Course of Study Choice Based Credit System T. Y. B. Tech. (Electrical Engineering) (Effective for Academic Year 2018-19 only)

Department of Electrical Engineering, SGGS Institute of Engineering and Technology, Vishnupuri, Nanded-431606 (MS), India

(An autonomous institute established by Govt. of Maharashtra)

SGGS Institute of Engineering and Technology, Vishnupuri, Nanded Department of Electrical Engineering Choice Based Credit System

T. Y. B. Tech. (Electrical Engineering) For Academic Year 2018-19 Only

STRUCTURE

EE303Feedback CoEE305MicroprocessEE307Digital SignaEE309Elective-II	m Analysis and Stability	Lectures 3	Tutorials	Practical	Credits		
EE303Feedback CoEE305MicroprocessEE307Digital SignaEE309Elective-II	· · ·	3			Cicuits		
EE305MicroprocessEE307Digital SignaEE309Elective-II		5	-	2	4		
EE307Digital SignaEE309Elective-II	ontrol System	3	1	2	5		
EE309 Elective-II	sor and Microcontroller	3	1	2	5		
	al Processing	3	-	2	4		
EE311 Mini Project		3	-	-	3		
	and Seminar-I			4	2		
	Sub Total			12	23		
	Semester-VI						
Course Code Name of the	e Course	Lectures	Tutorials	Practical	Credits		
EE302 Power Plant	Engineering	3	-	-	3		
EE304 Electromagn	etic Fields	3	1	-	4		
EE306 Control Syst	em Design	3	-	2	5		
EE308 Power Electr	ronics	3	1	2	4		
EE310 Elective-III		3	-	-	3		
EE312 Mini Project	Mini Project and Seminar-II		-	4	2		
	Ch T-4-1	15	2	08	21		
Total	Sub Total	15	-				

Elective-II

EE309A-Energy Audit and Conservation EE309B-Renewable Energy Technologies EE309C-Electrical Installation and Design **Elective-III:** EE310A: Utilization of Energy and Management EE310B: Electrical Machine Analysis EE310C: Communication Engineering

Attendance Criteria: Students have to maintain 75% attendance in all the registered courses in a semester to be eligible for appearing examinatio

SEMESTER-V

EE301 Power System Analysis and Stability			
Teaching Scheme :		Examination Scheme:	
Lectures	3 Hrs/ Week	Theory:	
Tutorials		Mid Term:30 Marks	
Practical	2 Hrs/Week	End Sem. Exam :70 Marks	
Credits (Th)	3	Credits(P) 1	

Prerequisite	es Courses:
1	Power System Engineering, Electrical Machine-II
Course Obj	ective:
1	To understand the need of load flow and short circuit analysis
2	To impart knowledge of Load flow Analysis, Short circuit studies and power system stability
3	To develop skills for performing stability studies
4	To illustrate the automatic frequency and voltage control strategies for single and two area case and analyse the effects, knowing the necessity of generation control
Course Out	comes: Students' will be able to:
1	Summarize the use of different load flow analysis method and assess the power system under symmetrical fault.
2	Understand symmetrical components of network and analyze the power system under unbalanced fault.
3	Evaluate the rotor angle, voltage stability and solve swing equation by various methods.
4	Develop and simulate power system in any available software for load flow analysis
5	Study and analyze stability of power system when subjected to electrical or mechanical disturbance
6	Produce report of load flow analysis and stability analysis of practical power system network in software.
Syllabus :	
Unit 1	Network Representation and Power Flow Analysis:(06 Hours)Loop Equations and Node Equations, Bus admittance and bus impedance matrix, network solution using matrix algebra, per unit system, single line diagram.Load Flow Studies: Load flow problem Bus classification, Nodal admittance matrix, Network model formulation and development of load flow equations.Iterative methods of solution a) Gauss Sidel method b) NewtonRaphson method c) Fast decoupled method.
Unit 2	Symmetrical Fault Analysis and Components: (06 Hours)

	Transient in RL series circuits, short circuit of synchronous machines, Short
	Circuit of a loaded synchronous machine, The bus impedance matrix in fault
	calculations, selection of circuit breaker, Symmetrical Components of
	Unsymmetrical phasors and power in terms of symmetrical components sequence
	impedances and sequence network of unloaded alternators and other power
	systems components network.
Unit 3	Unsymmetrical Fault Analysis: (08Hours)
Chit 5	Unsymmetrical faults on unloaded alternator and three phase power system with a)
	line to ground b) line to line c) double line to ground d) one conductor open fault
	e) Two conductor open fault, Simplified models of synchronous machines for
	transient analysis.
Unit 4	Power System Stability: (08 Hours)
	Introduction to Power system stability problem, Rotor dynamics, m/c
	representation, Swing equation, power angle equation for two m/c system, Steady
	state stability and transient state stability, equal area criterion for stability and its
	application. Numerical solution of swing equation, factors affecting transient
	stability, methods for improving stability of Power system.
Unit 5	Load Frequency Control: (06 Hours)
	Objectives, tie line bias control, flat frequency control, supplementary control,
	Interconnected areas, two area three area systems, state variable model for single,
	two & three areas, cross coupling between control loops (AVR AGC) Applications
	of modern control theory. Application of artificial intelligence, AGC using
	Kalman methods.
Unit 6	Automatic Generation Control:(06 Hours)
	AGC, turbine generator models for real, reactive powers and frequency control,
	excitation systems, governor types and control, block schematics for alternator
	voltage regulator schemes and governors.
Text Books:	
1.	William Stevenson, "Elements of Power System Analysis", Tata McGraw-Hill (2001), 4 th Edition.
2.	"Power System Analysis", I.J. Nagrath and D.P. Kothari, Tata McGraw Hill-
	Education (2007), 2 nd Edition.
Reference B	
1	Hadi Sadat, "Power System Analysis", , Tata McGraw Hill Edition, Copy 1999.
2	O. I. Elgerd, "Electrical energy systems theory: An introduction" Tata McGraw
	Hill, edition 1999
3	A. R. Bergen and Vijay Vittal, "Power system analysis", (2nd edition), Pearson
	Education Asia, 2001
Term Work	: It will consist of a record of the following experiments based on the prescribed
syllabus.	
1.	Determination of sequence n/w of synchronous m/c.
2.	Determination of sequence n/w of Induction motor.
3.	Solution to load flow problem using GS, NR and FD method using software.

4.	Component analysis and component synthesis using various software tools.	
5.	Fault analysis of various faults like LG, LLG and LL faults at least 3 sets of	
	software experiments.	
6.	Four problems on stability using Equal area criteria.	
7.	Four problems on stability using swing curve plot.	
Note: The above set of computational work is to be carried preferably using software like		

MATLAB, Scilab, MiPower, etc.

Practical Examination:

The examination will be of three hours duration and will consist of an experiment based on termwork and followed by an oral based on above syllabus.

EE303 Feedback Control System					
Teaching Sc	Scheme : Examination Scheme:				
Lectures 3Hrs/ Week Theory:					
Tutorials 1 Hrs/ Week		1 Hrs/ Week	Mid Term:30 Marks		
Practical		2 Hrs/Week	End Sem. Exam :70 Marks		
Credits (Th)	Th) 4 Credits(P) 1			1	
Prerequisite	Prerequisites Courses:				
1	Laplace 7	Transform			
2	Fundame	ntals Circuit Theory			
Course Obje	ective:				
1			delling of physical systems.		
2			nd frequency domain modelli		
3	Analyse the system response in time domain and frequency domain.				
Course Outcomes:Students' will be able to:					
1	To exhibit the capability to represent the mathematical model of a system				
	and to determine the response of different order systems for various standard				
	inputs.				
2	To demonstrate the ability to apply Laplace transform, transfer functions,				
	modeling RLC circuit, block diagrams for simulation and control.				
3	To specify control system performance in the frequency-domain and				
	design co	mpensators to achiev	e the desired performance.		
4			e learned theoretically in	the field of control	
		igineering.	-		
5	To gain some practical experience in control engineering which might				
		a future research poin			
6	To construct and recognize the properties of root-locus for feedback control				
	systems with a single variable parameter.				
Syllabus :					
Unit 1	Introduction to control systems(06 Hours)				

	Definition, history, elements of control systems, examples of control
	systems, open- loop (non-feedback) and closed loop (feedback) control systems,
	effect of feedback on overall gain, parameter variations, external disturbances or
	noise and control over system dynamics, regenerative feedback, linear
	versus nonlinear control systems, time- invariant versus time- varying
	systems, SISO and MIMO systems
Unit 2	Mathematical modeling of dynamic systems (07 Hours) Introduction,
Cint 2	canonical form of feedback, control systems, transfers function and impulse
	response. differential equations and transfer functions of physical systems such
	as mechanical, electrical, electromechanical, thermal, pneumatic and liquid-
	level systems, analogous systems, force-voltage, force-current and torque-
	current analogies, loading effects in interconnected systems, systems with
	transportation lags, linearization of nonlinear mathematical models, block diagram
	representation of control system, rules and reduction techniques, signal flow
	graph: elements, definition, properties, masons gain formula, application of
	gain formula to block diagrams.
Unit 3	Time- domain analysis of control systems(08 Hours)
	Standard test signals, transient response, steady state error and error
	constants, dynamic error series, time response of first and second
	order systems and transient response specifications, effect of adding poles and
	zeros to transfer functions, dominant poles of transfer function, basic control
	actions and response of control systems, effects of integral and derivative
	control action on system performance, higher order systems.
Unit 4	Stability of linear control systems(06 Hours)
	Concept of stability, BIBO stability: condition, zero input and
	asymptotic stability, Hurwitz stability criterion, Routh-Hurwitz criterion in detail,
	relative stability analysis.
Unit 5	The Root–Locus technique(06 Hours)
	Introductions, basic properties of the root loci, general rules for constructing root
	loci, Root Locus analysis of control systems, Root Loci for systems with transport
	lag, Root-contour plots, Sensitivity of the roots of the characteristics equation.
Unit 6	Frequency domain analysis (08 Hours)
	Frequency response of closed loop systems, frequency domain specifications of
	the prototype second order system, correlation between time and frequency
	response, effect of adding a pole and a zero to the forward path transfer
	function, polar plots, Bode plots, phase and gain margin, stability analysis with
	Bode plot, log magnitude versus phase plots. Constant M and N circles, Nichols
	chart, gain adjustments, sensitivity analysis in frequency domain,
	Nyquist stability criterion: mathematical preliminaries, stability and relative
	stability analysis.
Unit 7	Compensators
	Introduction, different types of compensators (Electrical, Electronic and
	Mechanical type), their transfer functions.

Reference	e Books:
1.	K. Ogata, "Modern Control Engineering", Fourth Edition Pearson education India, 2002.
2.	B. C. Kuo, "Automatic control systems", Seventh Edition, Prentice –Hall of India, 2000.
3.	Norman S. Nise, "Control systems Engineering", Third Edition, John Wiley and Sons. Inc, Singapore, 2001.
4.	R. C. Dorf and R. H. Bishop, "Modern Control systems", Eighth Edition, Addison Wesley, 1999.
5.	I. J. Nagrath and M. Gopal, "Control systems Engineering", Third Edition, New age International Publishers, India, 2001.
Term W following	
1.	Determination of transfer function of an armature controlled d. c. motor.
2.	Determination of transfer functions of D. C. generator.
3.	Effect of feedback on D. C. generator.
4.	Transient response of second order system.
5.	Study of D. C. positional servo system.
6.	Study of A. C. servo voltage stabilizer.
7.	Study the performance of an open and closed loop control system using electronic amplifiers using OPAMPs.
8.	Study the performance of a second order system (Use any OPAMP based electronic system such as an active second order Butterworth filter).
9.	Study the performance of any first order and second order system
Experime	ents based on software (programs)
1.	Introduction to MATLAB, MATLAB's simulink and control systems toolbox (with some examples) or any other control system related software package.
2.	Compare and plot the unit-step responses of the unity-feedback closed loop systems with the given forward path transfer function. Assume zero initial conditions. Use any computer simulation program.
3.	Study of effect of damping factor on system performance by obtaining unit step response and unit impulse response for a prototype standard second order system. Consider five different values for $x = 0.1, 0.3, 0.5, 0.7$ and 1.0. Also study the effect of varying undammed natural frequency by taking three different values. Comment on the simulations obtained.
4.	Write a program that will compute the step response characteristics of a second order system i.e. percent overshoot, rise time, peak time and settling time. Generalize it for accepting different values of undammed natural frequency and damping factor.

5.	Study and plot the unit step responses of addition of a pole and a zero to the forward path transfer function for a unity feedback system. Plot the responses for four different values of poles and zeros. Comment on the simulations obtained.
6.	Study and plot the unit step responses of addition of a pole and a zero to the closed loop transfer function. Plot the responses for four different values of poles and zeros. Comment on the simulations obtained.
7.	Program for compensator design using Bode plot.
8.	Program for compensator design using Root Locus analysis.
9.	 Plot and comment on various properties of any three systems (problems) using Routh-Hurwitz criterion Root locus technique Bode plots Nyquist plots Use any software package.

EE305Microprocessor and Microcontroller				
Teaching Scheme : Examination Scheme:				
Lectures		3 Hrs./ Week	Theory:	
Tutorials		1	Mid Term: 30 Marks	
Practical		2 Hrs./Week	End Sem. Exam :70 Ma	arks
Credits (Th)		4	Credits(P)	1
Prerequisite	s Courses			
1	Analog a	nd Digital Circuits		
Course Objective:				
1	To teach the students to familiarize with microprocessor and microcontroller			
	architecture and functioning.			
2	To train the students to program the microprocessor and microcontrollers for any			
	application.			
Course Outcomes: Students' will be able to:				
1.	To describe basics of 8085, 8051 and its instruction set.			
2.	To understand historical development of microcontrollers and to know different 8, 16,			
	32 bit microcontrollers.			
3.	To solve assembly language programs based on the instruction set of 8085 and 8051.			
4.	To get insight of 8051 based hardware system and so to study ADC, keyboard etc.			
5.	To execute assembly language programs based on the instruction set of 8051			
6.	To develop 8085, 8051 based instrumentation system.			

Syllabus :	
Unit 1	Introduction to 8085
	Architecture and operation, pin out diagram. Assembly language programming for 8085 microprocessor, instruction classification, instruction set study in details, addressing modes, writing assembly language programs, stacks subroutines, instruction set timing diagrams, a minimum configuration for 8085, interrupt structure of 8085, interrupt circuit, hardware and software interrupts.
Unit 2	Interfacing memories to 8085
	Interfacing memories EPROM and RAM with 8085 with exhaustive and partial decoding techniques.
Unit 3	Peripheral devices used in 8085 systems
	Following structure programmable peripheral devices are to be studied in details as regards block diagram, software for their interfacing with 8085: 8255, 8253, 8279, ADC.
Unit 4	Introduction to microcontrollers
	8051 Architecture, pin out diagram, 8051 oscillator and clock, Program counter and Data pointer, A and B CPU registers, flags and PSW, internal memory, stack and stack pointer, SFRS, internal ROM, I/P and O/P ports.
Unit 5	Programming 8051
	Assembly language programming for 8051 microcontroller, instruction classification, instruction set Arithmetic and Logical operations, jump and call instructions etc., writing assembly language programming based on instruction set, stacks and subroutines.
Unit 6	Timers in 8051
	Interrupts of 8051, counters and timers, timer modes, timer/counter programming.
Unit 7	Interfacing peripherals to 8051
	8051 microcontroller interfacing with: keyboard and display, A/D and D/A chips.
Unit 8	Design of 8051 based systems
	Design of dedicated systems using 8051 for temperature indication OR/AND control, flow indication, OR/AND control, stepper motor control, embedded control systems, Smart transmitters.
Unit 9	Serial data transmission
	Introduction to serial data transmission methods.
Text/ Refere	ence Book:
1.	K. L. Short, "Microprocessor and programming logic", Second Edition, Prentice- Hall India Pvt. Ltd.
2.	R. S. Gaonkar, "Microprocessor Architecture, Programming and application with 8085/8085A", Fourth Edition, Willey Eastern Ltd.
3.	B. Ram, "Fundamentals of microprocessor and Microcomputer", Dhanpat Rai and Sons, Eighth Edition, New Delhi.
4.	Ayala K. J., "8051 Microcontroller: Architecture, Programming and applications"

	Second Edition, Penram international.			
5.	Muhammad Ali Mazidi, Janice G. Mazidi and Rolin D. McKinlay, "The			
	Microcontroller and Embedded Systems", Second Edition, Pearson, 2012.			
Reference Books:				
1.	B. Ram, "Advanced Microprocessor and Interfacing" Tata McGraw-Hill Publishing			
	Company Ltd., First Edition, New Delhi.			
2.	Ajit Pal, "Microprocessor Principles and Applications", Tata Mc-Graw Hill, First			
	Edition New Delhi.			
3.	U. V. Kulkarni and T. R. Sontakke, "The 8085A Basics: Programming and			
	Interfacing", Sadusudha Prakashan, First Edition, Nanded.			
4.	Intel Mcs, "8085 users manual", Intel Corporation.			
5.	Myke Predko, "Programming and customizing the 8051 Microcontroller", Tata			
	McGraw-Hill, First Edition, New Delhi.			
6.	N.G. Palan, "8031 Microcontroller – Architecture, Programming and Hardware			
	Design", Technova publishing House.			
Term Work				
It will consist of a record of at least eight of the following experiments based on the				
Prescribed sy				
1.	Study of Dyralog 8085 kit.			
2.	Writing simple programs based on 8085 Instruction set.			
3.	Write a program to find largest number from a series of numbers.			
4.	Write a program to transfer a block of data.			
5.	Write a program for arranging numbers in ascending / descending order.			
6.	To study interfacing of 8255 with LEDs, 7-Segment display.			
7.	To study interfacing of 8255 with Keyboard, ADC.			
8.	To study 8051 Simulator.			
9.	To write simple programs using 8051 simulator like-			
	a. Finding largest/smallest number.			
	b. arranging numbers in ascending / descending order.			
	c. Arithmetic of 16-bit numbers.			
10.	Interfacing of stepper motor with microcontroller.			
11.	Mini project based on 8051.			
Note: The co	omputational work is to be carried preferably by using software tools likeMATLAB,			
Scilab.				
Practical Ex	camination:			
The examination will be of three hours duration and will consist of an experiment based on term-				
work and followed by an oral based on above syllabus.				

E307 Digit	al Signa	l Processing			
Teaching Sc		0	Examination Scheme:		
Lectures		3 Hrs/ Week	Theory:		
Tutorials		Mid Term:30 Marks			
Practical 2 Hrs/Week		End Sem. Exam :70 Marks			
Credits (Th)		3	Credits(P)	1	
Prerequisite	s Courses	•			
1		nd Systems			
Course Obje	-	,			
1		rate Sampling theore	m, classification of discrete	signals and systems	
2			transform, inverse Z transfo	· ·	
3		ibe Frequency respon			
4			nd analyze the response		
5			ions in electrical engineering	g	
Course Outo		udents' will be able			
1		and reconstruct any a			
2		uency response of L			
3	Find Fou	rier Transform of dis	crete signals		
4		f IIR & FIR filter	C		
5	Implementation of IIR and FIR filter				
6	Develop DSP Algorithm for various application				
Syllabus :		0			
Unit 1	Introduc	ction (8 Hours)			
	Discrete time signals and systems, time domain characterization of				
	discrete time LTI systems, sampling theorem, benefits and limitations of				
	processing signal digitally. Correlation of signals. The Z-transform: inverse Z-				
	transform and Z-transform properties for one-sided and two-sided z-				
	transforms. Discrete Time Fourier Transform (DTFT) and its properties.				
Unit 2	LTI Discrete Time Systems in transform domain (6 Hours)				
			e transfer function, types of		
			minimum-phase and max	kimum-phase transfer	
		, inverse systems.			
Unit 3	Discrete Fourier Transform (6 Hours)			(6 Hours)	
			(DFT) and its properties.	Computation of DFT	
	、 U	orithms), Decimat		cimation-In-Frequency	
		nd radix-n algorithms	s of FFT.		
Unit 4	Digital F	ilter Structures:		(6 Hours)	
	Digital	filter structures:	block diagram repres	entation, equivalent	
	structure	s, basic FIR structu	res, basic IIR structures,	All pass filters, IIR	
			ures, FIR cascaded lattice str		
Unit 5	Digital fi	ilter design IIR filte	r design	(6 Hours)	

	Bilinear transformation, impulse invariant transformation, Lowpass IIR digital			
	filters, spectral transformations, FIR filter design using windowing techniques,			
	frequency sampling technique, and computer aided design.			
Unit 6	Digital Signal Processor(8 Hours)			
Cint 0	Harvard architecture and modified Harvard architecture. Introduction to fixed			
	point and floating point DSP processors, architectural features,			
	computational units, bus architecture and memory architecture, data			
	addressing, address generation unit, pipelining, on-chip peripherals.			
Text Book/F	Reference Book:			
1.	E. C. Ifeachor, B. W. Jarvis, Digital Signal Processing- A Practical Approach,			
	Second Edition, Pearson Education, New Delhi, 2002.			
2.	S. K. Mitra, Digital signal processing- A computer based approach, Tata			
	McGraw Hill, 2002			
3.	A.V. Oppenheim, R, W, Schafer, Discrete time signal processing, Prentice-Hall			
	ofIndia, 2001.			
4.	J. G. Proakis, D. G. Manolakis, Digital signal processing –Principles, algorithms			
	and applications, Prentice Hall of India, 2002.			
5.	R. G. Lyons, "Understanding Digital Signal Processing", Pearson Education			
	New Delhi, 1999.			
Term Wo	rk: Term work shall consist of at least six to eight			
assignment/	tutorials/practical based on above syllabus. Some of the experiments may			
be from the	he following list. Students are supposed to write the programs (at least			
eight) or				
(C/C++/Ma	tlab) or on any DSP processor and development environment.			
1.	Digital signal generation			
2.	Simple operations on signals			
3.	Linear Convolution			
4.	Discrete time Fourier transform			
5.	Discrete Fourier Transform - Direct computation, DIT algorithm, DIF algorithm			
6.	FIR filter design and software realization by windowing and Frequency			
	sampling			
7.	IIR Filter Design and software realization of Butterworth and Chebyshev			
	approx.			
8.	Any other experiments decided by the Course Coordinator.			
	computational work is to be carried preferably by using software tools			
likeMATLA				
Practical Ex				
	ation will be of three hours duration and will consist of an experiment based on			
term-work and followed by an oral based on above syllabus.				

ELECTIVES –II

EE309A	Energy A	udit and Conservat	ion			
Teaching			Examination Scheme:			
Lectures		3 Hrs/ Week	Theory:			
Tutorials		Mid Term: 30 Marks				
Practical End Sem. Exam :70 Marks		arks				
Credits (Th	n)	3	Credits(P)	1		
Prerequisites Courses:						
1 Generation, transmission and distribution of Electric Pow			Power Switchgear and			
	Protection					
Course Ol	bjective:					
1	To explai	n the current energy sce	nario and need of energy	conservation.		
2	To demon	nstrate the advantages of	f energy audit.			
3	To demon	nstrate importance of en	ergy management.			
4	To identi	fy importance of energy	efficiency in electrical ut	ility.		
Course Ou	utcomes:Stu	dents' will be able to:				
1	To imple	ment conservation of en	ergytechniques in electric	al system.		
2	Evaluate	Evaluate the technical economic feasibility of the energy audit technique.				
3	To under	To understand various kinds of tariffs in electrical utility.				
4	Explain c	Explain captive power generation.				
5	Apply fin	Apply financial management in electrical conservation.				
6	Analyse of	Analyse captive power generation and co-generation.				
Syllabus :						
Unit 1	Energy sc	Energy scenario:(06 Hours)				
	Energy sc	Energy scenario: Introduction, energy problems, energy use trends in developing				
		countries, prospects of changes in energy supply, strategies for sustainable				
		development, finite fossil reserve, Energy and environment, Need for renewable				
		and energy efficiency, Energy conservation principles, Energy conservation in				
			sion and distribution,	household, commercial		
		sectors, transport, agriculture.				
Unit 2	Energy A			(06 Hours)		
			of energy audit, comp			
		considerations in implementing energy with conservations programmes,				
				system, energy audit of		
			heating ventilation and a			
		energy audit of compressed air system, energy audit of building, distribution and utilization system, economic analysis. Energy conservation Act 2003.				
II						
Unit 3			ated Resource Planning			
			ergy management, Energy			
		Key elements, Responsibilities and duties of Energy Manager, Energy efficiency Programs, Energy Monitoring System, Importance of SCADA, Analysis				
	Flograms,	Energy womtoring	System, importance	or SCADA, Allarysis		

Unit 4	techniques, Cumulative sum of differences (CUSUM).				
Unit 4	Energy efficiency in electrical utility: (06 Hours) Electrical billing, power factor management, distribution and transformer losses,				
	losses due to unbalance and due to harmonics, Demand Side Management,				
	Demand-Response, Role of tariff in DSM and in Energy management, TOU tariff, Power factor tariff, Energy conservation in lighting system, HVAC system,				
	Electrical Motors, Pump and pumping System.				
Unit 5	Financial Analysis and Management: (06 Hours)				
	Investment need, Financial analysis techniques, Calculation of Simple Pay-back				
	period, return on investment, cash flows, risk and sensitivity analysis, Time value				
	of money, Net Present value, Breakeven analysis, Cost optimization, Cost and Price				
II. 4 C	of Energy services, Cost of Energy generated through Distributed Generation.				
Unit 6	Captive Power Generation: (06 Hours) Types of captive power plants, financing of captive power plants, captive power				
	plants in India, energy banking, energy wheeling, Carbon credits Cogeneration-				
	Cogeneration technologies, industries suitable for cogeneration, allocation of costs.				
	Sale of electricity to utility, impact of pricing of cogeneration, electric power plant				
	reject heat, agricultural uses of waste heat, Potential of cogeneration in India.				
Text/ Refe	erence Books:				
	upta, "Generation of Electrical Energy" S.Chand Publication.				
	& Dr. B. B. Parulekar, "Energy Technology: Non-conventional, Renewable and				
Conventio	nal" Khanna Publishers.				
	Kreith and George Burmeister, "Energy Management & Conservation", Amazor				
 Frank Publishers Beggs a K.Bhat 	Kreith and George Burmeister, "Energy Management & Conservation", Amazor nd Clive, "Energy Management Supply and Conservation", Wall Mart Publishers tacharya, MHJ Bollen, J.E.Dalder, "Operation of Restructured Power System".				
 Frank Publishers Beggs a K.Bhat Kluwer Ac S. C. Tri 	Kreith and George Burmeister, "Energy Management &Conservation", Amazor nd Clive, "Energy Management Supply and Conservation", Wall Mart Publishers tacharya, MHJ Bollen, J .E.Dalder, "Operation of Restructured Power System" cademic Publications. pathy, "Utilization of Electrical Energy", Tata Mc Graw Hill.				
 Frank Publishers Beggs a K.Bhat Kluwer Ac S. C. Tri Energy 	Kreith and George Burmeister, "Energy Management & Conservation", Amazon nd Clive, "Energy Management Supply and Conservation", Wall Mart Publishers tacharya, MHJ Bollen, J .E.Dalder, "Operation of Restructured Power System", cademic Publications.				
 Frank Publishers Beggs a K.Bhat Kluwer Ac S. C. Tri Energy 	Kreith and George Burmeister, "Energy Management &Conservation", Amazon nd Clive, "Energy Management Supply and Conservation", Wall Mart Publishers tacharya, MHJ Bollen, J .E.Dalder, "Operation of Restructured Power System", cademic Publications. pathy, "Utilization of Electrical Energy", Tata Mc Graw Hill. Conservation Act 2001. of Energy Efficiency India web-site <u>http://www.bee-india.com</u> .				
 Frank Publishers Beggs a K.Bhat Kluwer Ac S. C. Tri Energy Bureau Term W	Kreith and George Burmeister, "Energy Management &Conservation", Amazor nd Clive, "Energy Management Supply and Conservation", Wall Mart Publishers tacharya, MHJ Bollen, J .E.Dalder, "Operation of Restructured Power System" cademic Publications. pathy, "Utilization of Electrical Energy", Tata Mc Graw Hill. Conservation Act 2001. of Energy Efficiency India web-site <u>http://www.bee-india.com</u> .				
 Frank Publishers Beggs a K.Bhat Kluwer Ac S. C. Tri Energy Bureau Term W At least eig 1. Comput	Kreith and George Burmeister, "Energy Management &Conservation", Amazor nd Clive, "Energy Management Supply and Conservation", Wall Mart Publishers tacharya, MHJ Bollen, J .E.Dalder, "Operation of Restructured Power System" eademic Publications. pathy, "Utilization of Electrical Energy", Tata Mc Graw Hill. Conservation Act 2001. of Energy Efficiency India web-site <u>http://www.bee-india.com</u> . ork: ght experiments based on the curriculum from the following list should be performed ing efficiency of DC motor/Induction Motor/Transformer.				
 Frank Publishers Beggs a K.Bhat Kluwer Ac S. C. Tri Energy Bureau Term W At least eig 1. Comput	Kreith and George Burmeister, "Energy Management &Conservation", Amazor nd Clive, "Energy Management Supply and Conservation", Wall Mart Publishers tacharya, MHJ Bollen, J .E.Dalder, "Operation of Restructured Power System" eademic Publications. pathy, "Utilization of Electrical Energy", Tata Mc Graw Hill. Conservation Act 2001. of Energy Efficiency India web-site <u>http://www.bee-india.com</u> . ork: ght experiments based on the curriculum from the following list should be performed				
 Frank Publishers Beggs a K.Bhat Kluwer Ac S. C. Tri Energy Bureau Term W At least eig 1. Comput 2. Draw th 3. Study of	Kreith and George Burmeister, "Energy Management &Conservation", Amazon nd Clive, "Energy Management Supply and Conservation", Wall Mart Publishers tacharya, MHJ Bollen, J .E.Dalder, "Operation of Restructured Power System" eademic Publications. pathy, "Utilization of Electrical Energy", Tata Mc Graw Hill. Conservation Act 2001. of Energy Efficiency India web-site <u>http://www.bee-india.com</u> . ork: ght experiments based on the curriculum from the following list should be performed ing efficiency of DC motor/Induction Motor/Transformer.				
 Frank Publishers Beggs a K.Bhat Kluwer Ac S. C. Tri Energy Bureau Term W At least eig Comput Draw th Study of motors, El 	Kreith and George Burmeister, "Energy Management &Conservation", Amazon nd Clive, "Energy Management Supply and Conservation", Wall Mart Publishers tacharya, MHJ Bollen, J .E.Dalder, "Operation of Restructured Power System" rademic Publications. pathy, "Utilization of Electrical Energy", Tata Mc Graw Hill. Conservation Act 2001. of Energy Efficiency India web-site <u>http://www.bee-india.com</u> . ork: ght experiments based on the curriculum from the following list should be performed ing efficiency of DC motor/Induction Motor/Transformer. e energy flow diagram for an industry/shop floor division. of various energy efficient equipment like LED lighting devices, Energy Efficient				

(i) Studying various energy management systems prevailing in a particular industry/Organization

(ii) Identifying the various energy conservation methods useful in a particular industry

6. Studying the various energy conservation methods useful in power generation, transmission and distribution

7. Study of APFC panel or Estimating the requirement of capacitance for power factor improvement.

08. Evaluating the energy conservation opportunity through various methods like simple payback period IRR and NPV.

09. Determine depreciation cost of a given energy conservation project/equipment.

10. Study of various measuring instruments used for energy audit: Lux meter, Power analyzer, flue gas analyzer.

11. Identifying the energy conservation opportunities in a lab, department or institute.

Note:

There is no examination for this subject but students have to submit audit report on above topics mentioned in the term work.

EE309B R	enewable	e Energy Technolog	ies	
Teaching Scheme :		Examination Scheme:		
Lectures				
Tutorials			Mid Term: 30 Marks	
Practical			End Sem. Exam :70 Ma	arks
Credits (Th)		3	Credits(P)	NA
Prerequisite	s Courses:			
1	Engineeri	ing Physics, Environmer	ntal Science, Engineering	Chemistry
Course Obje	ective:			
1	To deve	elop fundamental unde	erstanding about Solar	Thermal and Solar
	Photovoltaic systems.			
2	To provid	le knowledge about deve	lopment of Wind Power	plant and various
	operational as well as performance parameter/characteristics			
3	To explain the contribution of Biomass Energy System in power generation			
4	To teach Integration and Economics of Renewable Energy System.			System.
Course Outc	comes:Stu	dents' will be able to:		
1	Explain theory of sources like solar, wind and also experiments of same			
2	Analyze	operating conditions lik	e stand alone and grid	connected of renewable
	sources			
3	Reproduce different Storage Systems, concept of Integration and Economics of			
	Renewable Energy System			
4	Summarizing forthcoming renewable technologies			
5	Design the solar tracking system for roof top application			
6	Simulate and implement solar charge controller in practical applications			
Syllabus :				

Unit 1	Introduction to Renewable Energy Sources: (06 Hours)
	Energy sources: classification of energy sources, introduction to renewable energy,
	Renewable energy trends, and key factors affecting renewable energy supply,
	advantages and disadvantages of RES and their uses, national and international
	policies on RES
Unit 2	Solar Energy: (08 Hours)
	Solar Photovoltaic :
	Technologies-Amorphous, monocrystalline, polycrystalline; V-I characteristics of
	a PV cell, PV module, array, Maximum Power Point Tracking (MPPT) algorithms.
	solar thermal conversion: basics, solar concentrator and tracking system, flat plate
	collectors-liquid and air type, theory of flat plate collectors, selective coatings,
	advanced collectors: ETC, solar Pond
Unit 3	Wind Energy: :(08 Hours)
	Power available in wind, wind turbine power & torque characteristics, types of
	rotors, characteristics of wind rotor, local effects, wind shear, turbulence &
	acceleration effects, measurement of wind, wind speed statistics, energy estimation
	of wind regimes, capacity factor, aerodynamics of wind turbines, airfoil, lift &
	drag characteristics, power coefficient & tip speed ratio characteristics, electrical
	generator machines in wind energy systems.
Unit 4	Biomass Energy: : (06 Hours)
	Overview of biomass as energy source, biomass as a fuel, physicochemical and
	thermal characteristics of biomass as fuel, biochemical conversion of biomass for
	energy production, liquid biofuel, energy plantation- overview on energy
	plantation, basis of selecting the plants for energy plantation, waste land utilization
	through energy plantation
Unit 5	Forthcoming renewable technologies: (06 Hours)
cint c	Geothermal Energy Generation, ocean-thermal energy generation, tidal energy
	generation, magneto hydro dynamic power generation- working, layout, different
	components, advantages, limitations.
Unit 6	Storage Technologies: (06 Hours)
	Introduction, need for storage for RES, basic thermodynamic and electrochemical
	Principles, classification, traditional energy storage system- battery, fuel cell,
	principle of operation, types, applications for power generation.
Text Books:	
1.	Gary-L. Johnson Wind Energy Systems Tata Mc-Graw-Hill Book Company.
2.	Boyle, Godfrey. 2004. Renewable Energy (2 nd edition). Oxford University Press, 450
	pages (ISBN: 0-19-926178-4).
Reference B	ooks:
1.	S. P. Sukhatme, J. K. Nayak Solar Energy- Principles of Thermal Collection and
	Storage (3rd edition), Tata McGraw-Hill Publication.
2.	Paul Gipe Wind Power, Renewable Energy for Home, Farm, and Business.
3.	Mullic and G.N.Tiwari, "Renewable Energy Applications", Pearson Publications.

Website : powermin.nic.in, www.mnre.gov.in

EE309 C I	Electrical	Installation and De	sign		
Teaching Sc	heme :		Examination Scheme:		
Lectures		3Hrs/ Week	Theory:		
Tutorials			Mid Term:30 Marks		
Practical	al End Sem. Exam :70 Marks			arks	
Credits (Th)		3	Credits(P) NA		
Prerequisite	s Courses				
1	Electrical Measurement, Electrical machines				
2	Power System				
Course Obj	ective:				
1	Study of	essentials of electrical ins	stallation.		
2	Study of	wiring system and their e	stimation.		
3	To study	various aspects of illumin	nation.		
4	To study	estimation and costing of	H.T and L.T conductors	s for installation.	
5	All India	n Electricity Rules.			
Course Out	comes: Stu	dents' will be able to:			
1	Design th	ne electrical wiring syst	ems for residential, con	mmercial and industrial	
	consumer	consumers, representing the systems with standard symbols and drawings, SLD			
2	Substation arrangement studies				
3	Find out specifications of cables, insulators for various voltage ratings.				
4	Acquainted with different methods of measuring resistances.				
5	Start his/her own consultancy and business opportunities in electrical installation				
6	Design and representing the electrical systems with standard symbols and				
	drawings, SLD				
Syllabus :					
Unit 1	Electrica	l Drawing:	(06 Hours)		
	Principles, Symbols, Single Line Diagrams (SLD), Introduction to common Electrical Components, such as contactor, switches, relays, timers, cables, lugs, connectors,MCCB, ELCB, panel meters etc. Different Tools Used: Screwdriver, Pliers of various types, wrench, and blowlamp, Precaution for using tools				
Unit 2	Wiring System: (06 Hours)				
	sheathed and DC n mechanic system, P typical in	dustry	and Estimation of power m design for a typical m and IT industry, Estima Construction and Design	er rating of different AC idsize housing complex, ation for a light and fan of MCC and PCC for a	
Unit 3	Complete	e arrangement of substation	on (Single and double bu	is bar), key diagrams for	

	typical substations. Various type's pole structure, Insulators, cables and their
	types. Review of Insulated Wires: Types: Rubber covered taped and compounded
	or VIR, Lead alloy sheathed, Tough rubber sheathed, Weather proof, Flexible wire
	splicing, Termination (Twist splicing, Married joint, Tap joint, Pig tail joint)
	(06 Hours)
Unit 4	Illumination: Radiant Energy, Terms and Definitions, Laws of Illumination, Polar
Chit 4	Curves, Photometry, Methods of Lighting calculations, Consideration points for
	planning a lighting installation ,Design consideration of good lighting scheme,
	Luminous Efficacy, Electrical Lamps, Design of Interior and Exterior Lighting
	Systems, Illumination Levels for Various Purposes, Light Fittings, Factory
	Lighting, Flood Lighting, Street Lighting, Energy, Conservation in Lighting
	(06 Hours)
Unit 5	Measurement of earth resistance & Testing: (08 Hours)
	Measurement of Earth Resistance ,Two Point Methods, Three Point method, Fall
	of potential method, Direct measurement of Earth resistance, Testing of
	Installations,
	Estimating & Conductor size calculations for internal wiring H.T & L.T
	Overhead Lines and Underground cables: Estimating, Price catalogue,
	Schedule of rates & Estimating data, Determination of conductor size, Current
	carrying capacity, Voltage drop, Minimum permissible size, Conductor size
	calculation for internal domestic wiring, Underground cable, Overhead lines with
	A.C.S.R
Unit 6	Estimates for L.T Distributors & Street Light Feeders, Estimates for 11 kV
Omto	
	Feeders, All Indian Electricity Ruleslike 1956,2003,2005, National Tariff
	Policies(06 Hours)
Text Books	
1.	K.B. Raina & S.K. Bhattacharaya – Electrical Design Estimating & Costing, New
	age international publishers (1991), 1st Edition.
2.	S. L.Uppal and G.C. Garg – Electrical Wiring, Estimation & Costing, Khanna
	Publication (2008).
Reference	Books:
1.	J. B. Gupta, "Utilization of Electric Power and Electric Traction", 2002, S. K.
	Kataria and Sons.
2.	Pratab H., "Art and Science of Utilization of Electrical Energy", Second Edition,
	DhanpatRai and Sons, New Delhi.
3.	Surjeet Singh, "Electrical Estimating and Costing" Dhanpat Rai and Company (P)
5.	Ltd, Reprint 2008.

EE311 Mini project and Seminar-I

Credit (2)

The project work is intended to develop skill of electrical hardware assembly, electronics PCB design and assembly for small gadgets amongst the students. This skill may become useful during their final year project.

The students should undertake an electrical/electronic based hardware project and they have to submit report on the same. The project should include design and development of a small gadget useful in day-to-day life, in consultation with the faculty advisor.

SEMESTER-VI

EE302 Po	wer Plant Engineerir	ng		
Teaching Scheme :		Examination Scheme:		
Lectures 3 Hrs/ Week		Theory:		
Tutorials		Mid Term:30 Marks		
Practical		End Sem. Exam :70 Marks		
Credits (Th)	3	Credits(P) NA		
Prerequisit	es Courses:			
1 Power System Engineering,		ing,		
2	Electrical machines			
Course Obj	ective:			
1	To develop fundamenta	al understanding about various energy sources		
2	To provide knowledge	about working of steam power plant, Hydro power plant,		
	nuclear power plant and	diesel power plant		
3		combined working power plants		
Course Out	comes: Students will be	able to :		
1	· · · · · · · · · · · · · · · · · · ·	es of energy and analyse economics of power plant		
2	Explain the working of	various power plant		
3	Reproduce Economics of combined working power plants			
4	Understand mechanical and chemical aspect related to power plant engineering			
5	Analyse different components of power plants			
6	Understand tariffs related to power plants			
Syllabus :				
Unit 1	Sources of Energy and Economics of Power Plant (06 Hours)			
		els ,Types of fuels, Solid fuels, Liquid fuels, Gaseous fuels,		
	Calorific value of fuels, Types of coal, Coal selection, Requirements of fuel			
	,HydelPotential energy, Nuclear energy – Comparison of Sources of power – Non			
		energy Solar energy, Wind energy, Tidal power and Bio		
		Economic load sharing, Economics in plant selection,		
	Economic of power generation, Choice of power station, Energy rates			
Unit 2	Steam Power Plant	(08 Hours)		
		luction, selection of sites, Layout of Steam power Plant,		
		g, Combustion for burning coal, Mechanical stackers,		
		tic Precipitators, Draughts-Different types, Surface		
	• -	cooling towers, Steam turbines, Steam engines: Advantages		
		steam engines, Boilers: Types of boilers, Principles of		
		ign, Factors affecting steam plant design ,Thermal power		
TI		ntrol, simple numerical examples.		
Unit 3	Hydro Electric Power			
		ric power plant: Elements of Hydroelectric power plan,		
	Classification of Hydroelectric power plant, Advantages of Hydroelectric power			

	plant, Mini and Micro hydro power plants, Types of Dams, Pen stock, Draft tube, Surge tank, Hydraulic turbines, Classifications, Turbine governing, Cavitation's, Safety measures in Hydro power stations, Control room functions, Switch gear, Site selection, Comparison of Hydroelectric power plant and steam power plant.
Unit 4	Nuclear Power Plant(08 Hours)
	Review of atomic physics (atomic number, mass number, isotopes, atomic mass, unit rate of radioactivity, mass equivalent number, binding energy and mass defects), Nuclear power plant layout, Elements of Nuclear power plant, Types of reactors, Pressurized water reactor, Boiling water reactor, Waste disposal and safety, Advantages of Nuclear power plant, Comparison of Nuclear power plant and steam power plant, Site selection and Commissioning procedures, simple numerical, India's nuclear power program.
Unit 5	Diesel Engine & Gas Turbine Power Plant (06 Hours)
Unit 6	Types of diesel engine power plants, Layout and components, Diesel engine powerplant auxiliaries, Engine starting methods, Advantages of Diesel engine powerplant, Application of Diesel engine power plant , Site selection. Gas turbine powerplant ,Classification, Elements of simple gas turbine power plant, Layout, Openand Closed cycles, Reheating,Regeneration and Inter cooling – Combined cycles -Applications and advantages of Gas turbine plant, simple numerical examples.Combined working of power plants:(06 Hours)Economics of combined working power plants, base load and peak load stations,pumped storage plants, inter- connections of power stations. Tariff: Fixed cost,running cost and their interrelation for all types of conventional power plants,
	depreciable cost, different types of tariffs, numerical example based on above,
	effect of deregulation on pricing.
Text Books:	
1.	P.K. Nag, "Power Plant Engineering", Third Edition, Tata McGraw – Hill, 2007
2.	G.R. Nagpal "Power Plant Engineering", Khanna Publishers.
Reference B	Books:
1.	Arora S.C and Domkundwar, "A Course in Power plant Engineering's, DhanpatRai, 2001.
2.	El-Wakil M.M, "Power Plant Technology", Tata McGraw-Hill
3.	Rai G.D, "Introduction to Power Plant Technology", Khanna Publishers.

EE304 Electromagnetic Fields					
Teaching Scheme :		Examination Scl	heme:		
Lectures	3Hrs/ Week	Theory:			
Tutorials	1 Hrs./Week	Mid Term:30 Marks			
Practical		End Sem. Exam :70 Marks			
Credits (Th)	4	Credits(P)	NA		
Prerequisites Courses:					

1	Vector Algebra	
Course Ob		
$\frac{1}{2}$	Understanding of basic concepts of Vectors.	
	Understanding of basic concepts of Electrostatic fields and Electromagnetic fields.	
3 4	Study of Magnetic Forces Materials and Devices	
	Study of Magneto Static Fields	
5	Study of Maxwell's Equations	
	tcomes: Students' will be able to:	
1	Understand the applications of vector algebra	
2	Learn basic theory of electric and magnetic fields	
3	Evaluate the Electrostatic boundary value conditions and problems	
4	Analyse various aspects of magneto static fields	
5	Understand magnetic forces materials and devices.	
6	Apply Maxwell's equations.	
Syllabus :		
Unit 1	Vector analysis: (06 Hours)	
	Vector Algebra, Rectangular Coordinate System, Vector Component, Vector	
	Field, Dot Product, Cross Product, Circular and Cylindrical Coordinate System,	
	Vector Calculus, Del Operator, Gradient of Scalar, Divergence of Vector and	
	Divergence Theorem, Curl of a Vector and Stroke's Theorem, Lapalcian of a	
T T T (A	Scalar, Classification of Vector Fields.	
Unit 2	Electrostatic Fields and Electric Fields: (08 Hours)	
	Gauss's Law- Maxwell's Equation, Electric Potential, Relationship between E and	
	V-Maxwell's Equation, Electric Dipole and Flux Lines, Energy Density in	
	Electrostatic Fields, Properties of Materials, Convection and Conduction Current,	
	Conductors, Polarization in Dielectrics, Dielectric Constant and Strength, Linear,	
	Isotropic and Homogenous Dielectrics, Continuity Equation and Relaxation Time, Boundary Conditions.	
Unit 3		
Unit 5	Electrostatic Boundary-Value Problems:(06 Hours)Introduction, Poisson's and Laplace's Equations, Uniqueness Theorem, General	
	Procedures for Solving Poisson's and Laplace's Equations, Resistance and	
	Capacitance, Method of Images.	
Unit 4	Magneto Static Fields: (06 Hours)	
	Biot- Savart's Law, Ampere's Circuital Law-Maxwell's Equation, Application of	
	Ampere's Law, Magnetic Flux Density-Maxwell's Equation, Maxwell's Equation	
Unit 5	for Static Fields, Magnetic Scalar and Vector Potentials. Magnetic Forces Materials and Devices: (08 Hours)	
Unit 5	Introduction, Forces due to Magnetic Fields, Magnetic Torque and Moment,	
	Magnetic Dipole, Magnetization in Materials, Classification of Magnetic	
	Magnetic Dipole, Magnetization in Materials, Classification of Magnetic Materials, Magnetic Boundary Conditions, Inductors and Inductances, Magnetic	
	Energy, Magnetic Circuits, Force on Magnetic Materials	
Unit 6		
Unit 0	Maxwell's Equations: (06 Hours) Introduction, Faraday's Law, Transformer and Motional Electromotive Forces,	
	Introduction, raraday's Law, transformer and withouthan Electromotive Forces,	

	Displacement Current, Maxwell's Equations in Final Forms, Time-Varying				
	Potentials, Time Harmonic Fields.				
Text Books					
1.	William H. Hayt, Jr John A Buck, "Electromagnetic Engineering", , Tata McGraw				
	Hill, 6th Edition.				
2.	Shevgaonkar R.K., "Electromagnetic Waves", Tata McGraw Hill, 1 st Edition.				
Reference B	ooks:				
1.	M. Sadiku, "Elements of Electromagnetics", oxford university press (2010), 4 th				
	Edition.				
2.	Paul, Clayton, "Introduction to Electromagnetic Fields", , Tata McGraw Hill				
	(2007), 3 rd Edition.				
3.	AshutoshPramanik "Electromagnetic Theory and Applications", , PHI Ltd 2 nd				
	Edition				
Tutorials: One hour per week is to be utilized to ensure that the students have properly learnt the					
topics covered in the lectures. This shall include assignments, quiz, test etc. The teacher may add					
any other academic activity to this so as to evaluate the student for his/her in-semester					
performance.					

EE306 Cor	ntrol Sys	tem Design		
Teaching Scheme :		Examination Scheme:		
Lectures		3Hrs/ Week	Theory:	
Tutorials		1 Hrs./ Week	Mid Term:30 Marks	
Practical		2 Hrs./Week	End Sem. Exam :70 Marks	
Credits (Th)		4	Credits(P)	1
Prerequisite	s Courses:			
1	Feedback	control system		
Course Obje	ective:			
1	Provide th	he knowledge of various	nonlinearities observed i	n real world.
2	Design a	control system using lea	d – lag compensator, P, F	PI and PID controllers.
3	Design a control system using state space technique.			
4	Provide the knowledge of absolute and relative stability.			
5	Illustrate the stability and performance of compensated system response.			tem response.
Course Outcomes: Students' will be able to:				
1	Understand the concepts of compensation and tuning of comptrollers.			mptrollers.
2	Understand the various nonlinearities and their behaviour observed in real world.			
3	Analyse the nonlinear system with describing function method and phase plane method.			
4	Analyse the response and stability of system with different controllers.			
5	Understand the concepts of discrete control systems.			
6	Evaluate the performance of compensated and uncompensated systems in time and			
	frequency domain.			
Syllabus :				

Unit 1	State Space Concept: (08 Hours)
	State space representation, converting transfer function to state space and state
	space to transfer function, , Laplace transform solution of state equations. Time
	domain solution of state equations, Concept of state and state variable, state
	equations of linear time-invariant and continuous data system. Matrix
	representation of state equation, Conversion of state variable model to transfer
	function, Canonical form, companion form, Jordan Canonical form, Solution of
	state equations. Concept of controllability and observability, Eigen values and
	stability.
Unit 2	State space analysis & design:(06 Hours)
	Digitalisation of system matrices having distinct & repeated Eigen values, Vander
	monde & modified Vander monde matrix. Definition of controllability &
	observability, effect of pole zero cancellation on the controllability &
	Observability of the system, pole placement design through state feedback.
Unit 3	Non-linear control systems: (08 Hours)
	Different types of non-linearity, Peculiarities of non-linear systems, Definition of
	describing function. (D.F.) derivation on D.F.'s for various non-linearity.D.F.
	Analysis of non-linear control systems, Limit cycles, Merit and limitations of D.F.
	analysis. Phase plane method, Singular points, Construction of phase-plane plots
	for non -linear systems by isoclines method.
Unit 4	PID controllers: (06 Hours)
	Introduction to Proportional (P), Integral (I) & Derivative (D)controller, individual
	effect on overall system performance, P-PI & PID control and effect on overall
	system performance, Numerical examples.
Unit 5	Compensator Design using Root Locus: (06 Hours)
	Review of root locus concept, cascade lead compensation, cascade lag
	compensation, cascade lag -lead compensation, minor loop feedback
	compensation, compensation for plants with dominant complex poles, root locus
	of system with dead time, sensitivity of root locus.
Unit 6	System Stability and Performance in Frequency Domain:(08 Hours)
	Review of Nyquist criterion, stability margins, stability margins on Bode plots,
	stability analysis with dead time, frequency response measurement, co-relation
	between time and frequency domain specification, M circles, Nichol's chart,
	sensitivity in frequency domain Compensator Design using Bode Plot:
	Introduction, Reshaping Bode plot, cascade lead compensation, cascade lag
	compensation, cascade lag -lead compensation, Robust control system.
Text Books:	
1.	Norman Nise, "Control system Engineering", 3rd edition, 2000, John Wiley
2.	I.J. Nagrath and M. Gopal, "Control system engineering", Wiley Eastern Ltd, 3rd
	edition, 2000
<u>3.</u>	M. Gopal, "Digital Control Engineering", Wiley Eastern, 1988.
Reference B	
1.	Benjamin C. Kuo, "Automatic Control system", Prentice Hall of India Pvt Ltd.

2.	John J. D'Azzo, C. H. Houpis, Linear control system analysis and design			
	(conventional and modern), McGraw Hill International Fourth edition.			
3.	Katsuhiko Ogata, Modern Control Engineering, Prentice Hall of India Pvt Ltd.			
Term Work	: It will consist of a record of the following experiments based on the prescribed			
syllabus.				
1.	Calculation of state transition matrix, state X (t), Eigen values using MATLAB			
2.	To convert the given state space equation into diagonal form using MATLAB and			
	to determine stability of a system using MATLAB			
3.	Design of lead, lag compensator in Root locus Domain.			
4.	Design of lag-lead compensator in Root locus Domain.			
5.	Design of P, PI, PD controller.			
6.	Design of PID controller.			
7.	Design of lead, lag compensator in frequency Domain.			
8.	Design of lag-lead compensator in frequency Domain.			
9.	Design of controller in state space Domain.			
10.	Design of observer in state space Domain			
Note: The above set of computational work is to be carried preferably using software like				
MATLAB, S	cilab, MiPower, etc.			

Tutorials: One hour per week is to be utilized to ensure that the students have properly learnt the topics covered in the lectures. This shall include assignments, quiz, test etc. The teacher may add any other academic activity to this so as to evaluate the student for his/her in-semester performance.

Practical Examination:

The examination will be of three hours duration and will consist of an experiment based on termwork and followed by an oral based on above syllabus.

EE308Power Electronics				
Teaching Sc	Teaching Scheme :		Examination Sch	neme:
Lectures		3 Hrs./ Week	Theory:	
Tutorials		1 Hrs./ Week	Mid Term:30 Mar	rks
Practical		2 Hrs./Week	End Sem. Exam :	70 Marks
Credits (Th)		4	Credits(P)	1
Prerequisite	Prerequisites Courses:			
1	Analog a	Analog and Digital Circuits, Basics of circuit theory		
Course Obj	ective:			
1	Study dif	Study different power electronic devices		
2	To extend	To extend simple power electronic converters to realize rectifiers and inverters.		
3	To develop and quantify common performance objectives for power electronic circuits			
	such as efficiency, power factor, etc.			
4	To analyze and design DC/DC converter (chopper) circuits.			
5	To analyze and evaluate the operation of cycloconverters and voltage controllers.			
6	To outline operating principles of application of power electronic circuits as motor			

	drives, UPS systems, etc.
Course Out	comes: Students' will be able to:
1	To understand the basic principle, characteristics and applications of power electronic
	and switching devices.
2	Analytical study of different types of Power Converter systems.
3	Solve the numerical problems on semiconductor switches, rectifier, converter, inverter,
	choppers and cycloconverter, circuits.
4	Simulate DC-DC converters
5	Simulate and Design DC-AC Inverters
6	Apply PWM technique
Syllabus :	
Unit 1	Introduction(06 Hours)
	Modern power semiconductor devices and their characteristics, gate drive
	specifications, ratings, applications, turn ON and turn OFF methods, design of gate
	triggering circuits using UJT and thyristor protection circuits.
Unit 2	Phase controlled rectifiers (06 Hours)
	Single phase rectifiers: Half wave, center tapped, bridge (half controlled and fully
	controlled) with R and RL load. Three phase rectifiers: half wave, bridge with R and
	RL load effect of source inductance, dual converters, power factor improvement
TT T T T T T T T T 	methods.
Unit 3	DC chopper (08 Hours)
	Basic chopper, continuous and discontinuous current conduction, TRC, CLC methods,
Unit 4	classification of choppers, step-up chopper, switching mode regulators.AC voltage controller & cycloconverters (06 Hours)
Unit 4	AC voltage controller: types of ac voltage controllers, single-phase and three phase ac
	voltage controllers with R and RL load, transformer tap changers, single phase to
	single phase cycloconverters, three phase to single phase cycloconverters, three phase
	to three phase cycloconverters with circulating and non-circulating mode.
Unit 5	Inverters (08 Hours)
	Single phase inverters: series, parallel and bridge configurations with R load, PWM
	inverters. Three phase inverters: 120° and 180° conduction with R and load RL,
	voltage control and harmonics reduction.
Unit 6	Application in power electronics(06 Hours)
	UPS and SMPS, basic characteristics of DC motors, operating modes, DC motor
	control using different rectifiers, induction motor drives, performance characteristics,
	stator voltage control, rotor voltage control, frequency control, voltage and frequency
	control.
Text Books	
1.	M.H. Rashid "Power Electronics, Circuits, Devices and Applications", Pearson
	Education Inc., 3 rd Edition.
2.	P. S. Bhimra "Power Electronics", , Khanna Publishers (2010).
Reference I	
1.	Mohan, Undeland& Robins "Power Electronics, Converter Applications and
	Design", , John Wiley and sons (Asia) Pvt. Ltd.

2.	V. R. Moorthi, Power Electronics: Devices, Circuits and Industrial Applications,
	Oxford University Press, 2006.
3.	"G. K. Dubey and Others Thyristorised Power Controller", Wiley Eastern Ltd.
4.	B.K. Bose, "Modern Power Electronics and A.C. Drives", Prentice Hall of India
	Pvt. Ltd. Publication.
5.	B.W.Williams, "Power Electronics", John Willey
6.	G. De, Principles of Thyristorised Converters, Oxford and IBH Publications.

Term Work:

It will consist of a record of at least six to eight experiments based on the following list.

- 1. UJT Relaxation oscillator.
- 2. SCR characteristics.
- 3. Triac characteristics.
- 4. Power control using SCR.
- 5. Power control using Triac.
- 6. Single phase controlled Rectifiers.
- 7. Single phase half controlled Rectifiers.
- 8. Single phase fully controlled Rectifiers.
- 9. Single phase inverter using transistor/ MOSFET/IGBT.
- 10. Basic step-down chopper.
- 11. Basic step-up chopper.
- 12. Study of D.C. motor control using controlled rectifiers.
- 13. Study of D.C. motor control using choppers.
- 14. Study of A.C. motor control using inverter.

Note: The above set of computational work is to be carried preferably using software like MATLAB, Scilab, MiPower, etc.

Tutorials: One hour per week is to be utilized to ensure that the students have properly learnt the topics covered in the lectures. This shall include assignments, quiz, test etc. The teacher may add any other academic activity to this so as to evaluate the student for his/her in-semester performance.

Practical Examination:

The examination will be of three hours duration and will consist of an experiment based on termwork and followed by an oral based on above syllabus.

ELECTIVES -III

EE310 A U	Utilization of Ener	gy Management		
Teaching So	heme :	Examin	ation Scheme:	
Lectures 3 Hrs/ Wee		ek Theory:		
Tutorials		Mid Ter	m:30 Marks	
Practical		End Sen	n. Exam :70 Marks	
Credits (Th)	3	Credits()	P) NA	
Prerequisite	s Courses:			
1	Basic Electrical Eng	ineering		
2	Electrical Machines			
Course Obj				
1	To give an overview	of various areas of app	lication of Electrical Energy.	
2	To introduce the con	cept of Energy Audit, E	Energy Management and Energy	
	Conservation.			
3	Study of Speed-time	curves and mechanics	of train movement.	
4		hods of Control of tract		
5		trical motors and DG s	tart up assessment.	
Course Out	comes: Students' will	be able to:		
1	Understand selection	of electrical motors ac	cording to load	
2	Understand basic principles of electric heating and welding			
3	Evaluate speed time curves for traction			
4	Understanding and planning of Energy Audit			
5	Analysis of DG system start up process			
6	Do Energy Audit of	commercial organizatio	n	
Syllabus :				
Unit 1		on of Electrical Motor		
			ion, heating and cooling curves, load	
	equalization, capitali			
Unit 2	Heating and Weldin		(06 Hours)	
			lielectric heating, arc furnaces, electric	
	welding and its control			
Unit 3		and mechanics of train		
	Introduction to electric traction, traction systems, track electrification systems, ST			
	curves, mechanics of train movement, coefficient of adhesion, specific energy			
TT. •4 4	consumption.			
Unit 4	Control of traction motors: (08 Hours)			
	Series-parallel control, drum controller, multiple unit control, regenerative			
	braking, systems of current collection and train lighting, negative booster, traction			
IInit 5	sub-station.	Enormy Andit and Ena	Managamant (EAM). (04 Harrow)	
Unit 5	General aspects of Energy Audit and Energy Management (EAM):(06 Hours) Energy scenario, basics of energy and its various forms EM&A, Energy			
	Energy scenario, t	asies of energy and	its various iornis Elvia A, Ellergy	

	monitoring and targeting, and electrical systems.
Unit 6	Efficiency and performance assessment: (06 Hours) Electrical motors, lighting system, DG set system, energy efficient technologies in electrical systems, application of non-conventional and renewable energy resources
Text Books:	
1.	J. B. Gupta"Utilization of Electrical Power and Electric Traction", , 8th edition 2006
2.	H. Partab"Art and Science of Utilization of Electrical Energy", , 2nd Edition, 2005.
3.	"Bureau of Energy Efficiency, Energy manager training" – ebook1- Chapter 1,2,3,8; ebook3- Chapter 1,2,8,9,10; ebook4- Chapter 5,10,12
Reference B	ook:
1.	Soni, Gupta &Bhatnagar - "A course in Electrical Power"
2.	S. C. Tripathy, "Utilization of Electrical Energy", Tata Mc Graw Hill
Term Work	•
1.	Visit to a local industry for the study of electrical energy utilization. A comprehensive report to be submitted.
2.	Prepare the energy audit report for the industry visited.
3.	Prepare a model of renewable energy source and submit a report on the same.

EE310 B Electrical Machine Analysis			
Teaching Scheme :		Examination Scheme:	
	3Hrs/ Week	Theory:	
		Mid Term:30 Marks	
		End Sem. Exam :70 Ma	arks
	3	Credits(P)	NA
s Courses:			
Electrom	agnetism		
Electrical	Machines		
ective:			
Introduct	ion to basic concepts of	magnetically coupled circ	cuits
Study of	various principles of ele	ctromechanical energy co	onversion
To understand the concept of space vector on d-axis and q-axis variables			
Study of Clarke and Park's Transformations			
Study of various models of induction and synchronous machines			
Course Outcomes: Students' will be able to:			
Understand the limitations of conventional models of electrical machines			
Determine the torque produced in electrical machines using the concept of co			
energy			
	heme : s Courses: Electrom: Electrical ective: Introduct Study of Study of Study of Study of Study of Determin	heme : 3Hrs/ Week 3 s Courses: Electromagnetism Electrical Machines ective: Introduction to basic concepts of Study of various principles of ele To understand the concept of space Study of Various principles of ele To understand the concept of space Study of Various models of induce comes: Students' will be able to: Understand the limitations of com Determine the torque produced	heme : Examination Scheme: 3Hrs/ Week Theory: Mid Term:30 Marks End Sem. Exam :70 Marks End Sem. Exam :70 Marks 3 Credits(P) s Courses: Electromagnetism Electrical Machines Sective: Introduction to basic concepts of magnetically coupled circo Study of various principles of electromechanical energy co To understand the concept of space vector on d-axis and q- Study of Clarke and Park's Transformations Study of various models of induction and synchronous machines comes: Students' will be able to: Understand the limitations of conventional models of elect Determine the torque produced in electrical machines understand

3	Determine the performance of machines using reference frame theory
4	Select strategies to control the torque for a given application
5	Apply Clarke and Park's Transformations for analysis of synchronous machines
6	Evaluate the performance of induction machine
0	Evaluate the performance of induction machine
Syllabus:	
Unit 1	Magnetically coupled circuits: (06 Hours)
	Review of basic concepts, magnetizing inductance, Modelling linear and nonlinear
	magnetic circuits.
Unit 2	Electromechanical energy conversion: (08 Hours)
	Principles of energy flow, concept of field energy and co-energy, Derivation of
	torque expression for various machines using the principles of energy flow and the
	principle of co energy, Inductance matrices of induction and synchronous
	machines
Unit 3	Theory of DC machines :(08 Hours)
	Review of the DC machine, mathematical model of commutator, State-space
	model of a DC machine, reduced order model & transfer function of the DC
	machine, Reference Frame Theory-Concept of space vector, components of space
	vector, direct and quadrature axis variables.
Unit 4	Transformation: :(06 Hours)
	Types of transformation, condition for power invariance, zero-sequence
	component, Expression for power with various types of transformation,
	Transformations between reference frames, Clarke and Park's Transformations,
	Variables observed from various frames, Simulation studies
Unit 5	Theory of symmetrical Induction Machines:(06 Hours)
	Voltage and torque in machine variables, Derivation of dq0 model for a
	symmetrical induction machine, Voltage and torque equation in arbitrary reference
	frame variables, Analysis of steady state operation, State-space model of induction
	machine in'd-q' variables, Simulation studies
Unit 6	Theory of synchronous machines: (06 Hours)
	Equations in arbitrary reference frame, Park's transformation, Derivation of dq0
	model for a salient pole synchronous machine with damper windings, Torque
	expression of a salient pole synchronous machine with damper windings and
	identification of various components
Text Books:	
1.	E. Fitzgerald, Charles Kingsley, Stephen D. Umans: Electric Machinery,
	TMH, 5th Ed
2.	A. K. Sawhney, "A Course in Electrical Machine Design", DhanpatRai and Sons,
	Delhi
3.	Say.M.G. "Performance & Design of Alternating Current Machine" (English
	LanguageBook Society), CBS Publisher (2002)
Reference B	ooks:
1.	Rik De Doncker, Duco W. J. Pulle, André Veltman: Advanced Electrical Drives:

	Analysis, Modeling, Control Springer, 2011.
2.	Paul C. Krause, Oleg Wasynczuk, Scott D. Sudhoff: "Analysis of Electric
	Machinery & Drive systems"-IEEE Press, 2002
3.	K.M. Vishnu Murthy, B.S. "Computer Aided Design of Electrical Machines"
	Publications, 2008
4.	Rama Krishnan: Electric motor drives: Modeling, analysis, and control, Prentice
	Hall, 2001.

EE310 C Communication Engineering								
Teaching Scheme :				Examination Scheme:				
Lectures		3Hrs/ Weel	K	Theory:				
Tutorials				Mid Term:30 Marks				
Practical				End Sem. Exam :70 Marks				
Credits (Th)		3		Credits(P))	NA		
Prerequisite	Prerequisites Courses:							
1	Analog and Digital Circuits							
Course Obj	ective:							
1	Introduction to Communication Engineering							
2	Study of modulation, demodulation and sampling concepts							
3	Study of	Study of basics of Analog and Digital communication						
4		Power line carrier communication systems studies.						
Course Out	comes: Stu	dents' will l	be able to:					
1	Understand basics of Communication engineering, Analog and Digital				Digital			
	Commun	ication						
2	Analysis of Modulation, Demodulation and sampling techniques							
3	Evaluate Digital Modulation Techniques, Coding and Quantizing							
4	Simulate Power line carrier communication systems studies							
5	Design mathematical models for communication channels							
6	Understand coding for different modulation and demodulation techniques							
Syllabus:								
Unit 1	Introduction to Communication Engineering: (06 Hours)							
	Introduction to Communication Engineering, Transmitter and receivers							
						Systems, Introdu		
			m, Analytic	Representa	tion of Band	l pass Signals –	Hilbert	
	Transform							
Unit 2								
	Fundamentals of Analog Signal transmission, Analog Modulation of Carr Amplitude Modulation, Single Sideband Modulation						rs,	
	-		Ŧ					
Unit 3	· · · · · · · · · · · · · · · · · · ·							
	Angle Modulation, Generation of FM Signals, FM Generation and Detec							
	Demodulation of Angle Modulated Signals, Feedback Demodulators - Pha Locked Loop, Frequency Compressive Feedback Demodulator, Performance							
	Locked I	Loop, Freque	ency Compr	essive Feed	праск Demo	aulator, Perform	ance of	

	AM Systems in Noise, Signal-to-noise ratio, Noise in AM and Angle Modulation						
	Systems, Noise in Phase and Frequency Modulation Systems, Noise in Angle						
	Modulation, Pulse Modulation Schemes - PWM and PPM, Delta Modulation,						
	introduction to sampling theorem						
Unit 4	Introduction to Digital Communication : (06 Hours)						
	Introduction to Digital Communication, elements of digital communication						
	system, communication channels and their characteristics, mathematical models						
	for communication channels, Sampling, Quantization, PCM and Delta Modulation,						
	Probability and Random Processes, Channels and their Models						
Unit 5	Digital Modulation Techniques, Coding and Quantizing:(08Hours)						
	Digital Modulation Techniques, Digital modulation formats, Amplitude shift						
	keying, frequency shift keying, phase shift keying, DPSK, QPSK, Minimum shift						
	keying Equalizers, coding for analog sources-optimum quantization, rate distortion						
	function, scalar quantization, vector quantization, Coding techniques for analog						
	sources. Temporal waveform coding, spectral waveform coding, model based						
	source coding. Source Coding, Channel Coding, Fundamentals of OFDM,						
	Quantization,						
Unit 6	Multiplexing of Signals and power line carrier communication systems: (06						
	Hours)						
	Frequency-Division Multiplexing (FDM), Time-Division Multiplexing (TDM),						
	Statistical Time-division Multiplexing, Orthogonal Frequency Division						
	Multiplexing, power line carrier communication, PLC modulation						
Text Books							
1.	J. G. Proakis, Digital Communication, Fourth Edition, McGraw Hill						
2.	Simon Haykin, Digital Communication, John Wiley & Sons Pvt. Ltd.						
3.	K.S. Shanmugam, Digital and Analog Communication Systems, Wiley Int. Pub.						
Reference	Books:						
1.	Taub H. and Schilling D.L., "Prnciples of Communication Systems", Tata						
	McGraw Hill, 2001.						
2.	Proakis J. G. and Salehi M., "Communication Systems Engineering", Pearson						
	Education, 2002.						
3.	Haykin S., "Communications Systems", 4th Ed., John Wiley and Sons, 2001.						
4.	B. P. Lathi, Modern Analog and Digital Communication Systems, Prism Sounders						
l							

EE312 Mini project and Seminar-II

Credit (2)

The project work is intended to develop skill of electrical hardware assembly, electronics PCB design and assembly for small gadgets amongst the students. This skill may become useful during their final year project.

The students should undertake an electrical/electronic based hardware project and they have to submit report on the same. The project should include design and development of a small gadget useful in day-to-day life, in consultation with the faculty advisor.