, fuel cell,

	principle of operation, types, applications for power generation.
Text Books:	
1.	Gary-L. Johnson Wind Energy Systems Tata Mc-Graw-Hill Book Company.
2.	Boyle, Godfrey. 2004. Renewable Energy (2 nd edition). Oxford University Press, 450
	pages (ISBN: 0-19-926178-4).
Reference B	ooks:
1.	S. P. Sukhatme, J. K. Nayak Solar Energy- Principles of Thermal Collection and
	Storage (3rd edition), Tata McGraw-Hill Publication.
2.	Paul Gipe Wind Power, Renewable Energy for Home, Farm, and Business.
3.	Mullic and G.N.Tiwari, "Renewable Energy Applications", Pearson Publications.
4.	Website :_powermin.nic.in, www.mnre.gov.in

EE309 C Electrical Installation and Design				
Teaching Scheme :		Examination Scheme:		
Lectures	3Hrs/ Week Theory:			
Tutorials			Mid Term:30 Marks	
Practical			End Sem. Exam :70 Ma	arks
Credits (Th)		3	Credits(P)	NA
Prerequisite	s Courses:			
1	Electrical	Measurement, Electrical	machines	
2	Power Sy	vstem		
Course Obje	ective:			
1	Study of	essentials of electrical ins	stallation.	
2	Study of	wiring system and their e	stimation.	
3	To study	various aspects of illumin	nation.	
4	To study	estimation and costing of	H.T and L.T conductors	s for installation.
5	All Indian Electricity Rules.			
Course Out	comes: Stu	idents' will be able to:		
1	Design th	he electrical wiring syst	ems for residential, cor	nmercial and industrial
	consumer	s, representing the syster	ns with standard symbols	s and drawings, SLD
2	Substation arrangement studies			
3	Find out s	Find out specifications of cables, insulators for various voltage ratings.		
4	Acquainte	Acquainted with different methods of measuring resistances.		
5	Start his/l	ner own consultancy and	business opportunities in	electrical installation
6	Design and representing the electrical systems with standard symbols and			
	drawings, SLD			
Syllabus :				
Unit 1	Electrica	l Drawing:		(06 Hours)
	Principles Electrical connector Pliers of	s, Symbols, Single Lin Components, such as c rs, MCCB, ELCB, panel various types, wrench, an	e Diagrams (SLD), In contactor, switches, relay meters etc. Different To d blowlamp, Precaution	troduction to common ys, timers, cables, lugs, ools Used: Screwdriver, for using tools

Unit 2	Wiring System: (06 Hours)
Unit 2	Selection of types of wiring Methods of wiring (Cleat Casing capping Metal
	sheathed and Conduit) Calculation and Estimation of power rating of different AC
	and DC machines. Electrical system design for a typical midsize housing complex
	mechanical workshop, auditorium and IT industry. Estimation for a light and fan
	system Process of tendering and Construction and Design of MCC and PCC for a
	system, Process of tendering and construction and Design of MCC and PCC for a
TI: 4 2	Complete error compared of substation (Single and double bus har), have discreme for
Unit 3	Complete arrangement of substation (Single and double bus bar), key diagrams for
	typical substations. Various type's pole structure, insulators, cables and their
	an VID. Load allow shoothad. Tough where shoothad. Weather moof. Elevited wires
	of VIR, Lead anoy sheathed, Tough rubber sheathed, weather proof, Flexible wife
	splicing, Termination (Twist splicing, Married joint, Tap joint, Pig tail joint)
T T 1 / 4	
Unit 4	Illumination: Radiant Energy, Terms and Definitions, Laws of Illumination, Polar
	Curves, Photometry, Methods of Lighting calculations, Consideration points for
	planning a lighting installation ,Design consideration of good lighting scheme,
	Luminous Efficacy, Electrical Lamps, Design of Interior and Exterior Lighting
	Systems, Illumination Levels for Various Purposes, Light Fittings, Factory
	Lighting, Flood Lighting, Street Lighting, Energy, Conservation in Lighting
	(06 Hours)
Unit 5	Measurement of earth resistance & Testing: (08 Hours)
	Measurement of Earth Resistance, Two Point Methods, Three Point method, Fall
	of potential method, Direct measurement of Earth resistance, Testing of
	Installations,
	Estimating & Conductor size calculations for internal wiring H.T & L.T
	Overnead Lines and Underground cables: Estimating, Price catalogue,
	Schedule of fates & Estimating data, Determination of conductor size, Current
	carrying capacity, voltage drop, Minimum permissible size, Conductor size
	calculation for internal domestic wiring, Underground cable, Overnead lines with
I	A.U.D.K Estimatos for L.T. Distributors & Street Light Easders Estimatos for 11 kV
Unito	Estimates for L.1 Distributors & Street Light Feeders, Estimates for 11 KV
	Preders, All Indian Electricity Kules like 1950,2005,2005 , National Tariff
Torrt Doolog	Policies (00 Hours)
1 ext Books:	K.D. Daina & S.K. Dhattasharawa Electrical Design Estimating & Casting New
1.	K.D. Kalila & S.K. Dhattacharaya – Electrical Design Estimating & Costing, New (1001) , 1. Edition
2	age international publishers (1991), 1st Edition.
۷.	S. L. Oppai and G.C. Gaig – Electrical wirnig, Estimation & Costing, Khanna Dublication (2008)
Deference P	aller
	UNS:
1.	J. D. Oupla, Offizition of Electric Fower and Electric Haction, 2002, S. K.
2	Tratal a and Solls. Dratab H "Art and Science of Utilization of Electrical Energy" Second Edition
۷.	Dhannat Rai and Sons New Delbi
3	Surjeet Singh "Electrical Estimating and Costing" Dhannat Rai and Company (D)
5.	Ltd Deprint 2008
	ן בום, תכףוות 2006.

EE311 Mini project and Seminar-I

Credit (2)

The project work is intended to develop skill of electrical hardware assembly, electronics PCB design and assembly for small gadgets amongst the students. This skill may become useful during their final year project.

The students should undertake an electrical/electronic based hardware project and they have to submit report on the same. The project should include design and development of a small gadget useful in day-to-day life, in consultation with the faculty advisor.

EE302 Mid	crocontro	oller and Application	18	
Teaching Sc	heme :		Examination Scheme:	
Lectures		3 Hrs./ Week	Theory:	
Tutorials			Mid Term:30 Marks	
Practical		2 Hrs/Week	End Sem. Exam :70 Marks	
Credits (Th)		3	Credits(P) 1	
Prerequisite	s Courses:			
1	Analog an	nd Digital Circuits		
2	Micropro	cessor fundamentals and	Applications	
Course Obje	ective:			
1	Understa	nd the basic architecture	of microcontroller based systems	
2	Study the	assembly and c language	e programs	
3	Study of	various timers, counters a	and interrupts in Microcontrollers	
4	Interface	various circuits with 805	1 and PIC microcontroller	
Course Outo	comes: Stu	idents' will be able to:	1 1 1	
1	Identify V	arious Microcontroller t	based circuits.	
2	To write	microcontroller programs	an assembly and C-languages.	
3	Develop	various interfacing circuit	ts using timers and interrupts.	
4	Design m	Design microcontroller based systems		
5	Interface various hardware to 8051			
0 Callabara a	Simulate and design PIC Application			
Syllabus :	A			
Unit I	Difference between Microprocessor and Microcontrollers, Harvard and Von- Neumann architectures, Advantage of microcontrollers, Overview of 8051family, 8051 features, internal architecture, Pin out and pin functions, internal data memory, banks, registers, user memory, stack. SFR area, PSW, Code memory space, (Internal/External), External Data memory space Ports and port structure, clock circuit.			
Unit 2	Instructio Instructio Instructio Instructio Instructio Introduction	on Set and Programmin on set, Data movement in ns, Arithmetic instructions, Bit oriented inst ons, Assembler directives ion to C programming for 8051 programs.	ng: (06 Hours) nstructions, Addressing modes, Jump/Loop/call ons, signed/unsigned arithmetic in 8051, Logic ructions, I/O Programming using Boolean s, Assembly programming of 8051 using IDE. r 8051, data types, using pointers, Development	
Unit 3	Interrupt Interrupt priorities, diagram a timer inte expansion	ts, Timers and Serial C structure of 8051, writin Programming for extend and function, Timer moderrupts. Serial communican using serial communican	Communication for 8051: (08 Hours) ng ISR, interrupt blocking conditions, interrupt ernal interrupt. Timers in 8051, Timer block les 0, 1, 2 and their Applications, Programming ation modes in 8051, RS232 signals of PC, Port tion, Multiprocessor Communication mode.	

SEMESTER-VI

Unit 4	Interfacing with 8051: (08 Hours)
	Interfacing external memory (RAM/ROM) to 8051, Display interfacing,
	Thumbwheel interfacing, (Static/Multiplexed), LCD interfacing, Keyboard
	interfacing, Interfacing of ADC and DAC to 8051, Stepper motor, Relay
	interfacing, RTC interfacing, Case studies of temperature controller, Mains
	frequency meter, Batch counter.
Unit 5	PIC Microcontroller: (06 Hours)
	PIC Architecture Block diagram, Programming Techniques, Assembler Directives,
	C-programming using PIC, register operations, Special features, Configuration
TI	registers in PIC
Unit 6	PIC Application: (06 Hours)
	Counters/ Timers in PIC, Interrupt structure, Programming of timers and interrupts Control Application
Tort Doolra	Interrupts , Capture and Compare Module, PIC Motor Control Application
1 1 1	Muhammad Mazidi Janica Mazidi and PolinMaKinlay 'The 8051
1.	Microcontroller and Embedded systems using Assembly and C' Pearson
	Education
2	Mazidi RolinMcKinlay and Danny Causey 'PIC Microcontroller and Embedded
2.	Systems using Assembly and C for PIC18', Pearson Education
Reference B	ooks:
1.	"8051 Architecture, Programming and Applications", Kenneth Avala, West
	publishing company.
2.	Embedded System - Raj Kamal, 2nd Ed., TATA McGraw Hill, 2009.
Term Work	: It will consist of a record of the following experiments based on the prescribed
syllabus.	
1.	Assembly programming to illustrate various instructions. (Minimum 6 programs).
2.	Block transfer, addition, multiplication, division, string operation, finding
	maximum,
3.	Minimum, nested delay routine etc, programming using internal and external data
	memory.
4.	Introduction to Keil IDE, Using Keil IDE to assemble a readymade program, Hex
	file format, down loading into 8051 and running the program. Assembly of basic
	8051 using C, (Sample programs minimum 2).
5.	Study of timers and interrupts.
<u> </u>	Study of serial communication modes.
/.	Study of multiprocessor modes.
0.	Multiplexed LED display interfacing
	a. Multiplexed LED display interfacing.
	c Keyboard interfacing
	d. ADC interfacing.
	e. Thumbwheel interfacing.
	f. DAC interfacing.
	g. Batch counter.
	h. Design of Temperature Indicator and Controller
	i. Design of Mains frequency Meter.

Practical Examination:

The examination will be of three hours duration and will consist of an experiment based on termwork and followed by an oral based on above syllabus.

EE304 Co	ntrol Sys	tem Design	
Teaching Sc	heme :		Examination Scheme:
Lectures		3Hrs/ Week	Theory:
Tutorials	1 Hrs./ Week Mid Term: 30 Marks		Mid Term:30 Marks
Practical 2 Hrs./Week		2 Hrs./Week	End Sem. Exam :70 Marks
Credits (Th)		4	Credits(P) 1
Prerequisite	s Courses:		
1	Feedback	control system	
Course Obj	ective:		
1	Provide t	he knowledge of various	nonlinearities observed in real world.
2	Design a	control system using lead	l – lag compensator, P, PI and PID controllers.
3	Design a	control system using stat	e space technique.
4	Provide t	he knowledge of absolute	e and relative stability.
5	Illustrate	the stability and perform	ance of compensated system response.
Course Out	comes: Stu	idents' will be able to:	
1	Understan	nd the concepts of compe	ensation and tuning of comptrollers.
2	Understan	nd the various nonlinearit	ties and their behaviour observed in real world.
3	Analyse	the nonlinear system wi	th describing function method and phase plane
	method.		
4	Analyse t	he response and stability	of system with different controllers.
5	Understand the concepts of discrete control systems.		
6	Evaluate the performance of compensated and uncompensated systems in time and		
	frequency domain.		
Syllabus :			
Unit 1	Non-line	ar control systems:	(08 Hours)
	Different	types of non-linearity, F	Peculiarities of non-linear systems, Definition of
	describing	g function. (D.F.) deriv	vation on D.F.'s for various non-linearity.D.F.
	analysis o	of non-linear control syst	ems, Limit cycles, Merit and limitations of D.F.
	analysis.	Phase plane method, Sir	ngular points, Construction of phase-plane plots
	for non -l	inear systems by isocline	es method.
Unit 2	PID cont	rollers:	(06 Hours)
	Introduct	ion to Proportional (P), In	ntegral (I) & Derivative (D)controller, individual
	effect on	overall system performa	ance, P-PI & PID control and effect on overall
TT I I A	system pe	erformance, Numerical ex	kamples.
Unit 3	Compens	sator Design using Root	Locus: (06 Hours)
	Keview	of root locus concep	load companyation minor loop foodback
	compensa	ation, cascade lag -	neau compensation, minor loop reedback
	of avetore	with dood time consistent	plants with dominant complex poles, root locus
Linit 4	System S	tability and Darforman	a in Fraggioney Domain: (09 Hours)
	Bowiew of	of Nyopist oritorion stat	vility marging stability marging on Dode plate
	Keview (or injugated criterion, stat	margins, staonity margins on Bode plots,

	stability analysis with dead time, frequency response measurement, co-relation		
	between time and frequency domain specification, M circles, Nichol's chart,		
	sensitivity in frequency domain Compensator Design using Bode Plot:		
	Introduction, Reshaping Bode plot, cascade lead compensation, cascade lag		
	compensation, cascade lag -lead compensation, Robust control system.		
Unit 5	State space analysis & design: (06 Hours)		
	Digitalisation of system matrices having distinct & repeated Eigen values, Vander		
	monde & modified Vander monde matrix. Definition of controllability &		
	observability, effect of pole zero cancellation on the controllability &		
	Observability of the system, pole placement design through state feedback.		
Unit 6	Discrete Data Control System: (06 Hours)		
	Methods of representation, Z-transform, Inverse Z-transforms, Pulse transfer		
	function of closed loop system, Response between sampling instants, Concept of		
	stability of discrete time systems, Stability by Jury's test.		
Unit 7	Hardware Implementation:(06 Hours)		
	Introduction, passive electric network, operational amplifier usage, tunable PID		
	controllers, Ziegler-Nichols method for controller tuning.		
Text Books:			
1.	Norman Nise, "Control system Engineering", 3rd edition, 2000, John Wiley		
2.	I.J. Nagrath and M. Gopal, "Control system engineering", Wiley Eastern Ltd, 3rd		
	edition, 2000		
3.	M. Gopal, "Digital Control Engineering", Wiley Eastern, 1988.		
Reference Books:			
1.	Benjamin C. Kuo, "Automatic Control system", Prentice Hall of India Pvt Ltd.		
2.	John J. D'Azzo, C. H. Houpis, Linear control system analysis and design		
	(conventional and modern), McGraw Hill International Fourth edition.		
3.	Katsuhiko Ogata, Modern Control Engineering, Prentice Hall of India Pvt Ltd.		
Term Work: It will consist of a record of the following experiments based on the prescribed			
syllabus.			
1.	Design of lead, lag compensator in Root locus Domain.		
2.	Design of lag-lead compensator in Root locus Domain.		
3.	Design of P, PI, PD controller.		
4.	Design of PID controller.		
5.	Design of lead, lag compensator in frequency Domain.		
6.	Design of lag-lead compensator in frequency Domain.		
7.	Design of controller in state space Domain.		
8.	Design of observer in state space Domain		
Note: The at	bove set of computational work is to be carried preferably using software like		
MATLAB, S	cilab, MiPower, etc.		
Tutorials: O	the hour per week is to be utilized to ensure that the students have properly learnt the		
topics covered in the lectures. This shall include assignments, quiz, test etc. The teacher may add			
any other a	any other academic activity to this so as to evaluate the student for his/her in-semester		
performance.	amination		
The events	amination:		
i ne examina	tion will be of three nours duration and will consist of an experiment based on term-		

work and followed by an oral based on above syllabus.

EE306 Po	wer Elec	tronics		
Teaching Sc	heme :		Examination Scheme:	
Lectures		3 Hrs./ Week	Theory:	
Tutorials		1 Hrs./ Week	Mid Term:30 Marks	
Practical		2 Hrs./Week	End Sem. Exam :70 Mark	ks
Credits (Th)		4	Credits(P)	1
Prerequisite	s Courses:	:		
1	Analog a	nd Digital Circuits, Basic	es of circuit theory	
Course Obje	ective:			
1	Study dif	ferent power electronic d	levices	
2	Understan	nd different types of con-	verters such as rectifier, inv	verter, chopper
3	Design di	ifferent types of converte	rs such as rectifier, inverter	r, and chopper
4	Simulate	different types of conver	ters such as rectifier, invert	ter, and chopper
Course Out	comes: Stu	idents' will be able to:		
1	Understan	ding of different types Pow	ver Semiconductor Switches a	and their characteristics.
2	Analytical	study of different types of	Power Converter systems.	
3	Solve the	numerical problems on se	emiconductor switches, rectin	fier, converter, inverter,
	choppers and cycloconverter, circuits.			
4	Simulate I	DC-DC converters		
5	Simulate a	and Design DC-AC Inverte	rs	
6	Apply PWM technique			
Syllabus :				
Unit 1	Power Se	emiconductor Switches:		(06 Hours)
	Character	ristics of ideal switch. C	haracteristics, Rating, prot	tection and cooling of
	power se	miconductor devices suc	ch as power diodes, transis	stor, MOSFET, IGBT
	and GTO, Study of the driver circuits for thyristor, GTO and IGBT, Introduction			
	to smart power modules, Comparative study of MOSFET, thyristor, GTO, BJT			
	and IGBT			
Unit 2	Rectifier	S:	1 6 11 11 1 1	(06 Hours)
	Single ph	ase half wave and single	e phase full wave diode bri	idge. I hree phase half
	wave and	three phase full wave d	iode bridge, Transformer p	power rating for above
TL	configura	tions.		
Unit 3	Phase Co	ontrolled AC to DC Cor	iverters:	(08 Hours)
	thuristor	annuartara Three pulse	and giv pulse controlled of	and fully controlled
	converter	with freewheeling diode	Effect of source inductor	onventers operation of
	of the co	nverter overlan angle	Performance factors for	the converter such as
	displacen	hent factor distortion fa	ctor total harmonic distor	tion ripple factor and
	transform	er utilization factor. Inte	roduction to 12 pulse conv	verter ingle nhase and
	three nha	se dual converter firing	scheme for 1 phase and t	three phase converter
	Brief intr	oduction to commutation	methods	unce place converter,
Unit 4	DC to D	C Converters:	monous	(06 Hours)
	Control o	of DC to DC converters	, step down (buck) conve	rter. Analysis of buck
	converter	with RLE load step up	converter, buck – boost con	nverter, full DC to DC

	converter, concept of multiphase choppers.
Unit 5	Switch Mode DC – AC Inverters: (08 Hours)
	Basic concepts of switch mode inverters single phase inverter, three phase six step
	inverter, 120 mode of conduction 180 mode of conduction, three phase PWM
	Inverter, sinusoidal PWM and selective harmonics elimination methods of PWM.
	Effect of blanking time on output voltage in PWM inverters, Introduction to three
	level inverters.
Unit 6	Cycloconverters: (06 Hours)
	Single phase to single phase and three phase to single phase cyclo-converter
	circulating, non-circulating currents mode operation. Three phase to three phase
	cyclo-converter, Introduction to matrix converters.
Text Books:	
1.	M.H. Rashid "Power Electronics, Circuits, Devices and Applications", Pearson
	Education Inc., 3 ¹⁴ Edition.
2.	P. S. Bhimra "Power Electronics", , Khanna Publishers (2010).
Reference B	ooks:
1.	Mohan, Undeland & Robins "Power Electronics, Converter Applications and
	Design", John Wiley and sons (Asia) Pvt. Ltd.
2.	"G. K. Dubey and Others Thyristorised Power Controller", Wiley Eastern Ltd.
3.	B.K. Bose, "Modern Power Electronics and A.C. Drives", Prentice Hall of India
	Pvt. Ltd. Publication.
4.	B.W.Williams, "Power Electronics", John Willey
Term Work	: It will consist of a record of the following experiments based on the prescribed
syllabus.	
1.	Voltage and current relationship in 3 phase full wave diode bridge rectifier and
2	study of input current narmonic spectrum.
Ζ.	study of firing circuit of single phase full wave nall controlled converter and load
2	Side performance evaluation.
5.	study of hing clicult of shigle phase full wave full controlled converter,
1	Eiring circuit scheme for 3-phase full wave half controlled converter and load side
ч.	nerformance evaluation of the converter
5	Study of 6 pulse full controlled converter with R and RL load and evaluate the
5.	load side performance
6	Study of triac based single phase AC voltage controller
7.	Study of Class B commutation method for Thyristor (Morgan's circuit)
8.	Study of Class D commutation method for Thyristor (Jone's circuit).
9.	Study of MOSFET based for step up chopper.
10.	Control circuit study of single phase PWM Inverter.
Note: The ab	ove set of computational work is to be carried preferably using software like
MATLAB, S	cilab, MiPower, etc.
Tutorials: O	ne hour per week is to be utilized to ensure that the students have properly learnt the
topics covere	d in the lectures. This shall include assignments, quiz, test etc. The teacher may add
any other a	cademic activity to this so as to evaluate the student for his/her in-semester
performance.	
Practical Ex	amination

The examination will be of three hours duration and will consist of an experiment based on termwork and followed by an oral based on above syllabus.

EE308 Ele	ctromagnetic Fields		
Teaching Sc	heme :	Examination Scheme:	
Lectures	3Hrs/ Week	Theory:	
Tutorials	1 Hrs./Week Mid Term:30 Marks		
Practical		End Sem. Exam :70 Marks	
Credits (Th)	4	Credits(P) NA	
Prerequisite	s Courses:		
1	Vector Algebra		
Course Obje	ective:		
1	Understanding of basic	concepts of Vectors.	
2	Understanding of basic of	concepts of Electrostatic fields and Electromagnetic fields.	
3	Study of Magnetic Force	es Materials and Devices	
4	Study of Magneto Static	c Fields	
5	Study of Maxwell's Equ	uations	
Course Out	comes: Students' will be	able to:	
1	Understand the application	ions of vector algebra	
2	Learn basic theory of ele	ectric and magnetic fields	
3	Evaluate the Electrostatic boundary value conditions and problems		
4	Analyse various aspects of magneto static fields		
5	Understand magnetic forces materials and devices.		
6	Apply Maxwell's equations.		
Syllabus :			
Unit 1	Vector analysis:	(06 Hours)	
	Vector Algebra, Recta	angular Coordinate System, Vector Component, Vector	
	Field, Dot Product, Cro	oss Product, Circular and Cylindrical Coordinate System,	
	Vector Calculus, Del Operator, Gradient of Scalar, Divergence of Vector and		
	Divergence Theorem, Curl of a Vector and Stroke's Theorem, Lapalcian of a		
	Scalar, Classification of	Vector Fields.	
Unit 2	Electrostatic Fields and	d Electric Fields: (08 Hours)	
	Gauss's Law- Maxwell'	's Equation, Electric Potential, Relationship between E and	
	V-Maxwell's Equation	, Electric Dipole and Flux Lines, Energy Density in	
	Electrostatic Fields, Properties of Materials, Convection and Conduction Current,		
	Conductors, Polarization	n in Dielectrics, Dielectric Constant and Strength, Linear,	
	Isotropic and Homogenous Dielectrics, Continuity Equation and Relaxation Time,		
Linit 2	Electrostatic Poundam	v Valua Droblanci (06 Hours)	
Unit 5	Introduction Poisson's	and Laplace's Equations Uniqueness Theorem General	
	Procedures for Solvin	α Poisson's and Laplace's Fountions Resistance and	
	Canacitance Method of	Images	
Unit 4	Magneto Static Fields	(06 Hours)	
	Biot- Savart's Law. Am	npere's Circuital Law-Maxwell's Equation. Application of	
	Ampere's Law, Magnet	tic Flux Density-Maxwell's Equation, Maxwell's Equation	

	for Static Fields, Magnetic Scalar and Vector Potentials.	
Unit 5	Magnetic Forces Materials and Devices:(08 Hours)	
	Introduction, Forces due to Magnetic Fields, Magnetic Torque and Moment,	
	Magnetic Dipole, Magnetization in Materials, Classification of Magnetic	
	Materials, Magnetic Boundary Conditions, Inductors and Inductances, Magnetic	
	Energy, Magnetic Circuits, Force on Magnetic Materials	
Unit 6	Maxwell's Equations: (06 Hours)	
	Introduction, Faraday's Law, Transformer and Motional Electromotive Forces,	
	Displacement Current, Maxwell's Equations in Final Forms, Time-Varying	
	Potentials, Time Harmonic Fields.	
Text Books		
1.	William H. Hayt, Jr John A Buck, "Electromagnetic Engineering", , Tata McGraw	
	Hill, 6th Edition.	
2.	Shevgaonkar R. K., "Electromagnetic Waves", Tata McGraw Hill, 1 st Edition.	
Reference Books:		
1.	M. Sadiku, "Elements of Electromagnetics", oxford university press (2010), 4 th	
	Edition.	
2.	Paul, Clayton, "Introduction to Electromagnetic Fields", , Tata McGraw Hill	
	(2007), 3 rd Edition.	
3.	Ashutosh Pramanik "Electromagnetic Theory and Applications", , PHI Ltd 2 nd	
	Edition	
Tutorials: O	ne hour per week is to be utilized to ensure that the students have properly learnt the	
topics covered in the lectures. This shall include assignments, quiz, test etc. The teacher may add		
any other aca	demic activity to this so as to evaluate the student for his/her in-semester	
performance.		

ELECTIVES -III

EE310 A Utilization of Energy Management				
Teaching Scheme :		Examination Scheme:		
Lectures		3 Hrs/ Week	Theory:	
Tutorials			Mid Term:30 Marks	
Practical	Practical		End Sem. Exam :70 Ma	rks
Credits (Th)		3	Credits(P)	NA
Prerequisite	s Courses:			
1	Basic Ele	ctrical Engineering		
2	Electrical	Machines		
Course Obj	ective:			
1	To give a	n overview of various are	eas of application of Elect	trical Energy.
2	To introd	uce the concept of Energ	y Audit, Energy Manager	ment and Energy
	Conserva	tion.		
3	Study of	Speed-time curves and m	echanics of train moveme	ent.
4	Study of	various methods of Contr	ol of traction motors.	
5	Study of	various electrical motors	and DG start up assessme	ent.
Course Out	ourse Outcomes: Students' will be able to:			
1	Understau	nd selection of electrical	motors according to load	
2	Understand basic principles of electric heating and welding			
3	Evaluate speed time curves for traction			
4	Understanding and planning of Energy Audit			
5	Analysis	Analysis of DG system start up process		
6	Do Energy Audit of commercial organization			
Syllabus :				
Unit 1	Industrial application of Electrical Motors: (06 Hours)			
	Selection of motor for particular application, heating and cooling curves, load			
	equalization, capitalization of losses.			
Unit 2	Heating	and Welding:		(06 Hours)
	Classifica	tion, design of resistance	e ovens, dielectric heatin	g, arc furnaces, electric
	welding and its control			
Unit 3	Speed-tin	ne curves and mechanic	cs of train movement:	(06 Hours)
	Introduct	ion to electric traction, tr	action systems, track ele	ctrification systems, ST
	curves, mechanics of train movement, coefficient of adhesion, specific energy			hesion, specific energy
	consumption.			
Unit 4	Control of traction motors: (08 Hours)			(08 Hours)
	Series-pa	rallel control, drum c	ontroller, multiple unit	control, regenerative
	braking, s	systems of current collec	tion and train lighting, ne	egative booster, traction
TT. 4 7	sub-statio			
Unit 5	General	aspects of Energy Audit	t and Energy Manageme	ent (EAM):(06 Hours)
	Energy s	scenario, basics of ene	ergy and its various f	orms EM&A, Energy
	monitorin	ig and targeting, and elec	trical systems.	
	1			

Unit 6	Efficiency and performance assessment:(06 Hours)Electrical motors, lighting system, DG set system, energy efficient technologies in
	electrical systems, application of non-conventional and renewable energy resources
Text Books:	
1.	J. B. Gupta "Utilization of Electrical Power and Electric Traction", , 8th edition
	2006
2.	H. Partab "Art and Science of Utilization of Electrical Energy", , 2nd Edition,
	2005.
3.	"Bureau of Energy Efficiency, Energy manager training" – ebook1- Chapter
	1,2,3,8; ebook3- Chapter 1,2,8,9,10; ebook4- Chapter 5,10,12
Reference B	ook:
1.	Soni, Gupta &Bhatnagar - "A course in Electrical Power"
2.	S. C. Tripathy, "Utilization of Electrical Energy", Tata Mc Graw Hill
Term Work	:
1.	Visit to a local industry for the study of electrical energy utilization.
	A comprehensive report to be submitted.
2.	Prepare the energy audit report for the industry visited.
3.	Prepare a model of renewable energy source and submit a report on the same.

EE310 B Electrical Machine Analysis				
Teaching Scheme :			Examination Scheme:	
Lectures		3Hrs/ Week	Theory:	
Tutorials			Mid Term:30 Marks	
Practical			End Sem. Exam :70 M	arks
Credits (Th)		3	Credits(P)	NA
Prerequisite	s Courses			
1	Electrom	agnetism		
2	Electrical	Machines		
Course Obje	ourse Objective:			
1	Introduction to basic concepts of magnetically coupled circuits			cuits
2	Study of various principles of electromechanical energy conversion			
3	To understand the concept of space vector on d-axis and q-axis variables			
4	Study of Clarke and Park's Transformations			
5	Study of various models of induction and synchronous machines			
Course Out	rse Outcomes: Students' will be able to:			
1	Understand the limitations of conventional models of electrical machines			rical machines
2	Determine the torque produced in electrical machines using the concept of co			
	energy			
3	Determine the performance of machines using reference frame theory			
4	Select strategies to control the torque for a given application			
5	Apply Clarke and Park's Transformations for analysis of synchronous machines			
6	Evaluate	the performance of induc	ction machine	

Syllabus:	
Unit 1	Magnetically coupled circuits:(06 Hours)
	Review of basic concepts, magnetizing inductance, Modelling linear and nonlinear
	magnetic circuits.
Unit 2	Electromechanical energy conversion:(08 Hours)
	Principles of energy flow, concept of field energy and co-energy, Derivation of
	torque expression for various machines using the principles of energy flow and the
	principle of co energy, Inductance matrices of induction and synchronous
	machines
Unit 3	Theory of DC machines :(08 Hours)
	Review of the DC machine, mathematical model of commutator, State-space
	model of a DC machine, reduced order model & transfer function of the DC
	machine, Reference Frame Theory-Concept of space vector, components of space
	vector, direct and quadrature axis variables.
Unit 4	Transformation: :(06 Hours)
	Types of transformation, condition for power invariance, zero-sequence
	component, Expression for power with various types of transformation,
	Transformations between reference frames, Clarke and Park's Transformations,
	Variables observed from various frames, Simulation studies
Unit 5	Theory of symmetrical Induction Machines: (06 Hours)
	Voltage and torque in machine variables, Derivation of dq0 model for a
	symmetrical induction machine, Voltage and torque equation in arbitrary reference
	frame variables, Analysis of steady state operation, State-space model of induction
T T 1 ()	machine in d-q ² variables, Simulation studies
Unit 6	Ineory of synchronous machines: (06 Hours)
	Equations in arbitrary reference frame, Park's transformation, Derivation of aqu
	model for a salent pole synchronous machine with damper windings, forque
	identification of various components
Toyt Books:	Identification of various components
1	E Fitzgerald Charles Kingsley Stephen D. Umans: Electric Machinery
1.	TMH 5th Fd
2	A K Sawhney "A Course in Electrical Machine Design" Dhannat Rai and Sons
2.	Delhi
3	Say M.G. "Performance & Design of Alternating Current Machine" (English
5.	Language Book Society) CBS Publisher (2002)
Reference B	ooks:
1.	Rik De Doncker, Duco W. J. Pulle, André Veltman: Advanced Electrical Drives:
	Analysis, Modeling, Control Springer, 2011.
2.	Paul C. Krause, Oleg Wasynczuk, Scott D. Sudhoff: "Analysis of Electric
	Machinery & Drive systems"-IEEE Press. 2002
3.	K.M. Vishnu Murthy, B.S. "Computer Aided Design of Electrical Machines"
	Publications, 2008
4.	Rama Krishnan: Electric motor drives: Modeling, analysis, and control. Prentice
	Hall, 2001.
L	

EE310 C Communication Engineering					
Teaching Sc	heme :	v v	Examination Scheme:		
Lectures		3Hrs/ Week	Theory:		
Tutorials	Futorials		Mid Term: 30 Marks		
Practical		End Sem. Exam :70 Ma	arks		
Credits (Th)		3	Credits(P)	NA	
Prerequisite	ites Courses:				
1	Analog a	nd Digital Circuits			
Course Obje)jective:				
1	Introduct	ion to Communication E	ngineering		
2	Study of	modulation, demodulation	n and sampling concepts		
3	Study of	basics of Analog and Dig	gital communication		
4	Power lin	e carrier communication	systems studies.		
Course Oute	comes: Stu	idents' will be able to:			
1	Understa	nd basics of Comm	unication engineering,	Analog and Digital	
	Commun	ication			
2	Analysis	of Modulation, Demodul	lation and sampling techr	niques	
3	Evaluate Digital Modulation Techniques, Coding and Quantizing			ntizing	
4	Simulate	Power line carrier comm	unication systems studies	S	
5	Design mathematical models for communication channels				
6	Understand coding for different modulation and demodulation techniques				
Syllabus:					
Unit 1	Introduc	tion to Communication	Engineering:	(06 Hours)	
	Introduct	ion to Communicatio	n Engineering, Trans	mitter and receivers,	
	Commun	ication Channel, Brief H	Review of Signals and S	systems, Introduction to	
	The Hilb	ert Transform, Analytic	Representation of Band	pass Signals – Hilbert	
	I ransform				
Unit 2	Introduction to Analog Communication: (06 Hours)				
	Fundamentals of Analog Signal transmission, Analog Modulation of Carriers,				
II:4 2	Amplitude Modulation, Single Sideband Modulation			(0(II and	
Unit 5	Angle M	Ion, Demodulation And	Sampling:	(UD HOURS)	
	Angle Modulation, Generation of FM Signals, FM Generation and Detection,			Demodulators Phase	
	Locked I	Loon Frequency Comp	essive Feedback Demo	Julator Performance of	
	AM Systems in Noise Signal-to-noise ratio Noise in AM and Angle Modulation				
	Aw Systems In Noise, Signal-to-noise ratio, Noise III Aw and Angle Modulation Systems Noise in Phase and Frequency Modulation Systems Noise in Angle				
	Modulation, Pulse Modulation Schemes - PWM and PPM Delta Modulation				
	introduction to sampling theorem				
Unit 4	Introduction to Digital Communication : (06 Hours)				
	Introduct	ion to Digital Commu	inication, elements of	digital communication	
	system, c	communication channels	and their characteristic	s, mathematical models	
	for comm	nunication channels, Sam	pling, Quantization, PCN	I and Delta Modulation,	
	Probabili	ty and Random Processe	s, Channels and their Mo	dels	

Unit 5	Digital Modulation Techniques, Coding and Quantizing:(08 Hours)
	Digital Modulation Techniques, Digital modulation formats, Amplitude shift
	keying, frequency shift keying, phase shift keying, DPSK, QPSK, Minimum shift
	keying Equalizers, coding for analog sources-optimum quantization, rate distortion
	function, scalar quantization, vector quantization, Coding techniques for analog
	sources. Temporal waveform coding, spectral waveform coding, model based
	source coding. Source Coding, Channel Coding, Fundamentals of OFDM,
	Quantization,
Unit 6	Multiplexing of Signals and power line carrier communication systems: (06
	Hours)
	Frequency-Division Multiplexing (FDM), Time-Division Multiplexing (TDM),
	Statistical Time-division Multiplexing, Orthogonal Frequency Division
	Multiplexing, power line carrier communication, PLC modulation
Text Books:	r
1.	J. G. Proakis, Digital Communication, Fourth Edition, McGraw Hill
2.	Simon Haykin, Digital Communication, John Wiley & Sons Pvt. Ltd.
3.	K.S. Shanmugam, Digital and Analog Communication Systems, Wiley Int. Pub.
Reference B	ooks:
1.	Taub H. and Schilling D.L., "Prnciples of Communication Systems", Tata
	McGraw Hill, 2001.
2.	Proakis J. G. and Salehi M., "Communication Systems Engineering", Pearson
	Education, 2002.
3.	Haykin S., "Communications Systems", 4th Ed., John Wiley and Sons, 2001.
4.	B. P. Lathi, Modern Analog and Digital Communication Systems, Prism Sounders

EE312 Mini project and Seminar-II Credit (2)

The project work is intended to develop skill of electrical hardware assembly, electronics PCB design and assembly for small gadgets amongst the students. This skill may become useful during their final year project.

The students should undertake an electrical/electronic based hardware project and they have to submit report on the same. The project should include design and development of a small gadget useful in day-to-day life, in consultation with the faculty advisor.

OPEN ELECTIVES:

SEMESTER-	V
------------------	---

EEO 301 Renewable Energy Technologies				
Teaching Scheme :		Examination Scheme:		
Lectures	3Hrs/ Week	Theory:		
Tutorials		Mid Term:30 Marks		
Practical		End Sem. Exam :70 Marks		
Credits (Th)	Th)3Credits(P)NA			
Prerequisite	s Courses:			
1	1 Engineering Physics , Environmental Science, Engineering Chemistry			
Course Obj	ectives:			
1	To develop fundamental und	erstanding about Solar Thermal and Solar		
	Photovoltaic systems.			
2	To provide knowledge about deve	lopment of Wind Power plant and various		
	operational as well as performanc	e parameter/characteristics		
3	To explain the contribution of Bio	mass Energy System in power generation		
4	To teach Integration and Economic	cs of Renewable Energy System.		
Course Out	comes: Students' will be able to:			
	A polyze operating conditions like	ar, wind and also experiments of same		
Z	Analyze operating conditions lik	e stand alone and grid connected of renewable		
2	Bonroduce different Storage Syste	and concept of Integration and Economics of		
5	Renewable Energy System	ble Energy System		
1	Summarizing forthcoming renewable technologies			
5	Design the solar tracking system			
6	Simulate and implement solar charge controller in practical applications			
Syllabus :	abus :			
Unit 1	Introduction to Renewable Energy Sources: (06 Hrs)			
	Energy sources: classification of energy sources, introduction to renewable energy.			
	Renewable energy trends, and key factors affecting renewable energy supply,			
	advantages and disadvantages of l	RES and their uses.		
Unit 2	Solar Energy:	(08 Hours)		
	Solar Photovoltaic: Technologie	s-Amorphous, monocrystalline, polycrystalline;		
	V-I characteristics of a PV ce	ll, PV module, array, Maximum Power Point		
	Tracking (MPPT) algorithms.			
	solar thermal conversion: basics,	solar concentrator and tracking system, flat plate		
	collectors-liquid and air type, theory of flat plate collectors, selective coat			
TT -4 0	advanced collectors: ETC, solar P	ond (00 H)		
Unit 3	Wind Energy: :	(U8 Hrs)		
	Power available in wind, wind t	rotor local effects wind sheer turbulance &		
	acceleration effects measurement	of wind wind speed statistics anargy estimation		
	of wind regimes capacity factor	aerodynamics of wind turbines air foil lift &		
	drag characteristics power coeffi	cient & tip speed ratio characteristics electrical		
	generator machines in wind energy	v systems.		
	I denotation inaccinites in white cherg	<i>, .,</i>		

Unit 4	Biomass Energy: : (06 Hrs)
	Overview of biomass as energy source, biomass as a fuel, physicochemical and
	thermal characteristics of biomass as fuel, biochemical conversion of biomass for
	energy production, liquid biofuel, energy plantation- overview on energy
	plantation, basis of selecting the plants for energy plantation, waste land utilization
	through energy plantation
Unit 5	Forthcoming renewable technologies: (06 Hrs)
	Geothermal Energy Generation, ocean-thermal energy generation, tidal energy
	generation, magneto hydro dynamic power generation- working, layout, different
	components, advantages, limitations
Unit 6	Storage Technologies:(06 Hrs)
	Introduction, need for storage for RES, basic thermodynamic and electrochemical
	Principles, classification, traditional energy storage system- battery, fuel cell,
	principle of operation, types, applications for power generation.
Text/ Refere	ence Book:
1.	Gary-L. Johnson Wind Energy Systems Tata Mc-Graw-Hill Book Company.
2.	Boyle, Godfrey. 2004. Renewable Energy (2 nd edition). Oxford University Press, 450
	pages (ISBN: 0-19-926178-4).
Reference B	ooks:
1.	S. P. Sukhatme, J. K. Nayak Solar Energy- Principles of Thermal Collection and
	Storage (3rd edition), Tata McGraw-Hill Publication.
2.	Paul Gipe Wind Power, Renewable Energy for Home, Farm, and Business.
3.	Mullic and G.N.Tiwari, "Renewable Energy Applications", Pearson Publications.
4.	Website : <u>powermin.nic.in</u> , <u>www.mnre.gov.in</u>

EEO 302 Power Plant Engineering				
Teaching Scheme :			Examination Scheme:	
Lectures		3 Hrs/ Week	Theory:	
Tutorials			Mid Term:30 Marks	
Practical			End Sem. Exam :70 Ma	rks
Credits (Th)		3	Credits(P)	NA
Prerequisite	s Courses:			
1	Power System Engineering,			
2	Electrical machines			
Course Obje	Dbjectives: Students' will be able to:			
1	To develop fundamental understanding about various energy sources			
2	To provide knowledge about working of steam power plant, Hydro power plant,			
	nuclear power plant and diesel power plant			
3	To teach Economics of combined working power plants			
Course Outcomes:				
1	Reproduce Economics of combined working power plants			
2	Classify different sources of energy and analyse economics of power plant			
3	Explain the working of various power plant			

4	Understand mechanical and chemical aspect related to power plant engineering
5	Analyse different components of power plants
6	Understand tariffs related to power plants
Syllabus :	
Unit 1	Sources of Energy and Economics of Power Plant (06 Hours)
	Sources of energy, Fuels, Types of fuels, Solid fuels, Liquid fuels, Gaseous fuels,
	Calorific value of fuels, Types of coal, Coal selection, Requirements of fuel, Hydel
	Potential energy, Nuclear energy - Comparison of Sources of power - Non
	conventional sources of energy Solar energy, Wind energy, Tidal power and Bio
	gas. Types of loads. Economic load sharing, Economics in plant selection,
	Economic of power generation, Choice of power station, Energy rates
Unit 2	Steam Power Plant (08 Hours)
	Thermal Station: Introduction, selection of sites, Layout of Steam power Plant,
	Fuel and ash handling, Combustion for burning coal, Mechanical stackers,
	Pulverizes, Electrostatic Precipitators, Draughts-Different types, Surface
	condensers - Types of cooling towers, Steam turbines, Steam engines: Advantages
	of steam turbines over steam engines, Bollers: Types of bollers, Principles of
	steam power plant design, Factors affecting steam plant design, Thermal power
Unit 2	Judro Electric Dever Dent (06 Hours)
Unit 5	Law out of Hydroelectric power plant: Elements of Hydroelectric power plan
	Classification of Hydroelectric power plant. Advantages of Hydroelectric power
	plant Mini and Micro hydro power plants Types of Dams Pen stock Draft tube
	Surge tank Hydraulic turbines Classifications Turbine governing Cavitations
	Safety measures in Hydro power stations. Control room functions, Switch gear
	Site selection. Comparison of Hydroelectric power plant and steam power plant.
Unit 4	Nuclear Power Plant (08 Hours)
	Review of atomic physics (atomic number, mass number, isotopes, atomic mass,
	unit rate of radioactivity, mass equivalent number, binding energy and mass
	defects), Nuclear power plant layout, Elements of Nuclear power plant, Types of
	reactors, Pressurized water reactor, Boiling water reactor, Waste disposal and
	safety, Advantages of Nuclear power plant, Comparison of Nuclear power plant
	and steam power plant, Site selection and Commissioning procedures, simple
	numerical, India's nuclear power program.
Unit 5	Diesel Engine & Gas Turbine Power Plant (06 Hours)
	Types of diesel engine power plants, Layout and components, Diesel engine power
	plant auxiliaries, Engine starting methods, Advantages of Diesel engine power
	plant, Application of Diesel engine power plant, Site selection. Gas turbine power
	plant ,Classification, Elements of simple gas turbine power plant, Layout, Open
	and Closed cycles, Reheating, Regeneration and Inter cooling – Combined cycles -
	Applications and advantages of Gas turbine plant, simple numerical examples.
Ile:4 (Combined merting of nervou plantae
Unito	Combined working of power plants: (06 Hours)
	pumped storage plants inter connections of power stations. Tariff: Eived cost
	running cost and their interrelation for all types of conventional power plants
	running cost and then interrelation for an types of conventional power plants,

	depreciable cost, different types of tariffs, numerical example based on above, effect of deregulation on pricing			
Text Books	•			
1.	P.K. Nag. "Power Plant Engineering". Third Edition. Tata McGraw – Hill 2007			
2.	G R Nagnal "Power Plant Engineering" Khanna Publishers			
Deferment D		Br	,	
Reference B	OOKS:			
1.	Arora S.C Rai, 2001	C and Domkundwar, "A	Course in Power plant Engineering's, Dhanpat	
2.	El-Wakil	M.M, "Power Plant Tecl	nnology", Tata McGraw-Hill	
3.	Rai G.D,	"Introduction to Power I	Plant Technology", Khanna Publishers.	
EEO303	Electrica	l Installation and D	esign	
Teaching Sc	heme :		Examination Scheme:	
Lectures		3 Hrs/ Week	Theory:	
Tutorials			Mid Term:30 Marks	
Practical			End Sem. Exam :70 Marks	
Credits (Th)		3	Credits(P) NA	
Prerequisite	es Courses			
1	Electrical	Measurement, Electrica	l machines	
2	Power Sy	vstem		
Course Obj	Course Objectives:			
1	Study of	essentials of electrical ins	stallation.	
2	Study of wiring system and their estimation.			
3	To study various aspects of illumination.			
4	To study	estimation and costing of	f H.T and L.T conductors for installation.	
5	All Indian Electricity Rules.			
Course Outcomes:Students' will be able to:				
1	Design the electrical wiring systems for residential, commercial requirement			
2	Substation arrangement studies			
3	Find out specifications of cables, insulators for various voltage ratings.			
4	Acquainted with different methods of measuring resistances.			
5	Start his/her own consultancy and business opportunities in electrical installation			
6	Design and representing the electrical systems with standard symbols and			
Syllobus :	drawings, SLD			
Unit 1	Floctrico	I Drowing.	$(06 \mathbf{Hrs})$	
Unit I	Principles	s Symbols Single Lir	e Diagrams (SLD) Introduction to common	
	Flectrical	Components such as a	contactor switches relays timers cables lugs	
	connector	rs MCCB, ELCB, panel	meters etc. Different Tools Used: Screwdriver	
	Pliers of various types, wrench, and blowlamp, Precaution for using tools			
Unit 2	Wiring S	System:	(06 Hrs)	
	Selection	of types of wiring, Me	ethods of wiring (Cleat, Casing capping, Metal	
	sheathed	and Conduit) Calculation	n and Estimation of power rating of different AC	
	and DC n	nachines. Electrical syste	m design for a typical midsize housing complex,	

	mechanical workshop, auditorium and IT industry, Estimation for a light and fan			
	system, Process of tendering and Construction and Design of MCC and PCC for a			
	typical industry			
Unit 3	Complete arrangement of substation (Single and double bus bar), key diagrams for			
	typical substations. Various type's pole structure, Insulators, cables and their			
	types. Review of Insulated Wires: Types: Rubber covered taped and compounded			
	or VIR, Lead alloy sheathed, Tough rubber sheathed, Weather proof, Flexible wire			
	splicing, Termination (Twist splicing, Married joint, Tap joint, Pig tail joint)			
	(06 Hrs)			
Unit 4	Illumination: Radiant Energy, Terms and Definitions, Laws of Illumination, Polar			
	Curves, Photometry, Methods of Lighting calculations, Consideration points for			
	planning a lighting installation ,Design consideration of good lighting scheme,			
	Luminous Efficacy, Electrical Lamps, Design of Interior and Exterior Lighting			
	Systems, Illumination Levels for Various Purposes, Light Fittings, Factory			
	Lighting, Flood Lighting, Street Lighting, Energy, Conservation in Lighting			
Unit 5	Measurement of earth resistance & Testing: (06 Hrs)			
	Measurement of Earth Resistance, Two Point Methods, Three Point method, Fall			
	of potential method, Direct measurement of Earth resistance, Testing of			
	Installations,			
	Estimating & Conductor size calculations for internal wiring H.T & L.T			
	Overhead Lines and Underground cables: Estimating, Price catalogue,			
	Schedule of rates & Estimating data, Determination of conductor size, Current			
	carrying capacity, Voltage drop, Minimum permissible size, Conductor size			
	calculation for internal domestic wiring, Underground cable, Overhead lines with			
	A.C.S.R			
Unit 6	Estimates for L.T Distributors & Street Light Feeders, Estimates for 11 kV			
	Feeders, All Indian Electricity Rules like 1956,2003,2005, National Tariff Policies			
	(06 Hrs)			
Text Books:				
1.	K.B. Raina & S.K. Bhattacharaya – Electrical Design Estimating & Costing, New			
	age international publishers (1991), 1st Edition.			
2.	S. L. Uppal and G.C. Garg – Electrical Wiring, Estimation & Costing, Khanna			
	Publication (2008).			
Reference B	Reference Books:			
1.	J. B. Gupta, "Utilization of Electric Power and Electric Traction", 2002, S. K.			
	Kataria and Sons.			
2.	Pratab H., "Art and Science of Utilization of Electrical Energy", Second Edition,			
	Dhanpat Rai and Sons, New Delhi.			
3.	Surjeet Singh, "Electrical Estimating and Costing" Dhanpat Rai and Company (P)			
	Ltd, Reprint 2008.			

SEMESTER- VI

EEO304 A	dvances	in Solar Energy					
Teaching Scheme :			Examination Scheme:				
Lectures		3 Hrs/ Week	Theory:				
Tutorials			Mid Term: 30 Marks				
Practical			End Sem. Exam :70 Ma	arks			
Credits (Th)		3	Credits(P)	NA			
Prerequisite	s Courses						
1	1 Power Electronics						
Course Objective:							
1	To create awareness about the importance of renewable technology for sustainable						
	future.						
2	Impart the knowledge of solar power generation						
3	Study of Solar Photovoltaic Energy Conversion & Utilization						
4	To acquaint students with possible storage systems in renewable generation						
5	Introduce recent trends in renewable energy system to students						
Course Outcomes: Students' will be able to:							
1	Understand the various renewable energy sources.						
2	Understand the equivalent circuit of PV cell and its modelling						
3	Explore business opportunities in Solar Technologies						
	Describe energy storage systems						
4	Understand the smart grid, recent trends in renewable system &						
5	Summarize standards for grid integration through Case study of solar power plants						
6	Design suitable power controller for the grid-connected PV system						
Syllabus :	1						
Unit 1	Introduction to Renewable Energy Sources						
	Global and Indian scenario of RES, need for alternative energy sources,						
	advantages & disadvantages of RES, classification of RES & comparison, key						
11.4.0	factors at	tecting RES					
Unit 2	Solar En	ergy	alan nhatawalta'a nawan	comparison basing of DV			
	solar the	rinal power generation, s	ficiency of DV coll con	generation, basics of PV			
	cell, materials used for PV cell, efficiency of PV cell, equivalent electrical circuit,						
	different	electrical parameters of	on LV & P-V curves	measurement of solar			
	insolation	solar concentrator flat	nlate & concentrating co	llectors			
	moonution	i, solar concentrator, nat	plate & concentrating co	neetors.			
Unit 3	Solar Ph	otovoltaic Energy Conv	version & Utilization				
	Configuration of PV power generation system- off-grid system & grid-connected						
	PV system, single stage & two stage converters for power transfer, single phase &						
	three pha	se inverters for PV, contr	rol of grid connected PV	system.			
Unit 4	Storage 7	Fechnologies	~~~~~	•			
	Introduct	ion, need for storage for	RES, traditional energy	storage system- battery,			
	fuel cell,	principle of operation, ty	pes of fuel cell.				

Unit 5	Emerging Trends in Renewable Energy			
	Introduction to SG, SG in Indian context, architecture of SG, advantages			
	&disadvantages, key challenges for SG, SG technologies, AMI, PMU, WAMS,			
	standards & codes for grid integration of DG system			
Unit 6	Case study of Off –Grid and On-Grid Solar Plants			
Text Books:				
1.	Gary-L. Johnson Wind Energy Systems Tata Mc-Graw-Hill Book Company.			
2.	Boyle, Godfrey. 2004. Renewable Energy (2 nd edition). Oxford University Press, 450			
	pages (ISBN: 0-19-926178-4).			
3.	Mullic and G.N.Tiwari, "Renewable Energy Applications", Pearson Publications.			
Reference Books:				
1.	S. P. Sukhatme, J. K. Nayak Solar Energy- Principles of Thermal Collection and			
	Storage (3rd edition), Tata McGraw-Hill Publication.			
2.	Paul Gipe Wind Power, Renewable Energy for Home, Farm, and Business.			