Revised T.Y. B. Tech. (Instrumentation Engineering) Curriculum Academic year 2016-17

SGGS INSTITUTE OF ENGINEERING & TECHNOLOGY, VISHNUPURI, NANDED

SGGS INSTITUTE OF ENGINEERING & TECHNOLOGY, NANDED

(An Autonomous Institute of Government of Maharashtra)

T.Y. B.Tech. (Instrumentation Engineering) Curriculum Structure: CBCS, (Effective from Academic year 2016-17)

Semester V						
Course	Course Title	Lectures	Tutorials	Practical	Credits	
Code		(L)	(T)	(P)	Th.	Pr.
IN301	Feedback Control Systems	3	1	2	4	1
IN302	Industrial Instrumentation	3	-	2	3	1
IN303	Digital Signal Processing	3	-	2	3	1
IN304	Microprocessor and	3	1	2	4	1
IN305	Microcontroller Industrial Data	3	_	_	3	_
	Communications					
IN306	Unit Operations and Instrumentation	3	-	-	3	-
	Total	18	01	08	24	ŀ

Semester VI

Course	Course Title	Lectures	Tutorials	Practical	Cred	lits
Code		(L)	(T)	(P)	Th.	Pr.
IN307	Process Control	3	-	2	3	1
IN308	Control System Components	3	-	2	3	1
IN309	Distributed Control System	3	1	2	4	1
IN310	Power Electronics	3	-	2	3	1
IN311	Power Plant Instrumentation	3	-	-	3	-
IN312	Elective – II	3	-	-	3	-
IN313	Seminar	-	-	2	-	1
HU301	Humanity Science	2	-	-	Auc	lit
	Total	18	01	10	2 4	ļ

Elective - II

IN312 (I) : Digital System Design
IN312 (II) : Optical Instrumentation
IN312 (III) : Automotive Instrumentation

IN312 (IV) : Mechatronics IN312 (V) : Material Science IN312 (VI) : Microelectronics

IN312(VII) : Data Structure and Algorithms

CONTENTS

Sr. No.	Course Code	Course Title	Page No.				
	Semester-V						
1.	IN301	Feedback Control Systems	4				
2.	IN302	Industrial Instrumentation	6				
3.	IN303	Digital Signal Processing	9				
4.	IN304	Microprocessor and Microcontroller	11				
5.	IN305	Industrial Data Communications	13				
6.	IN306	Unit Operations and Instrumentation	15				
		Semester-VI					
7.	IN307	Process Control	17				
8.	IN308	Control System Components	19				
9.	IN309	Distributed Control System	21				
10.	IN310	Power Electronics	23				
11.	IN311	Power Plant Instrumentation	25				
12.	IN312(I)	Elective – II Digital System Design	27				
13.	IN312(II)	Elective – II Optical Instrumentation	29				
14.	IN312(III)	Elective – II Automotive Instrumentation	30				
15.	IN312(IV)	Elective – II Mechatronics	31				
16.	IN312(V)	Elective – II Material Science					
17.	IN312(VI)	Elective – II Microelectronics	35				
18.	IN312(VII)	Elective – II Data Structures and Algorithms					
19.	IN313	Seminar	38				
20.	HU301	Humanity Science 38					

Semester-V

IN301 Feedback Control Systems					
	Teaching scheme:			Examination scheme:	
Lectures	Schem	3	hrs/week	Theory	
Tutorials		1	hrs/week	Mid Term : 30 marks,	
Practical		2	hrs/week	End Sem. Exam: 70 marks	
Credits		5	III 3/ WCCK	Bita Sem. Exam. 70 marks	
Course ob	iective				
1.			concept of tin	ne response and frequency response of the system.	
2.				al concepts of control systems and mathematical	
			the system.	ar consopes of control systems and mathematical	
3.				e iterative nature of most designs in order to achieve	
		ng sys		0	
Syllabus:		0 7			
Unit 1	Intro	ductio	n to control s	ystems	
				nts of control systems, examples of control systems,	
				and closed loop (feedback) control systems, effect of	
				parameter variations, external disturbances or noise	
	and o	control	over system	n dynamics, regenerative feedback, linear versus	
	nonlir	near co	ontrol systems	, time- invariant versus time- varying systems, SISO	
			ystems.		
Unit 2				of dynamic systems	
				rm of feedback, control systems, transfers function	
		_	_	ferential equations and transfer functions of physical	
	-			cal, electrical, electromechanical, thermal, pneumatic	
				analogous systems, force-voltage, force-current and	
				loading effects in interconnected systems, systems	
		_		inearization of nonlinear mathematical models, block	
				of control system, rules and reduction techniques,	
	_			ents, definition, properties, masons gain formula, a to block diagrams.	
Unit 3				f control systems	
Unit 3				ransient response, steady state error and error	
				series, time response of first and second order	
		•		ponse specifications, effect of adding poles and zeros	
	-		•	inant poles of transfer function, basic control actions	
				systems, effects of integral and derivative control	
		-		ince, higher order systems.	
Unit 4	Stabil	ity of	linear contro	systems	
	Conce	pt of	stability, BIB	O stability: condition, zero input and asymptotic	
	stability, Hurwitz stability criterion, Routh-Hurwitz criterion in detail, relative				
	stability analysis.				
Unit 5	The R	loot-L	ocus techniqu	ie	
				rties of the root loci, general rules for constructing	
				llysis of control systems, Root loci for systems with	
	-	-	g, Root-contou	r plots, sensitivity of the roots of the characteristics	
	equati	ion.			

nit 6 Frequency domain analysis						
Frequency response of closed loop systems, frequency domain specif	ications of					
the prototype second order system, correlation between time and						
response, effect of adding a pole and a zero to the forward pat	h transfer					
function, polar plots, Bode plots, phase and gain margin, stability and	alysis with					
Bode plot, log magnitude versus phase plots. Constant M and N circle	es, Nichols					
chart, gain adjustments, sensitivity analysis in frequency domain	chart, gain adjustments, sensitivity analysis in frequency domain, Nyquist					
stability criterion: mathematical preliminaries, stability and relativ	e stability					
analysis.						
nit 7 Compensators						
Introduction, different types of compensators (Electrical, Electrical,	ronic and					
Mechanical type), their transfer functions.						
eference Books:						
1. K. Ogata, "Modern Control Engineering", Fourth Edition Pearson	education					
India, 2002.						
2. B. C. Kuo, "Automatic control systems", Seventh Edition, Prentice – Ha	ll of India,					
2000.						
3. Norman S. Nise, "Control systems Engineering", Third Edition, John W	iley and					
Sons. Inc, Singapore, 2001.						
4. R. C. Dorf and R. H. Bishop, "Modern Control systems", Eighth Edition,	Addison					
Wesley, 1999.						
5. I. J. Nagrath and M. Gopal, "Control systems Engineering", Third Ed	ition, New					
age International Publishers, India, 2001.						
ourse outcomes:						
1. To exhibit the capability to represent the mathematical model of a syst						
determine the response of different order systems for various standard input						
2. To demonstrate the ability to apply Laplace transform, transfer functions	s, modeling					
RLC circuit, block diagrams for simulation and control.						
3. To specify control system performance in the frequency-domain a	and design					
compensators to achieve the desired performance.						
4. To validate what they have learned theoretically in the field of cont	rol system					
engineering.						
5. To gain some practical experience in control engineering which might	become a					
future research point for them.						
6. To construct and recognize the properties of root-locus for feedba	ck control					
systems with a single variable parameter.						
erm Work:						
will consist of at least eight experiments/assignments/programs from the follow	wing list:					
1. Determination of transfer function of an armature controlled d. c. mot	or.					
2. Determination of transfer functions of D. C. generator.						
3. Effect of feedback on D. C. generator.						
4. Transient response of second order system.						
5. Study of D. C. positional servo system.						
6. Study of A. C. servo voltage stabilizer.						
7. Study the performance of an open and closed loop control syst	tem using					
electronic amplifiers using OPAMPs.						
8. Study the performance of a second order system (Use any OPA	MP based					

	electronic system such as an active second order Butterworth filter).
9.	Study the performance of any first order and second order system.
_	nts based on software (programs)
1.	Introduction to MATLAB, MATLAB's simulink and control systems toolbox
	(with some examples) or any other control system related software package.
2.	Compare and plot the unit-step responses of the unity-feedback closed loop
	systems with the given forward path transfer function. Assume zero initial
	conditions. Use any computer simulation program.
3.	Study of effect of damping factor on system performance by obtaining unit step
	response and unit impulse response for a prototype standard second order
	system. Consider five different values for $x = 0.1, 0.3, 0.5, 0.7$ and 1.0. Also study
	the effect of varying undammed natural frequency by taking three different
	values. Comment on the simulations obtained.
4.	Write a program that will compute the step response characteristics of a second
	order system i.e. percent overshoot, rise time, peak time and settling time.
	Generalize it for accepting different values of undammed natural frequency and
	damping factor.
5.	Study and plot the unit step responses of addition of a pole and a zero to the
	forward path transfer function for a unity feedback system. Plot the responses
	for four different values of poles and zeros. Comment on the simulations
	obtained.
6.	Study and plot the unit step responses of addition of a pole and a zero to the
	closed loop transfer function. Plot the responses for four different values of
	poles and zeros. Comment on the simulations obtained.
7.	Program for compensator design using Bode plot.
8.	Program for compensator design using Root Locus analysis.
9.	Plot and comment on various properties of any three systems (problems) using
	• Routh-Hurwitz criterion
	• Root locus technique
	• Bode plots
	Nyquist plots
	Use any software package.

IN302 Ind	IN302 Industrial Instrumentation				
Teaching scheme:				Examination scheme:	
Lectures		3	hrs/week	Theory	
Tutorials		0	hrs/week	Mid Term : 30 marks,	
Practical		2	hrs/week	End Sem. Exam: 70 marks	
Credits		4			
Course ob	Course objectives:				
1.	To get an adequate knowledge about various techniques used for various parameters measurement in industries and select the proper transducer.				

To provide exposure to various state of art process parameters measuring transducers and their selection procedures. To understand, analyze and design various measurement schemes that meet the desired specifications and requirements of real time processes. **Syllabus:** Unit 1 Temperature sensor selection and applications Design of temperature instrumentation system using RTD, thermocouple, thermistor, selection criteria, self heating effects in resistive temperature transducers, power-dissipation constant and its calculations, thermocouple with thermowell assembly, time-constant calculation, protection-tubes, types, materials, design considerations for thermowell, types, manufacturing process of T/C, RTD, thermistor, testing of RTD as per the standard. measurement: radiation thermometers, introduction, definition of terms, general form of radiation measurement system, radiation thermometer types, photo electric radiation thermometers, signal conditioning for radiation thermometers, remote reading thermometers. Sensor calibrators and simulators. Unit 2 **Pressure measurement** Basics, mechanical type instruments, electromechanical type, low pressure measurement, related accessories, pressure measuring standards, selection and application. Transmitter definition, classification, pneumatic transmitter-force balance type, torque balance type, two wire and four wire transmitters, I/P and P/I converters. Design of pressure instrumentation using diaphragm, bourdon tubes and bellows. Unit 3 Flow measurement Design of flow instrumentation using orifice, rotameter, venturimeter, different flow coefficient like Cd Cc, and Cv and their calculation. Types of orifice designs, Types of pressure taps to measure Dp, design of orifice used in tank outflow and pipe-flow measurements, different design considerations in orifice. venturimeter and rotameter design. Anemometers: Hot wire/hot film anemometer, laser doppler anemometer (LDA), electromagnetic flow meter, turbine and other rotary element flow meters, ultrasonic flow meters, doppler flow meters, cross correlation flow meters, vortex flow meters. Measurement of mass flow rate: radiation, angular momentum, impeller, turbine, constant torque hysteresis clutch, twin turbine coriolis, gyroscopic and heat transfer type mass flow meters. Target flow meters, V-cone flow meters, purge flow regulators, flow switches, flow meter calibration concepts, flow meter selection and application. Unit 4 Level measurement Introduction, float level devices, displacer level detectors, rotating paddle switches, diaphragm and differential pressure detectors, resistance, capacitance and RF probes, radiation, conductivity, field effect, thermal, ultrasonic, microwave, radar and vibrating type level sensors. Level sensor selection and application. Unit 5 **Strain measurement** Strain gauge and design of piezo-electric crystal, analysis of piezo-electric crystal for its use in dynamic measurement, time-constant of crystal assembly

along with cable and amplifier, calculation of crystal capacitance. Applications

	of strain gauge in various industries.
Unit 6	Measurement of viscosity
	Definitions, units, Newtonian and Non-Newtonian behavior, measurement of
	viscosity using laboratory viscometers, industrial viscometers. Viscometer
	selection and application.
Unit 7	Measurement of density
	Definitions, units, liquid density measurement, gas densitometers, its
	application and selection.
Unit 8	Electromagnetic compatibility
	Introduction, interference coupling mechanism, basics of circuit layout and grounding, concepts of interfaces, filtering and shielding. Safety: introduction, electrical hazards, hazardous areas and classification, nonhazardous areas, enclosures-NEMA types, fuses and circuit breakers. Protection methods: purging, explosion proofing and intrinsic safety. Specification of instruments, preparation of project documentation, process flow sheet, instrument index sheet, instrument specifications sheet, panel drawing and specifications, instrument specifications. Project procedure, schedules, vendor drawing, tender documentation, selection of measurement method and control panels.
II!+ O	<u> </u>
Unit 9	Control panel design
	Design considerations, type of control panel designs, ergonomics in design of
Text Book	control, control room layout, cabling, wiring details.
	Nakra Chowdhari, "Instrumentation", Prentice Hall of India, New Delhi.
1.	Considing D. M., "Process Instrumentation, and Control Handbook", McGraw
۷.	Hill International.
3.	Doeblin E. O. and D. Mannik, "Measurement Systems" Fifth Edition, Application
3.	and Design, McGraw Hill International Edition, 2006.
4.	Bentley J. P., "Principles of Measurement Systems" Third Edition, Pearson
	Education, New Delhi, 2000.
5.	Sawhney A. K. and Puneet Sawhney "A Course in Mechanical Measurements and
	Instrumentation" Dhanpat Rai and Co. (P) Ltd., New Delhi, 1998.
Reference	
1.	Liptak B. G., "Instrument Engineers Handbook, Process Measurement Volume I and Process Control Volume II" Chilton Book Company, 2001
2.	Johnson C. D., "Process Control Instrumentation Technology", Seventh Edition, Pearson Education, New Delhi, 2003.
3.	Warren Boxleitner, IEEE press: Electrostatic Discharge and Electronic Equipment.
4.	Walter C Bosshart, "Printed Circuit Boards", CEDT Series, Tata McGraw Hill.
5.	S. Soclop, "Applications of Analog Integrated Circuit", Prentice Hall of India.
6.	Ott , "Noise Reduction Techniques".
7.	Andrew Williams, "Applied Instrumentation in the Process Industries" Vol. I and Vol. II, GWF Publishing Company.
Course ou	
1.	To recall the knowledge of temperature transducers like, thermocouples,
	thermistors, RTDs, pyrometry and other temperature measuring techniques.
2.	To understand the construction and working principle of various type of
	transducers/sensor to measure physical quantities.

3.	To apply the adequate knowledge of pressure and strain transducers.				
4.	To analyze, formulate and select suitable sensor/transducer for the given				
	industrial applications.				
5.	To demonstrate working knowledge of safety practices used in the				
	measurement and control of industrial processes.				
6.	To develop skills to trouble shoot the problems with measurement and control				
	of industrial processes.				
Term Wo	rk:				
The term v	work shall consist of a record of at least eight experiments/designs and drawings				
	he syllabus given above. Some of the experiments may be from the following list.				
1.	Case study: One lab instrument/field instrument and its detailed engineering				
	drawings, circuit diagrams on a drawing sheet.				
2.	Design of a mini project like design of instrument/electronic device/				
	transducer/instrumentation component/system, its procedure starting from				
	preparation of specifications, designing, testing, and erection. Drawings				
	dimensional sketches, circuit diagram, details of different component on				
	drawing sheet, testing its specifications, determining practical static and				
	dynamic characteristics.				

IN303 D	IN303 Digital Signal Processing				
Teaching:			11100031118	Examination scheme:	
Lectures		3	hrs/week	Theory	
Tutorials	,		hrs/week	Mid Term: 30 marks,	
Practical		2	hrs/week	End Sem. Exam: 70 marks	
Credits		4	ms/ week		
Course ob	iectiv	-			
1.	_		etter understa	anding of discrete-time and digital signal in time and	
	-	ency do			
2.	•			nalyze linear systems with difference equations.	
3.	To de	esign an	d implement F	TR and IIR filters with different structures.	
Syllabus:					
Unit 1	Intro	ductio	n		
	Discr	ete tim	e signals and	systems, time domain characterization of discrete	
		-	_	ng theorem, benefits and limitations of processing	
	_	_	-	of signals. The Z-transform: inverse Z-transform and	
			• •	r one-sided and two-sided z-transforms. Discrete	
11:4-0	Time Fourier Transform (DTFT) and its properties.				
Unit 2				ns in transform domain	
		_	-	he transfer function, types of transfer functions, All	
	•			imum-phase and maximum-phase transfer functions,	
II-sia O	inverse systems. Discrete Fourier Transform				
Unit 3					
				n (DFT) and its properties. Computation of DFT (FFT	
	algorithms), Decimation-In-Time (DIT), Decimation-In-Frequency (DIF) and				
Unit 4	radix-n algorithms of FFT. Digital filter structures				
Unit 4	Digit	ai iiitei	structures		

	Digital filter structures: block diagram representation, equivalent structures,				
	basic FIR structures, basic IIR structures, All pass filters, IIR tapped cascaded				
	lattice structures, FIR cascaded lattice structures.				
Unit 5	Digital filter design IIR filter design				
	Bilinear transformation, impulse invariant transformation, Lowpass IIR digital				
	filters, spectral transformations, FIR filter design using windowing techniques,				
	frequency sampling technique, and computer aided design.				
Unit 6	Digital Signal Processor				
	Harvard architecture and modified Harvard architecture. Introduction to fixed point and floating point DSP processors, architectural features, computational units, bus architecture and memory architecture, data addressing, address generation unit pipelining on chip peripherals.				
Reference	generation unit, pipelining, on-chip peripherals.				
1.	E. C. Ifeachor, B. W. Jarvis, "Digital Signal Processing- A Practical Approach",				
1.	Second Edition, Pearson Education, New Delhi, 2002.				
2.	S. K. Mitra, "Digital signal processing- A computer based approach", Tata				
	McGraw Hill, 2002.				
3.	A. V. Oppenheim, R, W, Schafer, "Discrete time signal processing", Prentice-Hall				
	of India, 2001.				
4.	J. G. Proakis, D. G. Manolakis, "Digital signal processing –Principles, algorithms				
	and applications", Prentice Hall of India, 2002.				
5.	R. G. Lyons, "Understanding Digital Signal Processing", Pearson Education New				
Course ou	Delhi, 1999.				
1.	To understand benefits and limitations of processing signals digitally.				
2.	To represent and analyze the discrete-time signals in the frequency domain,				
۵.	Discrete-Time Fourier Transform (DTFT), z-transform and Discrete Fourier				
	transform (DFT).				
3.	To implement DFT using Fast Fourier Transform (FFT) algorithms, as well as				
	some of its applications (computation of convolution sums, spectral analysis).				
4.	To design and implement FIR and IIR filters.				
5.	To understand the issues and difficulties in implementation of digital systems.				
6.	To propose and design a digital system for day-to-day application.				
Term Wo	rk:				
	k shall consist of at least six to eight assignment/tutorials/practical based on				
_	abus. Some of the experiments may be from the following list. Students are				
	to write the programs (at least eight) on general-purpose computer using any				
	ent environment (C/C++/Matlab) or on any DSP processor and development				
environme					
1.	Digital signal generation.				
2. 3.	Simple operations on signals. Linear Convolution.				
4.	Discrete time Fourier transforms.				
5.	Discrete Fourier Transform - Direct computation, DIT algorithm, DIF algorithm.				
6.	FIR filters design and software realization by windowing and Frequency				
J.	sampling.				
7.	IIR filter design and software realization of Butterworth and Chebyshev approx.				
8.	Any other experiment decided by the teacher.				

IN304 Microprocessor and Microcontroller					
Teaching			Examination scheme:		
Lectures	3	hrs/week	Theory		
Tutorials	1	hrs/week	Mid Term : 30 marks,		
Practical	,		End Sem. Exam: 70 marks		
Credits	5	,			
Course ob	jectives:				
1.	To teach	the students to f	amiliarize with microprocessor and microcontroller		
		re and functionir	•		
2.			rogram the microprocessor and microcontrollers for		
	any applic	_			
Syllabus:					
Unit 1	Introduc	tion to 8085			
	Architecti	are and operation	n, pin out diagram. Assembly language programming		
		-	instruction classification, instruction set study in		
			es, writing assembly language programs, stacks		
			et timing diagrams, a minimum configuration for		
		-	of 8085, internal interrupt circuit, hardware and		
11		nterrupts.	0005		
Unit 2		ng memories to	OM and RAM with 8085 with exhaustive and partial		
		g memories EPK techniques.	om and KAM with 6065 with exhaustive and partial		
Unit 3	Ŭ	•	in 8085 systems		
Ones	Peripheral devices used in 8085 systems Following structure programmable peripheral devices are to be studied in				
			diagram, software for their interfacing with 8085:		
		53, 8279, ADC.			
Unit 4	Introduction to microcontrollers				
	8051 Architecture, pin out diagram, 8051 oscillator and clock, Program counter				
			CPU registers, flags and PSW, internal memory, stack		
	and stack	pointer, SFRS, int	ternal ROM, I/P and O/P ports.		
Unit 5		ming 8051			
	_	0 0 1	gramming for 8051 microcontroller, instruction		
			set Arithmetic and Logical operations, jump and call		
		_	ssembly language programming based on instruction		
Unit 6	Timers in	s and subroutines			
UIIIL O			inters and timers, timer modes, timer/counter		
	programn		micro and umero, umer modes, umer/counter		
Unit 7		ng peripherals to	n 8051		
			erfacing with: keyboard and display, A/D and D/A		
chips.					
Unit 8	•	8051 based sys	tems		
			ms using 8051 for temperature indication OR/AND		
	_	_	OR/AND control, stepper motor control, embedded		
	control systems, Smart transmitters.				
Unit 9	Serial da	ta transmission			

	Introduction to carial data transmission methods
Text Book	Introduction to serial data transmission methods.
	K. L. Short, "Microprocessor and programming logic", Second Edition, Prentice-Hall India Pvt. Ltd.
2.	R. S. Gaonkar, "Microprocessor Architecture, Programming and application with 8085/8085A", Fourth Edition, Willey Eastern Ltd.
3.	B. Ram, "Fundamentals of microprocessor and Microcomputer", Dhanpat Rai and Sons, Eighth Edition, New Delhi.
4.	Ayala K. J., "8051 Microcontroller: Architecture, Programming and applications"
5.	Second Edition, Penram international. Muhammad Ali Mazidi, Janice G. Mazidi and Rolin D. McKinlay, "The
	Microcontroller and Embedded Systems", Second Edition, Pearson, 2012.
Reference	
1.	B. Ram, "Advanced Microprocessor and Interfacing" Tata McGraw-Hill Publishing Company Ltd., First Edition, New Delhi.
2.	Ajit Pal, "Microprocessor Principles and Applications", Tata Mc-Graw Hill, First Edition New Delhi.
3.	U. V. Kulkarni and T. R. Sontakke, "The 8085A Basics: Programming and Interfacing", Sadusudha Prakashan, First Edition, Nanded.
4.	Intel Mcs, "8085 users manual", Intel Corporation.
5.	Myke Predko, "Programming and customizing the 8051 Microcontroller", Tata McGraw-Hill, First Edition, New Delhi.
6.	N.G. Palan, "8031 Microcontroller – Architecture, Programming and Hardware Design", Technova publishing House.
Course ou	
1.	To describe basics of 8085, 8051 and its instruction set.
2.	To understand historical development of microcontrollers and to know
2.	different 8, 16, 32 bit microcontrollers.
3.	To solve assembly language programs based on the instruction set of 8085 and 8051.
4.	To get insight of 8051 based hardware system and so to study ADC, keyboard etc.
5.	To execute assembly language programs based on the instruction set of 8051
6.	To develop 8085, 8051 based instrumentation system.
Term Wo	
T. 111	
	sist of a record of at least eight of the following experiments based on the
Prescribed	
1.	Study of Dyralog 8085 kit. Writing simple programs based on 2005 Instruction set
3.	Writing simple programs based on 8085 Instruction set.
4.	Write a program to find largest number from a series of numbers. Write a program to transfer a block of data.
5.	Write a program for arranging numbers in ascending / descending order.
6.	To study interfacing of 8255 with LEDs, 7-Segment display.
7.	To study interfacing of 8255 with Keyboard, ADC.
8.	To study 8051 Simulator.

9.	To write simple programs using 8051 simulator like- a. Finding largest/smallest number. b. arranging numbers in ascending / descending order. c. Arithmetic of 16-bit numbers.
10.	Interfacing of stepper motor with microcontroller.
11.	Mini project based on 8051.

IN305 Industrial Data Communications			
Teaching scheme:			Examination scheme:
Lectures	3	hrs/week	Theory
Tutorials	0	hrs/week	Mid Term : 30 marks,
Practical	0	hrs/week	End Sem. Exam: 70 marks
Credits	3	ms/week	Lift Jeff. Lam. 70 marks
Course ob			
1.	To introduc	e the princip	les of analog and digital communication systems
			tion and demodulation schemes.
2.		insight about i tion industries	networks, topologies, and the key concepts used in
3.	_	-	knowledge about the layered communication /IP) and its functionalities.
4.		nd the princip n ISO and TCP,	les, key protocols, design issues, and significance of /IP.
5.		basic concept	s of network security and its various security issues
Syllabus:			
Unit 1	Communica	tion concepts	}
	A. Serial and parallel transmission, data organization: signals, digital standard		
	signals, data	a organization	n: communication codes, data organization: error
	coding, data	organization: l	Protocol concepts.
	B. Amplitud	e modulation	
	AM wave eq	uation, spectr	um, power relation, generation methods, high-level
	modulation,	and low-leve	el modulation, DSBSC and SSB modulation, SSB
	generation methods, ISB, VSB.		
	C. Frequency modulation		
	Mathematical representation of FM, frequency spectrum of FM, generation		
	methods of FM (Direct, Indirect methods), effect of noise on FM, noise triang		
	pre-emphasis and de-emphasis, phase modulation, compare AM, FM, PM		
	Frequency Division Multiplexing.		
Unit 2	Communica	tions models	
	ISO OSI mod	el, mail anal <mark>og</mark>	y, OSI model, IEEE 802 models.
Unit 3	Serial comn	nunication sta	ındards
	Basic conce communicat	-	standards, interface signal functions, PC serial

Unit 4	Local Area Networks
	Layer 1 the physical layer, topologies, transmission media, 802 and industrial
	LANs, wireless LANs 802.11, Hub, Bridge, Ethernet Switch, Router, IEEE
	802.3/Ethernet: A Layer1 and 2 Standard 10BASE5, 10BASE2, 10BASE-T, 10 GbE-10 Gigabit Ethernet Over Fiber, 10 GbE-10 Gigabit Ethernet Over Copper.
** ** **	
Unit 5	Industrial networks and field buses
	Industrial network requirements, HART, ControlNet, EtherNet/IP, PROFIBUS/PROFINET, Foundation Fieldbus, Ethernet-TCP/IP, Modbus RTU
	Protocol, IEC 61850.
Unit 6	Wide Area Networks
	Wireline transmission, carrier concepts, wireline modems, modem types, WAN
	digital lines, cable modems, WANs for mobile and the hinterlands.
Unit 7	Internetworking
	Layer 2: internetworking equipment, Layer 3 devices, Routing topologies, managed switches, gateways.
Unit 8	Cybersecurity
	Overview, security vulnerabilities, methods of attack, risk analysis, IACS
	countermeasures, firewalls, network address translation, monitoring network
	traffic, hardening, internet and VPN countermeasures, network management
	and security, IEC/ANSI/ISA-62443 cybersecurity standards, ISA secure
_	certification program.
Reference	
1.	G. Kennedy, Electronic Communication Systems, McGraw Hill, New Delhi.
2.	Lawrence M. Thompson and Tim Shaw, "Industrial Data Communications", ISA Fifth Edition.
3.	D. Roddy and J. Coolen, Electronic Communications, Prentice-Hall of India Private Limited, Third Edition, 1984.
4.	A. S. Tanennbaum, "Computer Networks", Fourth Edition, Prentice Hall of India,
1.	New Delhi, 2002.
5.	W. Stallings, "Data and Computer communication, Sixth Edition, Pearson
	Education, New Delhi, 2001.
6.	Comer, "Computer Networks and Internets", Second Edition, Pearson Education, 2001.
7.	Behrouz A. Forouzen, "Data Communication and Networking" Fourth Edition,
	McGraw Hill Publications, 2007.
Course ou	
1.	To remember and describe how the physical, data link, and network layers operate in a typical data communication system.
2.	To understand the setting of a network environment with all the necessary data
2.	communication components, procedure, conflicting issues and resolution
	techniques that make it functional.
3.	To apply the operation and technique of various communication protocols such
	as multiple access protocols, TCP, UDP, FTP, etc.
4.	To analyze the services and features of the various layers of data networks.
5.	To evaluate communication protocols for route calculations and be able to
	perform such calculations of data transmission.
6.	To create the suitable transmission route for different internetworking devices.

IN306 II	nit Operations and	Instrumentation		
	nit Operations and			
Teaching	scheme:	Examination scheme:		
Lectures	3 hrs/w			
Tutorials	0 hrs/w			
Practical	0 hrs/w	eek End Sem. Exam: 70 marks		
Credits	3			
Course ob	jectives:			
1.	This is a course that i	ntends to expose the non-specialist student to the broad		
	spectrum of unit opera	ations in the engineering field.		
Syllabus:				
Unit 1	Introduction			
	•	nit process concept: block diagram of chemical process,		
		operation, material and energy balance, batch and		
	•	endothermic and exothermic reaction, reversible and		
	irreversible process.			
Unit 2	Heat transfer			
	•	ansfer, principles of heat flow in fluids, heat transfer to		
	_	change, heat transfer to fluids with phase change, heat		
11	exchange equipment.			
Unit 3	Evaporation			
	Liquid characteristics, types of evaporators, principle and operation of single			
Unit 4	and multiple effect evaporators.			
UIII 4	DistillationVapor- liquid equilibrium, equipment setup, Flash Distillation, Batch			
	Distillation, Continuous Distillation, operational features, construction and			
	working only.			
Unit 5	Drying			
		lassification of dryers, temperature patterns in dryers,		
	types of drying equipments, selection of drying equipment.			
Unit 6	Filtration	Soft F		
	Mechanism of filtratio	n, types of filters.		
Unit 7	Crystallization			
	Types of crystallizers,	principle and operation.		
Unit 8	Size reduction			
	Different crushers and	grinders, working principle.		
Unit 9	Leaching and extract	ion		
	Principle, working of equipments.			
Unit 10	Gas absorption			
	Principle and working	operation of packed tower.		
Unit 11	Humidification and o	lehumidification		
	Equipment setup, prin	ciple of working.		
Unit 12	Adsorption			
	Principle and operation	n of equipment.		
Unit 13	Mixing			
	Types of mixers, const	ruction and working.		

Study of manufacturing process of cement plant, paper and pulp industries petrochemical refinery industries, fertilizer industries, iron and steel industries pharmaceutical industries, sugar industries etc. only study of flow diagram. Reference Books: 1. M. G. Rao and Misting, "Outline of Chemical Technology", Second Edition, Eas west, 1973. 2. McCabe, W.L., Smith, J. C., and Harriot, P., "Unit Operations in Chemical Engineering", McGraw-Hill Seventh Edition, 2004. 3. Perry, "Chemical Engineer's Handbook", McGraw Hill, 1984. 4. Stoker, "Designing of Thermal System", Third Edition. 5. Leverspel O., "Chemical Reaction Engineering", Second Edition Willey Eastern Pvt Ltd. Course outcomes: 1. To know the basic operation of a simple heat transfer, evaporator, distillation column, dryers, heat exchanger and refrigeration plant. 2. To understand the theoretical concepts and principles used in unit operations and process and correlate them with various practical applications in instrumentation industries etc. 3. To apply knowledge & understanding of various Unit Operations used in industry. 4. To analyze the use of interlocks and trips as associated with these units. 5. To justify the selection of proper instrument used for development of desired product by knowing construction, working, application, merits and demerits of various instruments. 6. To design control strategies for process equipments. Eligibility for attending examination on this course is as follows	Г <u> </u>				
petrochemical refinery industries, fertilizer industries, iron and steel industries pharmaceutical industries, sugar industries etc. only study of flow diagram. Reference Books: 1. M. G. Rao and Misting, "Outline of Chemical Technology", Second Edition, Eas west, 1973. 2. McCabe, W.L., Smith, J. C., and Harriot, P., "Unit Operations in Chemical Engineering", McGraw-Hill Seventh Edition, 2004. 3. Perry, "Chemical Engineer's Handbook", McGraw Hill, 1984. 4. Stoker, "Designing of Thermal System", Third Edition. 5. Leverspel O., "Chemical Reaction Engineering", Second Edition Willey Eastern Pvt Ltd. Course outcomes: 1. To know the basic operation of a simple heat transfer, evaporator, distillation column, dryers, heat exchanger and refrigeration plant. 2. To understand the theoretical concepts and principles used in unit operations and process and correlate them with various practical applications in instrumentation industries etc. 3. To apply knowledge & understanding of various Unit Operations used in industry. 4. To analyze the use of interlocks and trips as associated with these units. 5. To justify the selection of proper instrument used for development of desired product by knowing construction, working, application, merits and demerits o various instruments. 6. To design control strategies for process equipments. Term Work: Eligibility for attending examination on this course is as follows	Unit 14	Introduction to process industries			
pharmaceutical industries, sugar industries etc. only study of flow diagram. Reference Books: 1. M. G. Rao and Misting, "Outline of Chemical Technology", Second Edition, Eas west, 1973. 2. McCabe, W.L., Smith, J. C., and Harriot, P., "Unit Operations in Chemical Engineering", McGraw-Hill Seventh Edition, 2004. 3. Perry, "Chemical Engineer's Handbook", McGraw Hill, 1984. 4. Stoker, "Designing of Thermal System", Third Edition. 5. Leverspel O., "Chemical Reaction Engineering", Second Edition Willey Eastern Pvt Ltd. Course outcomes: 1. To know the basic operation of a simple heat transfer, evaporator, distillation column, dryers, heat exchanger and refrigeration plant. 2. To understand the theoretical concepts and principles used in unit operations and process and correlate them with various practical applications in instrumentation industries etc. 3. To apply knowledge & understanding of various Unit Operations used in industry. 4. To analyze the use of interlocks and trips as associated with these units. 5. To justify the selection of proper instrument used for development of desired product by knowing construction, working, application, merits and demerits o various instruments. 6. To design control strategies for process equipments. Term Work: Eligibility for attending examination on this course is as follows		Study of manufacturing process of cement plant, paper and pulp industries,			
Reference Books: 1. M. G. Rao and Misting, "Outline of Chemical Technology", Second Edition, Eas west, 1973. 2. McCabe, W.L., Smith, J. C., and Harriot, P., "Unit Operations in Chemica Engineering", McGraw-Hill Seventh Edition, 2004. 3. Perry, "Chemical Engineer's Handbook", McGraw Hill, 1984. 4. Stoker, "Designing of Thermal System", Third Edition. 5. Leverspel O., "Chemical Reaction Engineering", Second Edition Willey Eastern Pvt Ltd. Course outcomes: 1. To know the basic operation of a simple heat transfer, evaporator, distillation column, dryers, heat exchanger and refrigeration plant. 2. To understand the theoretical concepts and principles used in unit operations and process and correlate them with various practical applications in instrumentation industries etc. 3. To apply knowledge & understanding of various Unit Operations used in industry. 4. To analyze the use of interlocks and trips as associated with these units. 5. To justify the selection of proper instrument used for development of desired product by knowing construction, working, application, merits and demerits o various instruments. 6. To design control strategies for process equipments. Term Work: Eligibility for attending examination on this course is as follows		petrochemical refinery industries, fertilizer industries, iron and steel industries,			
 M. G. Rao and Misting, "Outline of Chemical Technology", Second Edition, Eas west, 1973. McCabe, W.L., Smith, J. C., and Harriot, P., "Unit Operations in Chemica Engineering", McGraw-Hill Seventh Edition, 2004. Perry, "Chemical Engineer's Handbook", McGraw Hill, 1984. Stoker, "Designing of Thermal System", Third Edition. Leverspel O., "Chemical Reaction Engineering", Second Edition Willey Eastern Pvt Ltd. Course outcomes: To know the basic operation of a simple heat transfer, evaporator, distillation column, dryers, heat exchanger and refrigeration plant. To understand the theoretical concepts and principles used in unit operations and process and correlate them with various practical applications in instrumentation industries etc. To apply knowledge & understanding of various Unit Operations used in industry. To analyze the use of interlocks and trips as associated with these units. To justify the selection of proper instrument used for development of desired product by knowing construction, working, application, merits and demerits o various instruments. To design control strategies for process equipments. Term Work: Eligibility for attending examination on this course is as follows 					
west, 1973. 2. McCabe, W.L., Smith, J. C., and Harriot, P., "Unit Operations in Chemica Engineering", McGraw-Hill Seventh Edition, 2004. 3. Perry, "Chemical Engineer's Handbook", McGraw Hill, 1984. 4. Stoker, "Designing of Thermal System", Third Edition. 5. Leverspel O., "Chemical Reaction Engineering", Second Edition Willey Eastern Pvt Ltd. Course outcomes: 1. To know the basic operation of a simple heat transfer, evaporator, distillation column, dryers, heat exchanger and refrigeration plant. 2. To understand the theoretical concepts and principles used in unit operations and process and correlate them with various practical applications in instrumentation industries etc. 3. To apply knowledge & understanding of various Unit Operations used in industry. 4. To analyze the use of interlocks and trips as associated with these units. 5. To justify the selection of proper instrument used for development of desired product by knowing construction, working, application, merits and demerits o various instruments. 6. To design control strategies for process equipments. Term Work: Eligibility for attending examination on this course is as follows	Reference				
Engineering", McGraw- Hill Seventh Edition, 2004. 3. Perry, "Chemical Engineer's Handbook", McGraw Hill, 1984. 4. Stoker, "Designing of Thermal System", Third Edition. 5. Leverspel O., "Chemical Reaction Engineering", Second Edition Willey Eastern Pvt Ltd. Course outcomes: 1. To know the basic operation of a simple heat transfer, evaporator, distillation column, dryers, heat exchanger and refrigeration plant. 2. To understand the theoretical concepts and principles used in unit operations and process and correlate them with various practical applications in instrumentation industries etc. 3. To apply knowledge & understanding of various Unit Operations used in industry. 4. To analyze the use of interlocks and trips as associated with these units. 5. To justify the selection of proper instrument used for development of desired product by knowing construction, working, application, merits and demerits o various instruments. 6. To design control strategies for process equipments. Term Work: Eligibility for attending examination on this course is as follows	1.	M. G. Rao and Misting, "Outline of Chemical Technology", Second Edition, East west, 1973.			
 Perry, "Chemical Engineer's Handbook", McGraw Hill, 1984. Stoker, "Designing of Thermal System", Third Edition. Leverspel O., "Chemical Reaction Engineering", Second Edition Willey Eastern Pvt Ltd. Course outcomes: To know the basic operation of a simple heat transfer, evaporator, distillation column, dryers, heat exchanger and refrigeration plant. To understand the theoretical concepts and principles used in unit operations and process and correlate them with various practical applications in instrumentation industries etc. To apply knowledge & understanding of various Unit Operations used in industry. To analyze the use of interlocks and trips as associated with these units. To justify the selection of proper instrument used for development of desired product by knowing construction, working, application, merits and demerits o various instruments. To design control strategies for process equipments. Term Work: Eligibility for attending examination on this course is as follows 	2.	McCabe, W.L., Smith, J. C., and Harriot, P., "Unit Operations in Chemical			
 Stoker, "Designing of Thermal System", Third Edition. Leverspel O., "Chemical Reaction Engineering", Second Edition Willey Eastern Pvt Ltd. Course outcomes: To know the basic operation of a simple heat transfer, evaporator, distillation column, dryers, heat exchanger and refrigeration plant. To understand the theoretical concepts and principles used in unit operations and process and correlate them with various practical applications in instrumentation industries etc. To apply knowledge & understanding of various Unit Operations used in industry. To analyze the use of interlocks and trips as associated with these units. To justify the selection of proper instrument used for development of desired product by knowing construction, working, application, merits and demerits o various instruments. To design control strategies for process equipments. Term Work: Eligibility for attending examination on this course is as follows 		Engineering", McGraw- Hill Seventh Edition, 2004.			
 Leverspel O., "Chemical Reaction Engineering", Second Edition Willey Eastern Pvt Ltd. Course outcomes: To know the basic operation of a simple heat transfer, evaporator, distillation column, dryers, heat exchanger and refrigeration plant. To understand the theoretical concepts and principles used in unit operations and process and correlate them with various practical applications in instrumentation industries etc. To apply knowledge & understanding of various Unit Operations used in industry. To analyze the use of interlocks and trips as associated with these units. To justify the selection of proper instrument used for development of desired product by knowing construction, working, application, merits and demerits of various instruments. To design control strategies for process equipments. Term Work: Eligibility for attending examination on this course is as follows 	3.	Perry, "Chemical Engineer's Handbook", McGraw Hill, 1984.			
Pvt Ltd. Course outcomes: 1. To know the basic operation of a simple heat transfer, evaporator, distillation column, dryers, heat exchanger and refrigeration plant. 2. To understand the theoretical concepts and principles used in unit operations and process and correlate them with various practical applications in instrumentation industries etc. 3. To apply knowledge & understanding of various Unit Operations used in industry. 4. To analyze the use of interlocks and trips as associated with these units. 5. To justify the selection of proper instrument used for development of desired product by knowing construction, working, application, merits and demerits of various instruments. 6. To design control strategies for process equipments. Term Work: Eligibility for attending examination on this course is as follows	4.	Stoker, "Designing of Thermal System", Third Edition.			
Course outcomes: 1. To know the basic operation of a simple heat transfer, evaporator, distillation column, dryers, heat exchanger and refrigeration plant. 2. To understand the theoretical concepts and principles used in unit operations and process and correlate them with various practical applications in instrumentation industries etc. 3. To apply knowledge & understanding of various Unit Operations used in industry. 4. To analyze the use of interlocks and trips as associated with these units. 5. To justify the selection of proper instrument used for development of desired product by knowing construction, working, application, merits and demerits o various instruments. 6. To design control strategies for process equipments. Term Work: Eligibility for attending examination on this course is as follows	5.	Leverspel O., "Chemical Reaction Engineering", Second Edition Willey Eastern			
 To know the basic operation of a simple heat transfer, evaporator, distillation column, dryers, heat exchanger and refrigeration plant. To understand the theoretical concepts and principles used in unit operations and process and correlate them with various practical applications in instrumentation industries etc. To apply knowledge & understanding of various Unit Operations used in industry. To analyze the use of interlocks and trips as associated with these units. To justify the selection of proper instrument used for development of desired product by knowing construction, working, application, merits and demerits o various instruments. To design control strategies for process equipments. Term Work: Eligibility for attending examination on this course is as follows 		Pvt Ltd.			
column, dryers, heat exchanger and refrigeration plant. 2. To understand the theoretical concepts and principles used in unit operations and process and correlate them with various practical applications in instrumentation industries etc. 3. To apply knowledge & understanding of various Unit Operations used in industry. 4. To analyze the use of interlocks and trips as associated with these units. 5. To justify the selection of proper instrument used for development of desired product by knowing construction, working, application, merits and demerits o various instruments. 6. To design control strategies for process equipments. Term Work: Eligibility for attending examination on this course is as follows	Course ou	tcomes:			
 To understand the theoretical concepts and principles used in unit operations and process and correlate them with various practical applications in instrumentation industries etc. To apply knowledge & understanding of various Unit Operations used in industry. To analyze the use of interlocks and trips as associated with these units. To justify the selection of proper instrument used for development of desired product by knowing construction, working, application, merits and demerits o various instruments. To design control strategies for process equipments. Term Work: Eligibility for attending examination on this course is as follows 	1.	To know the basic operation of a simple heat transfer, evaporator, distillation			
 To understand the theoretical concepts and principles used in unit operations and process and correlate them with various practical applications in instrumentation industries etc. To apply knowledge & understanding of various Unit Operations used in industry. To analyze the use of interlocks and trips as associated with these units. To justify the selection of proper instrument used for development of desired product by knowing construction, working, application, merits and demerits o various instruments. To design control strategies for process equipments. Term Work: Eligibility for attending examination on this course is as follows 		column, dryers, heat exchanger and refrigeration plant.			
and process and correlate them with various practical applications in instrumentation industries etc. 3. To apply knowledge & understanding of various Unit Operations used in industry. 4. To analyze the use of interlocks and trips as associated with these units. 5. To justify the selection of proper instrument used for development of desired product by knowing construction, working, application, merits and demerits of various instruments. 6. To design control strategies for process equipments. Term Work: Eligibility for attending examination on this course is as follows	2.				
 To apply knowledge & understanding of various Unit Operations used in industry. To analyze the use of interlocks and trips as associated with these units. To justify the selection of proper instrument used for development of desired product by knowing construction, working, application, merits and demerits o various instruments. To design control strategies for process equipments. Term Work: Eligibility for attending examination on this course is as follows 		and process and correlate them with various practical applications in			
 industry. 4. To analyze the use of interlocks and trips as associated with these units. 5. To justify the selection of proper instrument used for development of desired product by knowing construction, working, application, merits and demerits o various instruments. 6. To design control strategies for process equipments. Term Work: Eligibility for attending examination on this course is as follows 		instrumentation industries etc.			
 4. To analyze the use of interlocks and trips as associated with these units. 5. To justify the selection of proper instrument used for development of desired product by knowing construction, working, application, merits and demerits o various instruments. 6. To design control strategies for process equipments. Term Work: Eligibility for attending examination on this course is as follows 	3.	To apply knowledge & understanding of various Unit Operations used in			
 To justify the selection of proper instrument used for development of desired product by knowing construction, working, application, merits and demerits o various instruments. To design control strategies for process equipments. Term Work: Eligibility for attending examination on this course is as follows 		· ·			
product by knowing construction, working, application, merits and demerits o various instruments. 6. To design control strategies for process equipments. Term Work: Eligibility for attending examination on this course is as follows					
various instruments. 6. To design control strategies for process equipments. Term Work: Eligibility for attending examination on this course is as follows	5.				
6. To design control strategies for process equipments. Term Work: Eligibility for attending examination on this course is as follows					
Term Work: Eligibility for attending examination on this course is as follows					
Eligibility for attending examination on this course is as follows					
1 Charles about about minimum I assistant at a Construction by	Eligibility	for attending examination on this course is as follows			
1. Students should submit minimum 5 assignments out of 8 assignments given by	1.	Students should submit minimum 5 assignments out of 8 assignments given by			
course coordinator.		course coordinator.			
2. Students must submit a report on any one industrial visit.	2.	Students must submit a report on any one industrial visit.			

Semester-VI

IN307 Process Control						
Teaching :		Examination scheme:				
Lectures	3 hrs/weel	Theory				
Tutorials	0 hrs/weel	Mid Term: 30 marks,				
Practical	l 2 hrs/week End Sem. Exam: 70 marks					
Credits	· · · · · · · · · · · · · · · · · · ·					
Course ob	jectives:					
2.	process dynamics, develor linear time-invariant tuning in order to assure	tal aspects of process control, essential knowledge of oping dynamic models of processes, control strategies t systems and instrumentation aspects, and controller required performance of the systems. e in the design of control systems and controller tuning				
Syllabus:	•					
Unit 1	Introduction to chemic	al process control				
		process control, design aspects and hardware for a introduction to ISA symbology: P & ID for process				
Unit 2	Modeling of chemical p	rocesses				
	Development of a mathematical model, necessity, state variables and state equations, additional equations, additional elements of the mathematical models; dead time; modeling difficulties; the input-output model; degrees of freedom and process controllers; transfer function of a process with single/multiple outputs.					
Unit 3	Dynamic behavior of systems					
	Dynamic behavior of first order, second order and higher order systems; dynamic systems with dead time/inverse response, computer simulation of process dynamics, linearization of nonlinear systems.					
Unit 4	Controller modes					
	discontinues controller	process characteristics, control system parameters, modes, two-position, multi position, floating control ler mode, P, I and D, composite control mode, P+I, P+D,				
Unit 5		edback controlled processes				
	Input output models of feedback controllers, common measuring devices, transmission lines, final control element effect of on-off, proportional, integral, derivative and composite control actions on the response of a controlled process. Generation of control action: control action generation in electronic and pneumatic controllers.					
Unit 6	Design of feedback con					
	performance content; se Cohen-Coon method; Bo Nichols tuning technique					
Unit 7		advanced control systems				
	Feedback control syster	ns with large dead time or inverse response; cascade,				

	selective and split range control; feed forward and ratio control; adaptive and
	inferential control systems.
Unit 8	Design of control systems for multi variable processes
	Synthesis of alternative control, configurations for multiple input-multiple
	output processes, interaction and decoupling of control loops; design of control
	systems for complete plants, some case studies.
Reference	
1.	T. E. Marlin, "Process Control: Designing Processes and Control Systems for
_	Dynamic Performance", McGraw Hill International Edition, 2000.
2.	G. Stephanopoulos, "Chemical Process Control: An Introduction to Theory and
2	Practice", Prentice Hall of India, New Delhi, 2001.
3.	Luyben W. L., "Simulation and Control for Chemical Engineering", Second
4	Edition Mc Graw Hill 1989.
4.	Curtis D. Johnson, "Process Instrumentation Technology", Fourth Edition,
5.	Prentice Hall of India, New Delhi, 1996. E. Umag, Eronini, "System Dynamics and Control". Thomason Learning, 2002.
Course ou	E. Umez- Eronini, "System Dynamics and Control", Thomason Learning, 2002.
1.	To develop fundamental and empirical models for dynamic processes and apply
1.	control systems in processes.
2.	To get a complete overview of strategies for process control.
3.	To analyze and design advance control systems viz. cascade, selective and split
٥.	range control; feed forward and ratio control; adaptive and inferential control
	systems.
4.	To design and tune process (PID) controllers.
5.	To gain familiarity with computer applications in process industries.
	To set up career options, potential job functions, contemporary and professional
6.	issues.
Term Wo	
	work shall consist of a record of at least eight experiments based on the syllabus
	ve. Some of the experiments may be from the following list.
1.	Design of an electronic ON-OFF controller and plot the characteristics of natural
1.	zone of controller.
2.	Design an electronic PID controller and study its response for step input.
3.	Design electronic temperature transmitter for transmitting temperature from
	500°C to 900°C to 4 to 20mA.
4.	Cascade control trainer (P, PI, PID, On / off) Study of Cascade Control
	trainer (Flow & Level control)
5.	Level control trainer
	a) Study of open loop response (Manual control)
	b) Study of on/off controller
	c) Study of proportional controller
	d) Study of proportional integral controller
	e) Study of proportional derivative controller
	f) Study of proportional integral derivative controller
	g) Tuning of controller (Open loop method)
	h) Tuning of controller (Closed loop method)
6.	Flow control trainer
	a) Study of open loop response (Manual control)

F	
	b) Study of on/off controller
	c) Study of proportional controller
	d) Study of proportional integral controller
	e) Study of proportional derivative controller
	f) Study of proportional integral derivative controller
	g) Tuning of controller (Open loop method)
	h) Tuning of controller (Closed loop method)
7.	Flow measurement
	a) To Calculate coefficient of discharge of Venturi meter.
	b) To Calculate coefficient of discharge of Orifice meter.
	c) To Calculate coefficient of discharge of Pitot tube.
	d) To calibrate and find accuracy of Rotameter.
	e) To find accuracy of Water meter.
8.	Determine the time-constant of RTD for given step-input.
9.	To determine the mathematical model of the given process.
10.	To determine the constants of PID controllers by given method.
11.	Use of dead beat algorithm and other algorithms in the controller design.
12.	Use of optimum controller methods for tuning of PID controller.

IN308	Control System Components			
Teaching	Teaching scheme:			Examination scheme:
Lectures		3	hrs/week	Theory
Tutorials		0	hrs/week	Mid Term : 30 marks,
Practical		2	hrs/week	End Sem. Exam: 70 marks
Credits		4		
Course Ob	jecti	ves:		
1.				understand the fundamentals of various types of control systems.
2.				sign a suitable devices and components for use in
		ess indu		
Syllabus:				
Unit 1	Motors			
	Types, working principle, characteristic, and mathematical model of following:			
	motors AC/DC motors, stepper, servo, synchronous generators and alternator.			
Unit 2	Types, working principle, characteristics, and symbolic representation of			
	following			
	Switches: toggle, slide, DIP, rotary, thumbwheel, selector, limit, proximity, combinational switches, zero speed, belt sway, pull cord, Relays:			
	Electromechanical, Solid state relays, relay packages, Contactors :Comparison			
	between relay and contactor, contactor size and ratings, Timers : On delay, off			
	delay and retentive.			
Unit 3	Sequencing and interlocking for motors			
				l Interlocking, Standard symbols used for Electrical
	Wiring Diagram, electrical wiring diagrams for starting, stopping, emergency			
	shutdown, (Direct on line, star delta, soft starter) protection devices for motors:			
	short circuit protection, over load protection, over/ under voltage protection			
	phas	se revers	ai Protection,	high temperature and high current Protection, over

	speed, Reversing direction of rotation, braking, starting with variable speeds, Jogging/Inching. Motor control center: concept and wiring diagrams.
Unit 4	Pneumatic components
	Pneumatic power supply and its components: Pneumatic relay (Bleed and Non bleed, Reverse and direct), single acting and double acting cylinder, special cylinders: cushion, double rod, tandem, multiple position, rotary Filter Regulator Lubricator (FRL), pneumatic valves (direction controlled valves, flow control etc), special types of valves like relief valve, pressure reducing etc.
Unit 5	Hydraulic components
	Hydraulic supply, hydraulic pumps, actuator (cylinder and motor), hydraulic valves. Introduction, basic types of hydraulic transmission lines, servo motors, power supply, hydraulic circuits and transmission, applications like motor speed control, reciprocating, loading, unloading, sequencing of cylinders and direction control. Symbols used in hydraulic circuits.
Unit 6	Control valves
	Valve terminologies, classification of valves. Valve actuators and accessories, detail study of valve characteristics. Study of valve construction by considering examples from hydraulic, pneumatic and electrical types. Introduction to valve selection and specifications. Selection of characteristics to suit the process, for gas, vapor and liquid. Valve sizing with mathematical treatment. Cavitations, effects and remedies of cavitations. Introduction to analog and digital fluidic devices.
Text Book	XS:
1.	M. D. Desai, "Control system components", PHI.
2.	S. R. Majumdhar, "Pneumatic Systems", Tata McGraw-Hill Publisher, 2009.
3.	B. L. Theraja, "A text book of Electrical Technology", S. Chand & Company Ltd., Vol II First Edition 1959.
Reference	e Books:
1.	Douglas M. Considine, "Process Instruments and Control Handbook", McGraw Hill.
2.	H. Meixner, E. Sauer, "Intro to Electro-Pneumatics", Festo didactic, First Edition 1989.
3.	J. P. Hasebrink, R. Kobler, "Fundamentals of Pneumatic Control Engineering", Festo Didactic: Esslinger(W Germany),1989.
4.	Petruzella, "Industrial Electronics", McGraw-Hill International First Edition, 1996.
5.	E. A . Parr, "Industrial control Handbook", volume 2, BSP Professional Books.
6.	Ernest O. Doebelin, "Measurement Systems – Application and Design", Fourth Edition, McGraw Hill.
7.	I. J. Nagrath, M. Gopal, "Control system Engineering", New Age International Publication Fourth Edition, 2006.(W.E)
8.	B. G. Liptak, "Process Measurement and Analysis", Fourth Edition, CRC Press, Washington, 2003.
9.	John E. Gibson (Purdue) and Franz B. Tuteur (Yale), "Control System Components", McGraw-Hill, New York, 1958.
10.	Hans D. Baumann, "Control valve primer", ISA; Fourth Revised Edition (15 November 2008).
11.	Les Driskell, "Control – Valves Selection and Sizing", ISA 1983.
L	

12. W. G. Andrew and H. B. Williams, "Applied Instrumentation in the Process Industries", Gulf Publishing Company, 1982. 13. C. D. Johnson, "Process Control Instrumentation Technology", Fourth Edition, Prentice. Course outcomes: 1. To know the mechanical, hydraulic, pneumatic and electrical components of control the systems. 2. To understand control valve construction, valve terminologies, valve actuators/accessories and valve characteristics. 3. To apply the knowledge of mathematical modeling to prepare transfer function of AC & DC motors. 4. To classify various kinds of electrical motors and outline their applications in the field of control systems. 5. To explain importance of different types of relays in control applications. 6. To design and construct the mathematical model of control system components and execute the instrumentation requirements in process industries. Term Work: It will consist of at least eight experiments/assignments/programs from the following list: 1. Study of cut section views of different control system components. 2. Study of stepper motor. 3. Study of focy DC servo motors. 4. Study of motor speed torque characteristics. 5. Study of hydraulic control valves and accessories. 6. Study of pneumatic control valves and accessories. 7. Study of ON/OFF, linear and equal percentage valve characteristics. 8. Study of lapper nozzle system. 10. Study of different types of relays.	4.0	TAY C. A. I				
13. C. D. Johnson, "Process Control Instrumentation Technology", Fourth Edition, Prentice. Course outcomes: 1. To know the mechanical, hydraulic, pneumatic and electrical components of control the systems. 2. To understand control valve construction, valve terminologies, valve actuators/accessories and valve characteristics. 3. To apply the knowledge of mathematical modeling to prepare transfer function of AC & DC motors. 4. To classify various kinds of electrical motors and outline their applications in the field of control systems. 5. To explain importance of different types of relays in control applications. 6. To design and construct the mathematical model of control system components and execute the instrumentation requirements in process industries. Term Work: It will consist of at least eight experiments/assignments/programs from the following list: 1. Study of cut section views of different control system components. 2. Study of stepper motor. 3. Study of AC/ DC servo motors. 4. Study of motor speed torque characteristics. 5. Study of hydraulic control valves and accessories. 6. Study of pneumatic control valves and accessories. 7. Study of ON/OFF, linear and equal percentage valve characteristics. 8. Study of flapper nozzle system.	12.					
Prentice. Course outcomes: 1. To know the mechanical, hydraulic, pneumatic and electrical components of control the systems. 2. To understand control valve construction, valve terminologies, valve actuators/accessories and valve characteristics. 3. To apply the knowledge of mathematical modeling to prepare transfer function of AC & DC motors. 4. To classify various kinds of electrical motors and outline their applications in the field of control systems. 5. To explain importance of different types of relays in control applications. 6. To design and construct the mathematical model of control system components and execute the instrumentation requirements in process industries. Term Work: It will consist of at least eight experiments/assignments/programs from the following list: 1. Study of cut section views of different control system components. 2. Study of stepper motor. 3. Study of AC/ DC servo motors. 4. Study of motor speed torque characteristics. 5. Study of hydraulic control valves and accessories. 6. Study of pneumatic control valves and accessories. 7. Study of ON/OFF, linear and equal percentage valve characteristics. 8. Study of flapper nozzle system.	10					
Course outcomes: 1. To know the mechanical, hydraulic, pneumatic and electrical components of control the systems. 2. To understand control valve construction, valve terminologies, valve actuators/accessories and valve characteristics. 3. To apply the knowledge of mathematical modeling to prepare transfer function of AC & DC motors. 4. To classify various kinds of electrical motors and outline their applications in the field of control systems. 5. To explain importance of different types of relays in control applications. 6. To design and construct the mathematical model of control system components and execute the instrumentation requirements in process industries. Term Work: It will consist of at least eight experiments/assignments/programs from the following list: 1. Study of cut section views of different control system components. 2. Study of stepper motor. 3. Study of AC/ DC servo motors. 4. Study of motor speed torque characteristics. 5. Study of hydraulic control valves and accessories. 6. Study of pneumatic control valves and accessories. 7. Study of ON/OFF, linear and equal percentage valve characteristics. 8. Study of flapper nozzle system.	13.	•				
 To know the mechanical, hydraulic, pneumatic and electrical components of control the systems. To understand control valve construction, valve terminologies, valve actuators/accessories and valve characteristics. To apply the knowledge of mathematical modeling to prepare transfer function of AC & DC motors. To classify various kinds of electrical motors and outline their applications in the field of control systems. To explain importance of different types of relays in control applications. To design and construct the mathematical model of control system components and execute the instrumentation requirements in process industries. Term Work: It will consist of at least eight experiments/assignments/programs from the following list: Study of cut section views of different control system components. Study of stepper motor. Study of AC/ DC servo motors. Study of motor speed torque characteristics. Study of hydraulic control valves and accessories. Study of pneumatic control valves and accessories. Study of logic fluidic devices. Study of flapper nozzle system. 						
control the systems. 2. To understand control valve construction, valve terminologies, valve actuators/accessories and valve characteristics. 3. To apply the knowledge of mathematical modeling to prepare transfer function of AC & DC motors. 4. To classify various kinds of electrical motors and outline their applications in the field of control systems. 5. To explain importance of different types of relays in control applications. 6. To design and construct the mathematical model of control system components and execute the instrumentation requirements in process industries. Term Work: It will consist of at least eight experiments/assignments/programs from the following list: 1. Study of cut section views of different control system components. 2. Study of stepper motor. 3. Study of AC/ DC servo motors. 4. Study of motor speed torque characteristics. 5. Study of hydraulic control valves and accessories. 6. Study of pneumatic control valves and accessories. 7. Study of ON/OFF, linear and equal percentage valve characteristics. 8. Study of flapper nozzle system.						
actuators/accessories and valve characteristics. 3. To apply the knowledge of mathematical modeling to prepare transfer function of AC & DC motors. 4. To classify various kinds of electrical motors and outline their applications in the field of control systems. 5. To explain importance of different types of relays in control applications. 6. To design and construct the mathematical model of control system components and execute the instrumentation requirements in process industries. Term Work: It will const of at least eight experiments/assignments/programs from the following list: 1. Study of cut section views of different control system components. 2. Study of stepper motor. 3. Study of AC/ DC servo motors. 4. Study of motor speed torque characteristics. 5. Study of hydraulic control valves and accessories. 6. Study of pneumatic control valves and accessories. 7. Study of ON/OFF, linear and equal percentage valve characteristics. 8. Study of flapper nozzle system.	1.					
 To apply the knowledge of mathematical modeling to prepare transfer function of AC & DC motors. To classify various kinds of electrical motors and outline their applications in the field of control systems. To explain importance of different types of relays in control applications. To design and construct the mathematical model of control system components and execute the instrumentation requirements in process industries. Term Work: Study of cut section views of different control system components. Study of stepper motor. Study of AC/ DC servo motors. Study of motor speed torque characteristics. Study of hydraulic control valves and accessories. Study of ON/OFF, linear and equal percentage valve characteristics. Study of logic fluidic devices. Study of flapper nozzle system. 	2.					
the field of control systems. 5. To explain importance of different types of relays in control applications. 6. To design and construct the mathematical model of control system components and execute the instrumentation requirements in process industries. Term Work: It will consist of at least eight experiments/assignments/programs from the following list: 1. Study of cut section views of different control system components. 2. Study of stepper motor. 3. Study of AC/ DC servo motors. 4. Study of motor speed torque characteristics. 5. Study of hydraulic control valves and accessories. 6. Study of pneumatic control valves and accessories. 7. Study of ON/OFF, linear and equal percentage valve characteristics. 8. Study of logic fluidic devices. 9. Study of flapper nozzle system.	3.					
 To explain importance of different types of relays in control applications. To design and construct the mathematical model of control system components and execute the instrumentation requirements in process industries. Term Work: It will consist of at least eight experiments/assignments/programs from the following list: Study of cut section views of different control system components. Study of stepper motor. Study of AC/ DC servo motors. Study of motor speed torque characteristics. Study of hydraulic control valves and accessories. Study of pneumatic control valves and accessories. Study of ON/OFF, linear and equal percentage valve characteristics. Study of logic fluidic devices. Study of flapper nozzle system. 	4.					
6. To design and construct the mathematical model of control system components and execute the instrumentation requirements in process industries. Term Work It will construct of at least eight experiments/assignments/programs from the following list: 1. Study of cut section views of different control system components. 2. Study of stepper motor. 3. Study of AC/ DC servo motors. 4. Study of motor speed torque characteristics. 5. Study of hydraulic control valves and accessories. 6. Study of pneumatic control valves and accessories. 7. Study of ON/OFF, linear and equal percentage valve characteristics. 8. Study of logic fluidic devices. 9. Study of flapper nozzle system.	5.	·				
Term Work: It will consist of at least eight experiments/assignments/programs from the following list: 1. Study of cut section views of different control system components. 2. Study of stepper motor. 3. Study of AC/DC servo motors. 4. Study of motor speed torque characteristics. 5. Study of hydraulic control valves and accessories. 6. Study of pneumatic control valves and accessories. 7. Study of ON/OFF, linear and equal percentage valve characteristics. 8. Study of logic fluidic devices. 9. Study of flapper nozzle system.	6.					
Term Work: It will consist of at least eight experiments/assignments/programs from the following list: 1. Study of cut section views of different control system components. 2. Study of stepper motor. 3. Study of AC/ DC servo motors. 4. Study of motor speed torque characteristics. 5. Study of hydraulic control valves and accessories. 6. Study of pneumatic control valves and accessories. 7. Study of ON/OFF, linear and equal percentage valve characteristics. 8. Study of logic fluidic devices. 9. Study of flapper nozzle system.						
 Study of cut section views of different control system components. Study of stepper motor. Study of AC/ DC servo motors. Study of motor speed torque characteristics. Study of hydraulic control valves and accessories. Study of pneumatic control valves and accessories. Study of ON/OFF, linear and equal percentage valve characteristics. Study of logic fluidic devices. Study of flapper nozzle system. 	Term Wo					
 Study of stepper motor. Study of AC/ DC servo motors. Study of motor speed torque characteristics. Study of hydraulic control valves and accessories. Study of pneumatic control valves and accessories. Study of ON/OFF, linear and equal percentage valve characteristics. Study of logic fluidic devices. Study of flapper nozzle system. 	It will cons	sist of at least eight experiments/assignments/programs from the following list:				
 Study of AC/ DC servo motors. Study of motor speed torque characteristics. Study of hydraulic control valves and accessories. Study of pneumatic control valves and accessories. Study of ON/OFF, linear and equal percentage valve characteristics. Study of logic fluidic devices. Study of flapper nozzle system. 	1.	Study of cut section views of different control system components.				
 Study of motor speed torque characteristics. Study of hydraulic control valves and accessories. Study of pneumatic control valves and accessories. Study of ON/OFF, linear and equal percentage valve characteristics. Study of logic fluidic devices. Study of flapper nozzle system. 	2.	Study of stepper motor.				
 Study of hydraulic control valves and accessories. Study of pneumatic control valves and accessories. Study of ON/OFF, linear and equal percentage valve characteristics. Study of logic fluidic devices. Study of flapper nozzle system. 	3.	Study of AC/ DC servo motors.				
 Study of hydraulic control valves and accessories. Study of pneumatic control valves and accessories. Study of ON/OFF, linear and equal percentage valve characteristics. Study of logic fluidic devices. Study of flapper nozzle system. 	4.	Study of motor speed torque characteristics.				
 6. Study of pneumatic control valves and accessories. 7. Study of ON/OFF, linear and equal percentage valve characteristics. 8. Study of logic fluidic devices. 9. Study of flapper nozzle system. 	5.	Study of hydraulic control valves and accessories.				
 Study of ON/OFF, linear and equal percentage valve characteristics. Study of logic fluidic devices. Study of flapper nozzle system. 	6.					
8. Study of logic fluidic devices.9. Study of flapper nozzle system.	7.	Study of ON/OFF, linear and equal percentage valve characteristics.				
9. Study of flapper nozzle system.	8.					
	9.	, .				
	10.					

IN309 D	IN309 Distributed Control System				
Teaching	Teaching scheme:			Examination scheme:	
Lectures		3	hrs/week	Theory	
Tutorials		1	hrs/week	Mid Term : 30 marks,	
Practical		2	hrs/week	End Sem. Exam: 70 marks	
Credits		5			
Course ob	jectiv	ves:			
1.	This	course	is designed	to expose students to understand the process	
	auto	mation	concepts like	e programmable logic controller and distributed	
	control system.				
Syllabus:					
Unit 1	Programmable Logic Controllers (PLC)				
	Introduction, architecture, definition of discrete-state process control, discrete				
	– state variables, process specifications, event sequence description.				
Unit 2	Industrial PLC- Allen Bradely				
	Studies of Allen Bradely make Micrologix1200c and 1100 PLC.				
Unit 3	Ladder diagram				

	Background, ladder diagram elements, ladder diagram examples,								
	programmable controllers: relay sequencer, programmable controllers,								
	programmable controller operation, programming, advanced features, ladder								
	diagrams and programming for some typical examples of process control using								
	ABB PLC.								
Unit 4	Study of ABB, GE Fanuc and Siemens make PLC								
UIII 4									
IIi4 F	Introduction, programming.								
Unit 5	Supervisory Control And Data Acquisition(SCADA)								
	Introduction to supervisory control and data acquisition (SCADA) as applied to								
	process control systems: Introduction to various SCADA packages, study of								
	RSVIEW32 (AB make package) development of mimics using RSVIEW32 SCADA								
	package, Study of iFix SCADA package, WinCC.								
Unit 6	Distributed Control Systems (DCS)								
	Introduction, difference between DCS and centralized computing system. Block								
	diagram of DCS, data highways, multiplexers and remote sensing terminal units								
	Study of various aspects of DCS like communication protocol, displays, cables								
	etc., various system architectures of DCS.								
Unit 7	Yokogawa Centum VP								
	Architecture, study of FCS, programming using FBD, typical examples based on								
	FBD programming, development of HMI's, process applications of Centum VP.								
Unit 8	Other DCS systems								
	Study of EPKS Honeywell DCS, Emerson's Delta V DCS, hardware and software								
	basics of these DCS systems, introduction to Hybrid DCS.								
Unit 9	Network protocols								
	Introduction, study of various protocols like HART, Device net, Control net,								
	Ethernet, Modbus, Profibus, Field Bus: Introduction, study of foundation field								
	bus.								
Unit 10	Design consideration								
	Design of PLC/DCS system, design of marshalling cabinet, power consumption								
	calculation, power distribution diagrams, functional design specification.								
Reference									
1.	Gary Dunning, "Introduction to Programmable Logic Controllers" Second								
1.	Edition, Thomson Delmar learning, 2002.								
2.	C. D. Johnson, "Process Control Instrumentation Technology" Seventh Edition,								
۷.	Pearson Education, New Delhi 2003.								
3.	B. G. Liptak, "Instrument Engineers Handbook" (Edition) Vol-II and III, Chilton								
J.	book Company.								
4.	Technical Manual –Yokogoawa, centum VP.								
5.	Webb J. W. and Ronald A. Reis "Programmable Controllers: Principles and								
٥.	,								
6.	Applications", Prentice Hall of India Pvt. Ltd. Fifth Edition, 2005.								
0.	John R. Hackworth and Frederick D. Hackworth "Programmable Logic								
	Controllers", Jr. Third India Reprint 2005.								
7.	Parr A., Newnes, "Programmable Controllers: An Engineer's Guide",								
	Butterwoth-Heinmen Ltd. 1993.								
8.	C. D. Johnson, "Microprocessor based Process Control", Prentice Hall								
	International Edition.								
-									
9.	Manual of Hybrid DCS-AB Control Logix.								

Course ou							
1.	To describe the basics of PLC and Ladder diagram programming language.						
2.	To explain the basics of SCADA and different SCADA/HMI software available.						
3.	To apply the knowledge of basics of ladder diagram to solve various						
	instrumentation problems.						
4.	To design SCADA PLC based systems for process control application.						
5.	To explain the basics of Distributed Control System architecture and programming.						
6.	To analyze various programming languages used in industrial automation						
	systems.						
Term Wo	rk:						
Term worl	n work shall consist of at least six to eight assignment/tutorials/practical based on						
above sylla	abus. Some of the experiments may be from the following list.						
1.	Study of AB Micrologix 1200c and 1100 PLC.						
2.	Development of simple ladder diagrams like AND/OR gate.						
3.	Developments of ladder diagram for the controlling motor operation.						
4.	Development of ladder diagram and simulation for the level control system.						
5.	Development of ladder diagram for bottling plant.						
6.	Study of software package RSVIEW32 (AB make) for SCADA.						
7.	Development of mimic diagram for a particular process using SCADA software.						
8.	Study of Hybrid controller control logix (AB MAKE).						
9.	Development of programs for control of processes using Hybrid controller.						
10.	Study of Yokogowa Centum VP.						
11.	Development of FBD programs on Centum VP for ON/OFF control.						
12.	Development of FBD programs on Centum VP for simple process control applications.						

IN310 Po	IN310 Power Electronics				
Teaching se	cheme	e:		Examination scheme:	
Lectures		3	hrs/week	Theory	
Tutorials		0	hrs/week	Mid Term : 30 marks,	
Practical		2	hrs/week	End Sem. Exam: 70 marks	
Credits		4			
Course obj	ective	s:			
1.	To in	ntroduc	e to students	the theoretical concepts and applications of power	
	electi	ronics	systems for	high efficiency, renewable and energy saving	
	conve	ersion s	systems.		
2.	To prepare students to know the characteristics of different power electronics				
	switches, drivers and selection of components for different applications.				
3.	To prepare students to have good understanding of the basic principles of				
	switch mode power conversion.				
4.	To know the operating principles of application of power electronic circuits as				
	motor drives, UPS systems, etc.				
Syllabus:	Syllabus:				
Unit 1	Introduction				
	Modern power semiconductor devices and their characteristics, gate drive				
	specifications, ratings, applications, turn ON and turn OFF methods, design of				

	gate triggering circuits using UJT and thyristor protection circuits.
Unit 2	Phase controlled rectifiers
	Single phase rectifiers: Half wave, center tapped, bridge (half controlled and
	fully controlled) with R and RL load. Three phase rectifiers: half wave, bridge
	with R and RL load effect of source inductance, dual converters, power factor
	improvement methods.
Unit 3	DC chopper
	Basic chopper, continuous and discontinuous current conduction, TRC, CLC
	methods, classification of choppers, step-up chopper, switching mode
Unit 4	regulators. AC voltage controller & cycloconverters
OIII 4	AC voltage controller: types of ac voltage controllers, single-phase and three
	phase ac voltage controllers with R and RL load, transformer tap changers,
	single phase to single phase cycloconverters, three phase to single phase
	cycloconverters, three phase to three phase cycloconverterswith circulating
	and non-circulating mode.
Unit 5	Inverters
	Single phase inverters: series, parallel and bridge configurations with R load,
	PWM inverters. Three phase inverters: 120° and 180° conduction with R and
	load RL, voltage control and harmonics reduction.
Unit 6	Application in power electronics
	UPS and SMPS, basic characteristics of DC motors, operating modes, DC motor
	control using different rectifiers, induction motor drives, performance
	characteristics, stator voltage control, rotor voltage control, frequency control,
D. C	voltage and frequency control.
Reference	
1.	V. R. Moorthi, Power Electronics: Devices, Circuits and Industrial Applications, Oxford University Press, 2006.
2.	M. H. Rashid, Power Electronics: Circuits, Devices, and Applications, Pearson
۷.	Education, Inc. Third Edition, 2004.
3.	
3.	Publishing Company Limited, New Delhi (India), 1998.
4.	P. S. Bimbhra, Power Electronics, Khanna Publishers, New Delhi (India),
	Second Edition, 1998.
5.	G. De, Principles of Thyristorised Converters, Oxford and IBH Publications.
Course ou	tcomes:
1.	To understand the basic principle, characteristics and applications of power
	electronic and switching devices.
2.	To extend simple power electronic converters to realize rectifiers and
	inverters.
3.	To develop and quantify common performance objectives for power electronic
	circuits such as efficiency, power factor, etc.
4.	To analyze and design DC/DC converter (chopper) circuits.
5.	To analyze and evaluate the operation of cycloconverters and voltage controllers.
6.	To outline operating principles of application of power electronic circuits as motor drives, UPS systems, etc.
Term Wor	
TETHI MAN	N.

It will consi	ist of a record of at least six to eight experiments based on the following list				
1.	UJT Relaxation oscillator.				
2.	SCR characteristics.				
3.	Triac characteristics.				
4.	Power control using SCR.				
5.	Power control using Triac.				
6.	Single phase controlled Rectifiers.				
7.	Single phase half controlled Rectifiers.				
8.	Single phase fully controlled Rectifiers.				
9.	Single phase inverter using transistor/ MOSFET/IGBT.				
10.	Basic step-down chopper.				
11.	Basic step-up chopper.				
12.	Study of D.C. motor control using controlled rectifiers.				
13.	Study of D.C. motor control using choppers.				
14.	Study of A.C. motor control using inverter.				
Practical Examination:					

The examination will be of three hours duration, and will consist of an experiment based on Term-work and followed by an oral based on above syllabus.

IN311 P	ower	Plant	Instrument	ation	
Teaching	Teaching scheme:			Examination scheme:	
Lectures		3	hrs/week	Theory	
Tutorials		0	hrs/week	Mid Term : 30 marks,	
Practical		0	hrs/week	End Sem. Exam: 70 marks	
Credits		3			
Course Ob	jecti	ves:			
1.	To p	orovide	a window of	applications of instrumentation and automation in	
	pow	er plants	S.		
2.	Addi	itionally	students kno	w about the various methods of power generation	
	and	its contr	ol methods in	instrumentation engineering.	
Syllabus:					
Unit 1		<u>oductio</u>			
			• •	plants based on the methods of power generation	
		_		solar, wind power, geothermal, magneto hydraulic	
	etc., MHD, GT, thermo dynamics and cycle of power generation.				
Unit 2	Thermal power plant				
	Building blocks - ideal steam cycles - boiler - types, boiler - turbine units and				
	its range systems, feed water systems, steam circuits, combustion pr				
	-		-	rocess, fuel systems, treatment of flue gases, steam	
			-	ems, alternator, feed water conditioning, turbine	
			-	of instrumentation in power generation – details of	
	boiler processes. Various types of power plant and their configuration and				
** ** **	comparison.				
Unit 3	Measurement in boiler and turbine				
		_		urement in boilers, piping system for pressure	
				and dust monitor, flame monitoring. Introduction to	
	turb	ine sup	ervising syste	m, pedestal vibration, shaft vibration, eccentricity	

	measurement. Installation of non-contacting transducers for speed							
	measurement, rotor and casing movement and expansion measurement.							
Unit 4	Controls in boiler							
	Problems associated with control of multiple pulverizers. draught plant:							
	introduction, natural draught, forced draught, induced draught, power							
	requirements for draught systems. Fan drives and control, control of air flow.							
	combustion control: fuel/air ratio, oxygen, CO and CO2 trimming, combustion							
	efficiency, excess air, parallel and cross limited combustion control, control of							
	large systems.							
Unit 5	Controls in boiler							
	Boiler drum level measurement methods, feed water control, soot-blowing							
	operation, steam temperature control, coordinated control, boiler following							
	mode operation, turbine following mode operation, sliding pressure mode							
	operation, selection between boiler and turbine following modes. Soot blowers,							
	distributed control system in power plants-interlocks in boiler operation.							
	Turbine control: pressure control – lubricant oil temperature control – cooling							
	system, governor control, turbo-supervisory instrumentation (TSI).							
Unit 6	Alternator instrumentation and control							
	Generator cooling system, hydrogen charging and discharging system.							
Unit 7	Auxiliaries in power plants							
	Electrostatic precipitator, fuel oil handling system, water treatment plant,							
	cooling towers, ash handling and coal handling.							
Unit 8	Steam turbine control systems							
	Instrumentation and control of condenser, steam heaters, pumps and							
	compressors.							
Unit 9	Hydroelectric power plant							
	Site selection, classification of hydropower plants, types of turbines for							
	hydroelectric power plant, hydrology estimation electric power to be							
	developed, pumped storage plants, storage reservoir plants, instrumentation							
77 ': 40	used in hydroelectric power plant.							
Unit 10	Nuclear power plant instrumentation							
	Piping and instrumentation diagram of different types of nuclear power plant,							
	nuclear reactor control loops, reactor dynamics, excess reactivity, pulse channel							
	and logarithmic instrumentation, control and safety instrumentation, reliability							
11! 11	aspects.							
Unit 11	Non-conventional energy sources and power distribution schemes							
	Wind power, solar power, tidal power, diesel generator controls, combined							
Tout Dool	operation of different power plants.							
Text Bool								
1.	National Power Training Institute Manuals.							
2.	P.C Martin, I. W Hannah, "Modern Power Station Practice", British Electricity							
	International Vol. 1 & VI, Pergamon Press, London, 1992.							
3.	Arora and Domkundwar "A Course in Power Plant Engineering", Dhanpat Rai							
4	and Sons, New Delhi.							
4.	Keswani H. B., "Power Plant Engineering", Standard Book House Delhi.							
Reference								
1.	Sam. G. Dukelow, "The Control of Boilers", Second Edition, ISA Press, New York,							
	1991.							

2.	P. K. Nag, "Power Plant Engineering", Third Edition, 2010. McGraw Hill.					
3.	K. Krishnaswamy, M. PonniBala, "Power Plant Instrumentation", PHI Learning					
	Pvt. Ltd., 2011.					
4.	Black & Veatch, "Power Plant Engineering", Springer, 1996.					
5.	David Lindsley, "Boiler Control Systems", McGraw Hill, New York, 1991.					
6.	M. W. Jervis, "Power station Instrumentation", Buuterworth-Heinemann					
	Publication, 2000.					
7.	B. G. Liptak, "Instrumentation Engineers Handbook: Process Measurement",					
	Chilton Book Company.					
Course ou	itcomes:					
1.	To remember the innovative ideas to improve plant efficiency reduce leakages					
	and losses and use technologies for designing and developing pollutant free					
	industrial environment.					
2.	To understand the operation of traditional power plants and describe the					
	instruments that makes up their measurement and control systems.					
3.	To apply the knowledge of mathematics for deriving mathematical models for					
	different processes in the power plant.					
4.	To analyze the various instruments used in power plant and make					
	recommendations for improving the control processes.					
5.	To evaluate the performance of boilers and turbines.					
6.	To design instrumentation systems for electricity generating plants.					
Term Wo	rk:					
Eligibility	for attending examination on this course is as follows:					
1.	Student should submit minimum 5 assignments out of 8 assignments given by					
	course coordinator.					
2.	Students must submit a report on any one industrial visit.					

IN312(I) Elective-II Digital System Design					
Teaching	Teaching scheme:			Examination scheme:	
Lectures		3	hrs/week	Theory	
Tutorials		0	hrs/week	Mid Term : 30 marks,	
Practical		0	hrs/week	End Sem. Exam: 70 marks	
Credits		3			
Course ob	jectives	:			
1.	To unc	dersta	and the cons	tructs and conventions of the Verilog / VHDL	
	progran	nmin	g.		
2.	To design	gn an	d modeling of	combinational, sequential digital systems and Finite	
	State Ma	achin	es.		
Syllabus:					
Unit 1	VLSI design flow				
	Design entry-Schematic, Introduction to Verilog HDL/VHDL, synthesis;				
	simulation, overview of different modeling styles in HDL, data types and				
	objects, dataflow, behavioral and structural modeling, HDL constructs:				
	packages, library, configuration, delays, functions, procedures, attributes.				
Unit 2	Combinational and Sequential Logic Design				
	Adders subtractors, ALU, decoder, encoder, multiplier, comparator, Barrel				
	shifters	shifters, multiplier design and its VHDL implementation multi-operand			

	addition, sequential multiplication with sign and magnitude, two's complement,						
	partially combinational implementation, MAC, saturating multiplier, truncating						
	multiplier, rectangular multiplier.						
Unit 3	Programmable Logic Devices						
	Combinational logic design using PLDs like ROM array, PLA, PAL, preliminary						
	design concepts using CPLDs and FPGAs.						
Unit 4	Synchronous sequential circuits						
	Design of counters and sequential networks, analysis of clocked sequential						
	networks, Finite State Machine Models(FSM)-Moore machine and Mealy						
	machines- serial binary adder, sequence detector, FSM design- state table						
	reduction, state assignment, general models of sequential machines, state						
	equivalence and machine minimization.						
Unit 5	Data path design						
	Designing dedicated data path, general datapath design, timing issue, VHDL						
	implementation of datapath.						
Unit 6	Control unit design						
	Constructing the control unit, stand alone controllers, ASM charts and state						
	action tables, VHDL implementation of control unit. Examples of manual design						
	of dedicated microprocessors.						
Text Bool	•						
1.	R.P. Jain, "Modern digital Electronics", Tata McGraw Hill.						
2.	Douglas Perry, "VHDL", Tata McGraw Hill.						
3.	J. Bhasker, VHDL Primer, Pearson Education Asia, Third Edition.						
Reference 1.	Gothman," Digital Electronics-An introduction to theory and practice", Pearson						
1.	Education.						
2							
2.	Morris Mano, "Digital Design", Second Edition, Prentice Hall of India						
2	Publication, New Delhi.						
3.	J. F. Wakerly, "Digital design- Principles and Practices", PH						
	International/Pearson India, Third Edition.						
4.	Frank Vahid, "Digital Design", Preview Edition, John Wiley & Sons Inc., 2005.						
5.	Charles Roth," Digital System Design using VHDL", Tata McGraw Hill.						
6.	Stephan Brown, Zvonko Vranesic,"Fundamentals of Digital Logic with VHDL						
_	Design", McGraw Hill, Second Edition, 2005.						
Course ou							
1.	To remember the basic knowledge of combinational and sequential logic						
	design.						
2.	To understand advanced features of verilog HDL and apply them to design						
	complex real time digital systems.						
3.	To execute program codes for structural and behavioral modeling of						
	combinational and sequential logic using Verilog HDL in any problem						
	identification, formulation and solution.						
4.	To examine various abstraction levels of Verilog HDL in modeling digital						
	hardware.						
5.	To evaluate and design the modeling of combinational, sequential digital						
	systems and Finite State Machines.						
6.	To design and apply the concept of test-benches to create testing behavioral						
	environments for simulation based verification.						
<u> </u>							

IN312(II	IN312(II)Elective-II Optical Instrumentation						
Teaching scheme:				Examination scheme:			
Lectures		3	hrs/week	Theory			
Tutorials		0	hrs/week	Mid Term : 30 marks,			
Practical							
Credits		3					
Course Ob	oiectiv						
1.			nd the working	g of optical fiber as a sensor.			
2.				cal fiber to measure various physical parameters.			
3.				applications of LASER in instrumentation &			
		sureme		••			
Syllabus:	•						
Unit 1	Intro	oductio	n				
	Light	t and e	lements of soli	d state physics nature of light, wave nature of light,			
	light	source	es black body	radiation, units of light Energy bands in solids,			
	semi	iconduc	tor types, work	s function, functions.			
Unit 2	_	lay dev					
				uminescence and the light emitting diode, radiative			
			_	LED materials, commercial LED materials LED			
			-	e of LEDs, LED drive circuitry plasma display liquid			
		tal disp	lays.				
Unit 3	Lase		1				
		-	•	ersion, optical feedback classes of laser, doped			
				ductor lasers, gas lasers, liquid dye lasers, laser			
Unit 4		todetec		of distance holography.			
UIIIL 4				moelectric detectors, the bolometer, pneumatic			
				ector photo devices photoemissive devices vacuum			
				•			
	_	photo diodes photo multipliers, noise in photo multipliers, image intensifier photo conductive detection photo transistor etc.					
Unit 5	Optical fibers						
				per, principle of light transmission through a fiber,			
			-	s, material consideration loss and band width limiting			
			•	prication technique, fiber drawing, fiber optic			
				ntroduction to fiber optic sensors: temperature			
	pressure, level etc.						
Unit 6	Opto electronic power devices						
	Solar cells and their application.						
Unit 7	-	Opto isolators					
	Different types and their configuration applications.						
Unit 8	_		truments				
	Calorimeter, spectrophotometer, flame photometer fluorimeter and turbidit						
meter.							
Reference							
1.		Pallab Bhattacharya, "Semiconductor Optoelctronic Devices", Second Edtion,					
	Pear	son Edu	acation, New Do	elhi, 2002.			

2.	, , , , , , , , , , , , , , , , , , , ,				
	India New Delhi, 1996.				
3.	Deboo Burrous, "Integrated circuits and semiconductor devices: theory and				
	application", McGraw Hill Second Edition.				
4.	J. M. Senior, "Optical fiber communications Principals and Practice", Prentice				
	Hall of India, Second Edition, 1996.				
5.	H. Zanger and C. Zanger, "Fiber optics – communication and other application",				
	McGraw Publication.				
6.	Gerd Keiser, "Optical Fiber Communication".				
Course ou	Course outcomes:				
1.	To know the basic concepts of optical fibers and to provide knowledge about				
	optical sources and optical detectors.				
2.	To classify the optical sources and detectors and to discuss their principle and				
	understand the industrial applications of optical fibers.				
3.	To apply LASER and optical fiber for various physical parameter				
	measurements.				
4.	To analyze the optical sensor technology on various parameters of				
1	measurements.				
5.	To explain the basic elements of optical fiber transmission link, fiber modes				
	configurations and structures.				
6.	To familiar with design considerations of fiber optic systems.				

IN212(III) Automotive Instrumentation				
	ive mstrum			
Teaching scheme: Lectures 3 hrs/week		Examination scheme:		
		Theory		
		Mid Term : 30 marks,		
0	hrs/week	End Sem. Exam: 70 marks		
3				
jectives:				
To understa	nd the concep	ots of automotive electronics and its evolution and		
trends.				
To understa	nd, design an	d model various automotive control systems using		
To describe various communication systems, wired and wireless protocols use				
in vehicle ne	tworking.			
To understand safety standards, advances in towards autonomous vehicles.				
To understand vehicle on board and off board diagnostics.				
Introduction of automobile system				
Current trends in automobiles with emphasis on increasing role of electronics				
and software, overview		of generic automotive control ECU functioning,		
overview of typical automotive subsystems and components, AUTOSAR.				
Engine management systems				
Basic sensor arrangement, types of sensors such as oxygen sensors, crank angle				
position sensors, fuel n		netering/ vehicle speed sensors, flow sensor,		
temperature, air mass flo		w sensors, throttle position sensor, solenoids etc.,		
_		ntrol including open loop and closed loop control		
system, elect	tronic ignition,	EGR for exhaust emission control.		
	scheme: 3 0 0 3 jectives: To understatends. To understatends. To describe in vehicle neterior vehicle neter	3 hrs/week 0 hrs/week 3 jectives: To understand the conceptrends. To understand, design and Model based development. To describe various commin vehicle networking. To understand safety stand. To understand vehicle on be serviced in automobic and software, overview overview of typical automobic engine management systems. Basic sensor arrangement, position sensors, fuel in temperature, air mass flow algorithms for engine contents.		

Unit 3	Vehicle power train and motion control				
	Electronic transmission control, adaptive power steering, adaptive cruise				
	control, safety and comfort systems, anti-lock braking, traction control and				
	electronic stability, active suspension control.				
Unit 4	Active and passive safety system				
	Body electronics including lighting control, remote keyless entry, immobilizers etc., electronic instrument clusters and dashboard electronics, aspects of hardware design for automotive including electro-magnetic interference suppression, electromagnetic compatibility etc., (ABS) antilock braking system, (ESP) electronic stability program, air bags.				
Unit 5	Automotive standards and protocols				
	Automotive standards like CAN protocol, Lin protocol, flex ray, OBD-II, CAN FD, automotive Ethernet etc. automotive standards like MISRA, functional safety standards (ISO 26262).				
Unit 6	System design and energy management				
	BMS (battery management system), FCM (fuel control module), principles of				
	system design, assembly process of automotives and instrumentation systems.				
Text Book	IS:				
1.	. William B. Ribbens, "Understanding Automotive Electronics", Sixth Edition, 2003.				
Reference	e Books:				
1.	Young A.P., Griffiths, "Automotive Electrical Equipment", ELBS & New Press, 1999.				
2.	Tom Weather Jr. & Cland c. Ilunter, "Automotive computers and control system", Prentice Hall Inc., New Jersey.				
3.	Crouse W.H., "Automobile Electrical Equipment", McGraw Hill Co. Inc., New York, 1995.				
4.	Bechhold,"Understanding Automotive Electronic", SAE, 1998.				
5.	Robert Boshe, "Automotive Hand Book", Bentely Publishers, Fifth Edition, Germany, 2005.				
Course ou	itcomes:				
1.	To acquire knowledge of various automotive standards and Protocols.				
2.	To understand the basic knowledge of sensor and measuring system.				
3.	Ability to understand electronic control unit.				
4.	To analyze and understand the overview of automotive components, subsystems, design cycles, communication protocols and safety systems employed in today's automotive industry				
5.	To select the basic modeling and control scheme for automotive systems.				
6.	Design aspects of measurement and control strategies in automotive application.				

IN312(IV) Mechatronics			
Teaching scheme:			Examination scheme:
Lectures	3	hrs/week	Theory
Tutorials	0	hrs/week	Mid Term: 30 marks,
Practical	0	hrs/week	End Sem. Exam: 70 marks
Credits	3	•	

Course ob	jectives:				
1.	The aim of the module is to introduce the basic elements of mechatronics and				
6 11 1	illustrate with case study material.				
Syllabus: Unit 1	Introduction				
Unit 1	Introduction				
	Meachatronics, measurement system, overview of mechatronics, mechatronics design approach, system interfacing, instrumentation and control systems, microprocessor-based controllers.				
Unit 2	Sensors, signal conditioning and actuators				
	Various transducers used for measurement of displacement, position, velocity, force, pressure, temperature, signal conditioning, data presentation and data logging system, introduction to various actuators, comparison of various actuators, selection of actuators.				
Unit 3	Process switches				
	Temperature switches, pressure switches, flow switches, level switches, electrically operated switches, magnetic switches, solid state switches and solenoids.				
Unit 4	Systems models review				
	Mathematical models, mechanical system building blocks, electrical system building blocks, fluid system building blocks, thermal system building blocks, rotational translational systems, electromechanical systems, hydraulic mechanical systems, system transfer function, dynamic response of systems, frequency response.				
Unit 5	Study of advance process control blocks				
	Statistical process control, model predictive control, fuzzy logic based control, neural-network based control. Higher level operations: control & instrumentation for process optimization, applications of the above techniques to the some standard units/processes.				
Unit 6	Fault finding				
	Fault detection techniques, watchdog timer, parity and error coding checks, common hardware faults, microprocessor systems, emulation and simulation, PLC systems.				
Unit 7	Robotics				
	Introduction to robots, classification of robots, and anatomy of robots, degree of freedom, robot joints and robot coordinates various applications of robots.				
Unit 8	Mechatronics systems				
	Case study-1: Design of electrically controlled robot arm for sorting application Cast Study-2: Design of a robotic walking machine Case study-3: Design of control scheme for automatic bottle filling plant Case study-4: Design of control scheme for automatic baggage handling system. Case study-5: Design of control scheme home automation				
Text Book					
1.	Mittal R. K. and Nagrath I. J., "Robotics and Control", TMH Pub., New Delhi, 2003.				
2.	M. D. Singh, J. G. Joshi, Mechatronics, PHI.				

D - C	nl
Reference	
1.	W. Bolton, "Mechatronis: Electronic Control Systems in mechanical and
	electrical engineering", Third Edition, Pearson education (Singapore) Ltd., 2005.
2.	Tsunco Yoshikawa, "Foundations of Robotics, Analysis and Control", prentice
	Hall of India, 2001.
3.	David Alciatore and Histand, "Introduction to Mechatronics and measurment
	system", TMH.
4.	Dan Necsulescu, "Mechatronics", Pearson Education, Asia.
5.	Robert H. Bishop, "The Mechatronics Handbook", CRC Press, with ISA-The
	Instrumentation, Systems, Automation Society, 2002.
6.	B.G. Liptak 'Handbook of Instrumentation- Process Control'.
7.	Atkeson C. G. & Hollerbach J. M., "Model based control of a Robot manipulator",
	MIT Press, Mass., 1988.
Course ou	tcomes:
1.	To recalling the basic techniques, skills and modern tools in mechatronics
	engineering technology.
2.	To understand customer requirements and effectively integrate multiple
	mechanical and electrical systems.
3.	To apply concepts of circuit analysis, analog and digital electronics, automation
	and controls, motors, power systems, instrumentation and computers to aid in
	the design, characterization, analysis and troubleshooting of mechatronics
	systems.
4.	To analyze advanced principles of statics, dynamics, fluid mechanics, and
1	strength of materials, engineering standards and manufacturing processes to
	aid in the design.
5.	To calculate the interfacing parameters required to connect digital and
]	analogue sensors to computers.
6.	To design a system component or process to meet desired needs within
0.	realistic constraints, such as economic, environmental and/or social.
L	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1

IN312(V) Material Science				
Teaching	Teaching scheme:			Examination scheme:
Lectures		3	hrs/week	Theory
Tutorials		0	hrs/week	Mid Term : 30 marks,
Practical		0	hrs/week	End Sem. Exam: 70 marks
Credits		3		
Course ob	jectiv	ves:		
1.	To know the fundamental science and engineering principles relevant to			
	materials.			
2.	To	To understand the relationship between nano /microstructure,		
	characterization, properties and processing and design of materials.			
3.	To develop an understanding of the basic principles of material science and			
	apply those principles to engineering applications.			
Syllabus:				
Unit 1	Introduction to engineering materials			
	Materials classification and engineering requirements of materials, factor			
	affecting the selection of materials for engineering purposes, properties of			

	engineering materials, testing of materials, tensile test, torsion and shear test,				
	compression test, impact test, hardness test, fatigue test, S-N diagram, creep of materials, Erichsen test.				
Unit 2	Materials and their applications				
	Electrical and electronic component, materials for resistors, properties and applications, superconducting materials, transducers materials, semiconductors-commonly used type working applications. thermistors, piezoelectric, ferro electric and ferro ceramic materials, die electric materials and dielectric constant, capacitor insulating materials, properties of fibrous material, ceramic, mica glass, rubber, plastics, thermosetting and thermoplastic resins, insulating waxes, varnishes and coolants. Effects of carbon composition and applications.				
Unit 3	Magnetic materials				
	Soft material and hard magnetic materials, ferrites and Di para antiferro,				
77 '- 4	ferromagnetism.				
Unit 4	Thermocouple materials Soldering materials, fuse materials, contact materials, fluorescent and				
	phosphorescent materials, processing of electronic materials, crystal growth, purification junction, IC fabrication processes of galvanizing and impregnatism.				
Unit 5	Nanomaterials				
	Introduction to nanotechnology, Nanowire and Nanotube, carbon nanotubes, single wall carbon nanotubes, Multiwall carbon nanotubes, fabrications, properties and applications.				
Unit 6	Introduction to manufacturing processes				
	Casting, cold working and hard working processes like rolling, forging, extrusion etc., crystal structure of metals and alloys: FCC, BCC, HCP.				
Text Bool	KS:				
1.	Alagappan W., Kumar N. T., "Electrical Engineering Materials", McGraw Hill 1998.				
2.	Agrawal B. K., "Engineering Material", Mc-Graw Hill Publishing company, 2000.				
3.	Raghavan V., "Materials Science and Engineering – A first course", Fifth Edition, Prentice Hall, New Delhi, 1998.				
4.	Dr. V. D. Kodgire, "Material science and Metallurgy", Everest Publishing House, Twelveth Edition 2002.				
Reference					
1.	Raymond A. Higgins, "Material for Engineering Technician", Second Edition, ELBS, 1998.				
2.	R. M. Rose, L. A. Shepard, "The structure and Properties of Materials", Vol. IV, John Wulff, John Wiely and Son Inc.198.				
3.	Smith W. F. and Hashemi J., "Foundations of Materials Science and Engineering", Fourth Edition, Mc Graw Hill, United States, 2005.				
4.	VanVlack L. H., "Elements of material science and engineering," Pearson Education India.				
Course ou					
1.	To define electrical, magnetic and optical properties of materials.				
2.	To identify, formulate, and solve engineering problems.				
3.	To apply core concepts in Materials Science to solve engineering problems.				

4.	To examine general math, science and engineering skills to the solution of engineering problems.
5.	To select suitable materials for specific instrumentation devices.
6.	To design a system, component, or process to meet desired needs within
	realistic constraints such as economic, environmental, social, political, ethical,
	health and safety, manufacturability, and sustainability.

IN242(III) Floating II Minus lootuurin				
IN312(VI) Elective-II Microelec			II Microelec	
Teaching scheme:			1 / 1	Examination scheme:
Lectures				Theory
Tutorials		0	hrs/week	Mid Term: 30 marks,
Practical		0	hrs/week	End Sem. Exam: 70 marks
Credits		3		
Course Ob				
1.				iliar with the properties behaviour and applications
				roelectronic technology into integrated circuits.
2.			_	e fundamental scientific principles involved in the
			esign and fabri	
3.				iques, skills and modern engineering tools necessary
			ng practice.	
4.				advanced circuit and system design techniques for
c II I	aigitai	and al	nalog domain.	
Syllabus:	m 1	•	<i>c</i>	
Unit 1				actor devices
	Materials, crystal growth, film formation, lithography, etching			
	conductivity, charge densities, E-K relation, fermi level, continuity equation			
	Hall effect and its applications.			
Unit 2	pn junction and metal semiconductors			
	The pn junction and metal semiconductor contact, basic structure of pn			
	junction, metal semiconductor contact, doped pn junction.			
Unit 3	Funda	ment	als	
	Fundamentals of MOSFET, MOSFET action, MOS capacitor, MOSFET operations, small signal equivalent circuit, MOSFET scaling, non-ideal effects, threshold voltage modifications, additional electrical characteristics, CMOS circuits, Bi-CMOS circuits, CCDs.			
Unit 4	Power	devid	es, operation	n and characteristics
	Thyris	tor fa	mily, power d	liodes, power transistors, GTOs and IGBTs. Display
	devices, operation of LCDs, LED, HDTV, plasma displays.			
Text Book				
1.	Donald Neamen, "An introduction to semiconductor devices", McGraw Hill International Edition, 2006.			
2.	S. M. Sze, "Semiconductors Devices, Physics and Technology", Second Edition, Wiley, 2002.			
3.	A. S. Sedra & K. C. Smith, "Microelectronic Circuits" Sixth Edition, Oxford, 2010.			
4.	B. G. Streetman, S. K. Banerjee, "Solid state Electronic devices", Sixth Edition,			

	PHI, 2010.
Reference	Books:
1.	J. Millman and C. C. Halkias, "Electronic devices and Circuits", McGraw Hill, 1976.
2.	Adir Bar-Lev, "Semiconductors and Electronic Devices", Third Edition, Prentice Hall,1993.
3.	L. Macdonald & A. C. Lowe, "Display Systems", Wiley, 2003.
Course ou	tcomes:
1.	To know the semiconductor concepts of drift, diffusion, donors and acceptors, majority and minority carriers, excess carriers, low level injection, minority carrier lifetime.
2.	To discuss the electronic analysis of CMOS logic gates, delay analysis, analysis of complex logic gates, power dissipation.
3.	To apply simple large signal circuit models for metaloxide-semiconductor (MOS) capacitors devices which include charge storage elements and analyze the secondary effects of MOSFET.
4.	To analyze the basic structures to create MOSFETs, cell concepts, physical design of logic gates, design hierarchies.
5.	To evaluate VLSI design flow and transistor level CMOS logic design, discuss the physical structure of IC layers to create MOSFETs.
6.	To design and verify schematic and layout simulation of analog and digital CMOS VLSI circuits.

IN312(VII) Elective-II Data Structure and Algorithms				
Teaching	Teaching scheme:		Examination scheme:	
Lectures	3 h	rs/week	Theory	
Tutorials	0 h	rs/week	Mid Term : 30 marks,	
Practical	0 h	rs/week	End Sem. Exam: 70 marks	
Credits	3			
Course ob	jectives:			
1.	To introduce var	ious techn	iques for representation of the data in the real world	
	and expose the	student to	efficient storage mechanisms of data for an easy	
	access.			
2.	To instill strong problem solving techniques using data structures, algorithms,			
	and time-comple	xity.		
Syllabus:				
Unit 1	Introduction			
	Need of data structures, hardware and software implementations of data			
	structures, various existing data structures and their related operations			
	compile time memory allocation and dynamic (run time) memory allocation,			
	garbage collection.			
Unit 2	Linked list			
	Linked array and pointer representations their advantages and disadvantages,			
	creation traversal, insertion and deletion, sorting, concatenation, merging			
	_		nk list with grounded header node, circular link list,	
	Josephus doubly	linked (tw	o way) link, its advantages and disadvantages.	

Unit 3	Stack				
	Array representation, overflow and underflow, push and pop operations,				
	recursion its advantages, converting a recursive procedure to a non-recursive				
	procedure.				
Unit 4	Queue				
	Simple queue, addition to a queue, removal from a queue, de-queues, input				
	restricted and output restricted de-queues, addition and removal w.r.t. de-				
	queue.				
Unit 5	Tree				
	Basic definitions, representation in computer memory, creating a binary tree,				
	traversal algorithms threading in a binary tree, heap tree, creation of heap tree,				
	inserting a node in a heap tree, deleting the root of heap tree, heap sort				
	algorithm, link list representation using binary tree, multi-way search tree,				
	representation in computer memory and its advantages.				
Unit 6	Graph				
	Basic definitions, representation in computer memory, creation of a graph,				
	traversal in a graph, depth first traversal and breadth first traversal, sorting,				
	inserting an arc in a graph, deleting an arc from a graph, searching a node and				
	an arc in a graph.				
Unit 7	Searching algorithms				
	Sequential search, binary search, efficiency of searching algorithms, improving				
	the efficiency of sequential search by move to front, move forward, indexed				
	sequential search.				
Unit 8	Table data structure				
	Hash function and hashing, selection of hash function, collision and collision				
	resolving methodologies, linear probing, quadratic probing, buckets, chaining,				
	storing (inserting) data in table, searching a data record in a table, deleting a				
	data record from a table, efficiency of search.				
Unit 9	Sorting algorithms				
	Bubble sort, quick sort, heap sort, insertion sort, selection sort, merge sort,				
	efficiency of sorting algorithms.				
Reference					
1.	Cormen, Leiserson, and Rivest, "Introduction to Algorithms", Second Edition,				
	Mc Graw Hill, New York, New Delhi, 1990.				
2.	Ronald L. Rivest, Algorithms, "Data structures and Programs", Prentice Hall,				
	New Jersey, 1990.				
3.	Horowitz, Sahni, and Rajasekaran, "Fundamentals of Algorithms", Galgotia				
	Publications, New Delhi, 1999.				
Course ou	l Itcomes:				
1.	To define and analyze various data structures and abstract data types including				
1.	lists, stacks, queues, trees, and graphs.				
2.	To understand instrumentation & control engineering problems from a				
	computational perspective.				
3.	To execute vast set of sorting and searching algorithms useful for various				
	engineering applications.				
1					
4.	To analyze and implement learned algorithm design techniques and data				
	structures to solve problems.				

- 5. To select the appropriate data structure and algorithm design method for a specified application.
 - 6. To design and implement various basic and advanced data structures.

IN313 Seminar					
Teaching scheme:			Examination scheme:		
Lectures	0	hrs/week			
Tutorials	0	hrs/week			
Practical	2	hrs/week			
Credits	1				
Syllabus:					
The semin	ar will consi	st of a report of	f about 25 typewritten pages based on Survey of latest		
developme	ents in a spe	cific field of ins	trumentation and control systems.		
			OR		
Investigati	on of practi	cal problems in	the manufacturing and or testing of an instrument.		
			OR		
Design mo	Design modification of an existing equipment/instrument.				
			AND		
Seminar of	n one of the	following topic	s should be delivered (without report)		
•	 Entrepreneurship 				
Personality development					
Value education					
 Life profiles of eminent personalities like Lokmanya Tilak, Swami Vivekanand, 					
	Arvind Gh	osh, A.P. J. Abd	ul Kalam		
•	Stories of	successful Entr	epreneurs		

HU301 Humanity Science						
Teaching scheme:			Examination scheme:			
Lectures 2 hrs/week		hrs/week	Theory			
Tutorials 0 hrs		hrs/week	Mid Term:			
Practical	Practical 0		End Sem. Exam:			
Credits	Audi	t Course				
1.	Importance of attitude: building positive attitude, self esteem.					
2.	Cultural heritage of India: cultural tenets, values, peculiarities, family unit, old					
	scriptures	•				
3.	Ancient science and technology: astronomy, physics, chemistry, mathematics,					
	ayurveda, Kanad's atom theory, Aryabhatt, viman shastra surgery etc.					
4.	Vedic mathematics.					
5.	Life management techniques as preached by Saints, western philosophers etc.					
6.	Motivation	n: How does it	work, stages from motivation to demotivation,			
	motivation	nal stories.				
7.	Goal settir	ng of life: Why go	als are important?, Why don't more people set goals,			
	goals must	t be balanced.				
8.	Problems before the nation and role of an individual.					

Stories of scientists/renowned persons

9. Culture and different isms: Indian culture, communism, Socialism, capitalism. 10. Role of media and expectations. 11. Theory "i" Management. 12. Science and spirituality: stress management. Reference Books: 1. India vision 2020 by Dr APJ Abdul Kalam. 2. Ancient science and technology By Dr. Gopalkrishnan. 3. Theory of I management by Arindam Choudhary. 4. India: what it can teach us by Maxmuller. 5. Third way by Datopant Tengati. 6. Swami Vivekananda(2004), Collected Works (Commentary on Yogasutras, vol.), Ramakrishna Mission, Kolkata. 7. Gita-pravacane. 8. Upanishadaancaa Abhyaasa. 9. Gitaaii Cintanikaa. 10. A Constructive Survey of Upanishadic Philosophy.					
11. Theory "i" Management. 12. Science and spirituality: stress management. Reference Books: 1. India vision 2020 by Dr APJ Abdul Kalam. 2. Ancient science and technology By Dr. Gopalkrishnan. 3. Theory of I management by Arindam Choudhary. 4. India: what it can teach us by Maxmuller. 5. Third way by Datopant Tengati. 6. Swami Vivekananda(2004), Collected Works (Commentary on Yogasutras, vol.), Ramakrishna Mission, Kolkata. 7. Gita-pravacane. 8. Upanishadaancaa Abhyaasa. 9. Gitaaii Cintanikaa. 10. A Constructive Survey of Upanishadic Philosophy.	9.	Culture and different isms: Indian culture, communism, Socialism, capitalism.			
12. Science and spirituality: stress management. Reference Books: 1. India vision 2020 by Dr APJ Abdul Kalam. 2. Ancient science and technology By Dr. Gopalkrishnan. 3. Theory of I management by Arindam Choudhary. 4. India: what it can teach us by Maxmuller. 5. Third way by Datopant Tengati. 6. Swami Vivekananda(2004), Collected Works (Commentary on Yogasutras, vol.), Ramakrishna Mission, Kolkata. 7. Gita-pravacane. 8. Upanishadaancaa Abhyaasa. 9. Gitaaii Cintanikaa. 10. A Constructive Survey of Upanishadic Philosophy.	10.	Role of media and expectations.			
Reference Books: 1. India vision 2020 by Dr APJ Abdul Kalam. 2. Ancient science and technology By Dr. Gopalkrishnan. 3. Theory of I management by Arindam Choudhary. 4. India: what it can teach us by Maxmuller. 5. Third way by Datopant Tengati. 6. Swami Vivekananda(2004), Collected Works (Commentary on Yogasutras, vol.), Ramakrishna Mission, Kolkata. 7. Gita-pravacane. 8. Upanishadaancaa Abhyaasa. 9. Gitaaii Cintanikaa. 10. A Constructive Survey of Upanishadic Philosophy.	11.	Theory "i" Management.			
 India vision 2020 by Dr APJ Abdul Kalam. Ancient science and technology By Dr. Gopalkrishnan. Theory of I management by Arindam Choudhary. India: what it can teach us by Maxmuller. Third way by Datopant Tengati. Swami Vivekananda(2004), Collected Works (Commentary on Yogasutras, vol.), Ramakrishna Mission, Kolkata. Gita-pravacane. Upanishadaancaa Abhyaasa. Gitaaii Cintanikaa. A Constructive Survey of Upanishadic Philosophy. 	12.	Science and spirituality: stress management.			
 Ancient science and technology By Dr. Gopalkrishnan. Theory of I management by Arindam Choudhary. India: what it can teach us by Maxmuller. Third way by Datopant Tengati. Swami Vivekananda(2004), Collected Works (Commentary on Yogasutras, vol.), Ramakrishna Mission, Kolkata. Gita-pravacane. Upanishadaancaa Abhyaasa. Gitaaii Cintanikaa. A Constructive Survey of Upanishadic Philosophy. 	Reference	e Books:			
3. Theory of I management by Arindam Choudhary. 4. India: what it can teach us by Maxmuller. 5. Third way by Datopant Tengati. 6. Swami Vivekananda(2004), Collected Works (Commentary on Yogasutras, vol.), Ramakrishna Mission, Kolkata. 7. Gita-pravacane. 8. Upanishadaancaa Abhyaasa. 9. Gitaaii Cintanikaa. 10. A Constructive Survey of Upanishadic Philosophy.	1.	India vision 2020 by Dr APJ Abdul Kalam.			
 India: what it can teach us by Maxmuller. Third way by Datopant Tengati. Swami Vivekananda(2004), Collected Works (Commentary on Yogasutras, vol.), Ramakrishna Mission, Kolkata. Gita-pravacane. Upanishadaancaa Abhyaasa. Gitaaii Cintanikaa. A Constructive Survey of Upanishadic Philosophy. 	2.	Ancient science and technology By Dr. Gopalkrishnan.			
 Third way by Datopant Tengati. Swami Vivekananda(2004), Collected Works (Commentary on Yogasutras, vol.), Ramakrishna Mission, Kolkata. Gita-pravacane. Upanishadaancaa Abhyaasa. Gitaaii Cintanikaa. A Constructive Survey of Upanishadic Philosophy. 	3.	Theory of I management by Arindam Choudhary.			
6. Swami Vivekananda(2004), Collected Works (Commentary on Yogasutras, vol.), Ramakrishna Mission, Kolkata. 7. Gita-pravacane. 8. Upanishadaancaa Abhyaasa. 9. Gitaaii Cintanikaa. 10. A Constructive Survey of Upanishadic Philosophy.	4.	India: what it can teach us by Maxmuller.			
Ramakrishna Mission, Kolkata. 7. Gita-pravacane. 8. Upanishadaancaa Abhyaasa. 9. Gitaaii Cintanikaa. 10. A Constructive Survey of Upanishadic Philosophy.	5.	Third way by Datopant Tengati.			
 Gita-pravacane. Upanishadaancaa Abhyaasa. Gitaaii Cintanikaa. A Constructive Survey of Upanishadic Philosophy. 	6.	Swami Vivekananda(2004), Collected Works (Commentary on Yogasutras, vol.),			
8. Upanishadaancaa Abhyaasa. 9. Gitaaii Cintanikaa. 10. A Constructive Survey of Upanishadic Philosophy.		Ramakrishna Mission, Kolkata.			
9. Gitaaii Cintanikaa. 10. A Constructive Survey of Upanishadic Philosophy.	7.	Gita-pravacane.			
10. A Constructive Survey of Upanishadic Philosophy.	8.	Upanishadaancaa Abhyaasa.			
	9.	Gitaaii Cintanikaa.			
	10.	A Constructive Survey of Upanishadic Philosophy.			
11. Bhagvadgita: Saakshaatkaaradarshana.	11.	Bhagvadgita: Saakshaatkaaradarshana.			