

SGGS INSTITUTE OF ENGINEERING AND TECHNOLOGY NANDED

Department of Mechanical Engineering S.Y. B. Tech. (Mechanical) Curriculum Structure Academic year 2020-21 onwards Semester III (Second Year)

Programme Educational Objectives (PEOs)

- PEO 1 Provide knowledge and skills of broad spectrum in domain of Mechanical Engineering.
- PEO 2 Cater the needs of Indian as well as multinational industries and other organisations.
- PEO 3 Be competent with a strong technological background, to formulate, analyse the societal, industrial and environmental challenges to obtain the economically viable solutions.
- PEO 4 Foundation for higher studies, research, entrepreneurship and administrative services.
- PEO 5 Inculcate the attitude of self and lifelong learning, out of box thinking, ethics and integrity, professional and managerial competencies to work on the multidisciplinary projects.

Programme Outcomes (POs):

Engineering Graduates will be able to:

- a. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- b. **Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- c. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- d. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- e. **Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- f. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- g. **Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- h. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

- i. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- j. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- k. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 1. **Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Programme Specific Outcomes (PSOs):

B.Tech Mechanical Engineering

- PSO 1 Apply Principal of engineering, basic sciences and mathematics to model, analyse, design mechanical systems and processes.
- PSO 2 Plan, operate, control, maintain & improve mechanical systems, components & processes.

PO/PSO	a	b	c	d	e	f	g	h	i	J	k	1	PSO1	PSO 2
PEO														
PEO 1														
PEO 2														
PEO 3														
PEO 4														
PEO 5														

Correlation Matrix (Correlation between the PEOs and the POs)

Note: The cells filled in with \checkmark indicate the fulfillment/correlation of the concerned PEO with the PO.

Γ

SGGS INSTITUTE OF ENGINEERING AND TECHNOLOGY, NANDED Department of Mechanical Engineering Curriculum Structure of SY B.Tech.

(With effect from 2020-2021)

Semester III (Second Year)

	Semester III	<u> </u>					
Course Code	Course Title	ŀ	Hours/Week		Total	Cre	dits
		Lectures	Tutorials	Practical	contact		
		(L)	(T)	(P)	Hours	Th.	Pr.
BSC271	Mathematics-III: Transform Calculus and differential Equations	03	0	0	03	03	0
PCC-ME201	Strength of Materials	03	0	02	05	03	01
PCC-ME202	Thermodynamics	03	0	02	05	03	01
PCC-ME203	Mechanical Instrumentation	03	0	02	05	03	01
PCC-ME205	Materials Engineering	03	0	02	05	03	01
HMC278	Human Values and Professional	02			02	02	00
	Ethics						
BSC261	Mathematical foundation for	02			02	Au	ıdit
	Engineering*						
	Total	19	00	08	27	17	04
			Tota	al Credits		2	21

	Semester IV	(Second Y	ear)				
Course Code	Course Title	I	Hours/Week		Total	Cre	dits
		Lectures	Tutorials	Practical	contact		
		(L)	(T)	(P)	Hours	Th	Pr
BSC274	Mathematics-IV: Statistical and Numerical Methods	03	0	0	03	03	0
PCC-ME206	Applied Thermodynamics	03	0	02	05	03	01
PCC-ME207	Fluid Mechanics & Hydraulic Machines	03	0	02	05	03	01
ESC-ME208	Machine Drawing & CADD	03	0	02	05	03	01
PCC-ME209	Manufacturing Processes-I	03	0	02	05	03	01
PCC-ME210	Kinematics & Theory of Machines	03	0	02	05	03	01
MAC277	Indian Constitution	02			02	Au	ıdit
	Total	20	00	10	30	18	05
				Tota	l Credits	2	3
	re Hours/week, T- No. of Tutorials H ourse is only for Direct Second Year s	· · · ·					

BSC271	l–MA	ATHI		TICS EDIT									ial Equa	tions	
Course code: B	SC2	71											(L- 0	3, T - 0, I	P- 0)
Course Object	ives:														
 To unde To apply Define Theorem To unde heat equiparts 	/ Lap and o n, Sto rstan	lace t comp kes's d the	transf ute The metl	forms the line orem nods of	for solution for solution for solution for solution for the solution of solution for solution fo	olving itegra he Di lving	g ordi l, sui verge	nary face nce T	differ integ heore	ential gral, y em.	equa volun	itions ne ir	s. Itegral us	sing Gre	
Course Outcon															
On successful c	-														
CO1. Develop t inverses.	he sk	ills o	f Lap	lace	Frans	forms	s, Fou	rier s	eries	and F	ourie	er Tra	insforms	and their	
CO2. Develop t CO3. Solve OD Transforr CO4. Determine CO5. Evaluate area integ	E's ai ns. e solu line i	nd PI utions	DE's s of P als, s	using DE fo urface	the p or vib e inte	roper rating grals	ties o g strin , and	f Lap g and volur	lace t l heat ne int	transf cond tegral	uction s and	n. l con	vert line		
	1415 0	ina se	11140	- meg			ation		-	using	<u>, inte</u>	51ul i			
PO → ¢CO	a	b	с	d	e	f	g	h	i	j	k	1	PSO1	PSO2	
CO 1	3	3										2			
CO 2	3	3	1	2								2			
CO 3	3	3	1	2								2			
CO 4	3	3	1	2								2			
CO 5	3	3	2	2	1.7							2			
				Note	: I-L	0W, 2	2-Mec	lum	or 3-	H1gh.					
Evaluation Sch	eme:														
	C	ontin	uous	Eval	uatio	n		Th	eory						
	Be	efore	Mid	Term	: 10 N	Aarks		Mi	d Ter	m: 30) Mar	ks			
	A	fter M	lid T	erm:	10 M	arks		En	d Ter	m: 50	Mark	KS			
	In	Seme	ester	Evalu	ation	: 20 N	Marks								

Course Content:

Unit 1: Laplace Transforms (10 hours)

Laplace transforms, inverse Laplace transforms, Properties of Laplace transforms, Laplace transforms of unit step function, impulse function, Convolution theorem; Applications of Laplace transforms - solving certain initial value problems.

Unit 2: Fourier Series (07 hours)

Expansion of a function in Fourier series for a given range - Half range sine and cosine expansions.

Unit 3: Fourier Transforms (10 hours)

Fourier Integrals, Fourier transforms-sine, cosine transforms and inverse transforms - simple illustrations

Unit 4: Vector Calculus (10 hours)

Line integrals, surface integrals, Integral Theorems: Greens theorem, the divergence theorem of Gauss and Stokes theorem

Unit 5: Partial Differential Equations (08 hours)

Method of Separation of variables for solving partial differential equations, first and second order one dimensional wave equation, heat equation and two dimensional Laplace equation.

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, Eighth Edition, John Wiley and Sons, 2015.
- 2. R. K. Jain and S. R. K. Iyengar, Advanced Engineering Mathematics, Fifth Edition, Narosa Publishing House, 2016.
- 3. I. N. Sneddon, Elements of Partial Differential Equations, Dover Publications, Inc. Mineola New York.

PCC-ME201 – Strength of Materials (CREDITS THEORY: 03, PRACTICAL: 01)

Course code: PCC-ME201

Course Objectives:

1. To provide the basic concepts and principles of strength of materials.

2. To make aware of stress, strain and deformations induces in various structural members.

3. To impart the techniques to determine stress and strain in structural members.

4. To impart the basics required for designing the machine/ structural components

Course Outcomes: At the end of course, student will be able to;

CO1. Define the various law's, concepts and principals used in mechanics of materials.

CO2. Predict the deformation, and failure of deformable bodies under external loading.

CO3. Determine stress and strain at any point in a member.

CO4. Analyse various type of stress, strains and deformations in beams, shafts, cylinders etc.

A (* 1 (*

CO5. Evaluate the deflections in beams and columns.

				A	rticu	lation		trix					
а	b	c	d	e	f	g	h	i	J	k	1	PSO1	PSO2
3		2	1			2						3	2
	3	3	3	2		2						3	2
3	3	3	3	2								3	2
3	3	3	3	2		2						3	2
3	3	3	3	2		2						3	2
	3 3 3 3	3 3 3 3 3 3 3 3	3 2 3 3 3 3 3 3 3 3 3 3 3 3	3 2 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	a b c d e 3 2 1	a b c d e f 3 2 1 - 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	a b c d e f g h i J 3 2 1 2 3 3 3 3 2 2 2 2 2 2 2 2 3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 2 1 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2	a b c d e f g h i J k l PSO1 3 2 1 2 2 2 3 </td

....

Note: 1-Low, 2-Medium or 3- High

Evaluation Scheme:

Theory	Practical
Mid Term : 30 Marks	Continuous Evaluation: 50%
End Term : 50 Marks	Continuous Evaluation: 50%
In Semester Evaluation: 20 Marks	

Course Content:

Unit 1

Simple Stress and Strain: Concept of stress and strain (linear, lateral, shear & volumetric), Hookes Law, Elastic constants & their relationship, Stresses of varying section in step, circular and rectangular. Temperature stresses. [06 hrs]

Principal Stresses and Strains: Normal & shear stress on any oblique plane & concept of principal plane, principal planes by analytical methods & graphical method. [05 hrs]

Strain Energy: Strain energy due to axial loads, impact loads. [02]

Unit 2

Bending Stresses: Theory of simple bending, Concept and assumptions, Derivation of flexure formula, bending stresses distribution diagram, ddifferent IS steel section, flitched beams, Design of

a section.(05 hrs)

Shear Stress in Beams: Concept and derivation of shear stress distribution formula, Shear stress distribution diagram for symmetrical and unsymmetrical section. [04 hrs]

Combined direct and bending stresses: Introduction, stress distribution for an eccentric loaded rectangular section, the middle third rule, core or kernel section, circular solid and hollow section, structural sections. [04 hrs]

Unit 3

Torsion of Circular Shaft: Theory of torsion of shaft of circular cross section, Assumptions, Derivation of torsion formulae, Stress in shaft of hollow, solid, composite circular cross section subjected to twisting moments, Stresses due to combined torsion, bending and axial force on shaft, flanged coupling. [06 hrs]

Unit 4

Thin & Thick Pressure Vessels: Thin pressure vessels: Stress, Strain and deformation in thin walled seamless cylindrical and spherical vessels. Thick pressure vessels: Lame's theory, Stresses in thick cylindrical shell and compound cylinder, Initial difference of radii at the junction of compound tube, Stresses in thick spherical shell. [06 hrs]

Unit 5

Deflection of Beams: Concept of deflection, Slope and deflection by double integration method (Macauley's method). Slope and deflection for simply supported, cantilever and statically determinate beam. [06 hrs]

Unit 6

Axially Loaded Columns :- Concept of critical load and buckling, Derivation of Euler's formula for buckling load with various end conditions, limitations of Euler's formula, Rankine buckling load, Safe load on column. [06 hrs]

Term Work:

It shall consist of various assignments and practical based on above syllabus.

List of Experiments:

The term work shall consist of following lab test on mechanical properties of material

- 1. Tension test on M.S. and TOR bar (ductile and brittle material).
- 2. Bending test.
- 3. Shear test.
- 4. Torsion test.
- 5. Impact test.
- 6. Deflection of beam

Practical Examination:

End Term Examination shall be a practical /oral examination based on above syllabus.

Text Books:

1. R. K. Rajput " Strength of Materials" S.Chand & Company (Ltd) New Delhi

- Beer and Johnston "Mechanics of Materials" 7th Ed., McGraw Hill Education., 2017 Timoshenko and Young, "Strength of Material", East West Press, 2011. 1.
- 2.
- S. Ramamurthum, "Strength of Materials", Dhanapatrai & Publication, New Delhi 3.
- I. B. Prasad, "Engineering Mechanics and Strength of Materials", Khanna Publishers, 1992. 4.

PCC-ME202 – Thermodynamics (CREDITS THEORY: 03, PRACTICAL: 01) **Course code:** PCC-ME202 (L-03, T-0, P-2, C-03) **Course Objectives:** 1. To impart the principles of work and energy. 2. To inculcate fundamentals of thermodynamics laws, concepts & principles. 3. To make familiar with various thermodynamic cycles and to apply thermodynamic concepts in various applications like I.C. Engine & Air Conditioning. 4. To comprehend knowledge about properties of pure substance. Course Outcomes: At the end of course, student will be able to; CO1. Define the fundamentals of the first and second laws of thermodynamics and explain their application to a wide range of systems. CO2. Analyze the work and heat interactions associated with a prescribed process path and to perform analysis of a flow system. CO3. Evaluate entropy changes in a wide range of processes and determine the reversibility or irreversibility of a process from such calculations. CO4. Evaluate properties of pure substances and gas mixtures. **Articulation Matrix** f PO/PSO**➡** а b с d e g h i J k 1 PSO1 PSO2 **L**CO 2 2 CO 1 3 1 3 CO2 2 2 2 1 2 3 1 1 2 CO3 2 2 1 1 2 CO4 3 2 CO5 Note: 1-Low, 2-Medium or 3- High **Evaluation Scheme:** Practical Theory Mid Term: 30 Marks Continuous Evaluation: 50% End Term: 50 Marks Continuous Evaluation: 50% In Semester Evaluation: 20 Marks

Course Content:

Unit 1

Fundamental Concepts and Definitions: Thermodynamic systems, properties, processes and cycles. Thermodynamic equilibrium, Quasi- static process, Macroscopic vs. Microscopic viewpoint, Work and heat Transfer: Work transfer, p.dv and other types of work, Heat transfer, temperature and its measurement (principle of measurement, various instruments etc.) Zeroth law of thermodynamics, specific heat and latent heat, point function, path function. [08 hrs]

First Law of Thermodynamics: First law of thermodynamics for a closed system undergoing a cycle and change of state, Energy, different forms of energy, Enthalpy, PMM-I, control volume, application of first law of steady flow processes (nozzle, turbine, compressor pump, boiler, throttle valve etc.) [08 hrs]

Unit 3

Second Law of Thermodynamics: Limitation of first law of thermodynamics, cycle heat engine, refrigetor and heat pump, Kelvin- Plank and Clausius statements and their equivalence, Reversibility and Irreversibility, Carnot theorem. [08 hrs]

Unit 4

Entropy: Introduction, Clausius theorem, T-s plot, Clausis inequality, Entropy and Irreversibility, Entropy principle and its application, combined I and II law, Entropy and direction, Entropy and disorder, Availability: Available energy pertaining a cycle. [08 hrs]

Unit 5

Ideal gas: Avogadro's law, Equation of state, ideal gas and process, relation between C_p and C_{v} . [06 hrs]

Unit 6

Properties of Pure Substance: Phase change of pure substance, phase diagram of pure substance, p-v, T-s, and h-s diagrams properties of steam, property table, representation of processes of steam on p-v, T-s, and diagrams, Dryness fraction and its measurement. [06 hrs]

Term work:

Part A: Following Four experiments to be conducted

- 1. An experimental evaluation of Specific Heat of Air.
- 2. Measurement of dryness fraction by Separating and Throttling calorimeter
- 3. Study and Demonstration of Non-contact type thermometer
- 4. Demonstration of temperature measurement by thermocouple in conformity to Zeroth law of thermodynamics

Part B: At least five assignments based on the above topics

Practical Examination:

End Term Examination shall be a practical /oral examination based on above syllabus.

Text Books:

1. Y.A. Cengel and M.A. Boles, Thermodynamics – An Engineering Approach, McGraw Hill, 5th edition, 2006.

- 1. P.K. Nag, Engineering Thermodynamics, Tata Mc-Graw Hill, 3rd edition, 2005 New Delhi.
- 2. G.J. Van Wylen and R.E. Sonntag, Fundamental of Thermodynamics, John Wiley & Sons, 5th edition, 1998.

											tatio				
			(CR	EDI	TS T	HEO	RY:0	3, PR	AC7	TICA	L: 01)			
Course cod	e: PCC	-ME2	03										(L- 0	3, T- 0, P	' - 2
Course Obj	ectives	:													
1. To i scien	-	the b	asic	princ	iples	cons	struct	ion a	nd v	vorki	ng of	f mec	hanical	measurer	nei
the p 4. To r	omprel roblem	nend p s. ware	oroble	ems i	n me	asure	ment	syste	m an	d dev	velop	the c	tems. ompetend fferent p	-	
Course Out CO1. Use pr CO2. Select and te CO3. Detern CO4. Calcul CO5. Measu	oper m and us mperat nine the ate limit	easuri e the p ure. e errors t fits a	ing in prope s in m and to	strun r inst easur lerand	nents rumer ring ir ces ne	for vants to nts to nstrum	nrious meas nent an for the	appli ure th nd cali e engi	catio e flov ibrate neerii	ns wi w of t them ng con	fluids n acco mpon	, strai ordingl ents.	ns, pressu y.	ire, speed	1,
	roper e				ŕ			Ũ				0		U	
				_	A	rticu	latio	n Mat	trix	_					_
PO/PSO	➡ a	b	c	d	e	f	g	h	i	J	k	1	PSO1	PSO2	
CO 1	3		2		2	1			1	1	2	2	2	2	-
CO2	3	2	2	3		2	1						2	2	
CO3	2	2										1	2	1	
CO4 CO5	1 2	3	3	1 2	1 2						2	1	3	1	-
05		1	1	_		-Low,		dium o	r 3- E	ligh		1	2]
						,				0					
Evaluation	Schem	e:													
	Theo							Prac	tical						
		Term:	30 M	larks				Cont	inuou	ıs Ev	aluati	on: 5	0%		
	End	Ferm:	50 M	larks				Cont	inuou	ıs Ev	aluati	on: 5	0%		
	In Se	meste	r Eva	luatio	on: 20) Mar	ks								
~ ~															
Course Con	tent:														
Mechanical	Meası	ireme	nt:												

Need of mechanical measurement, Instruments, Measurement methods, Generalized measurement system, Static performance characteristics, Errors and their classification. [03 hrs]

Transducers: Classification and various types of transducers [02 hrs]

Measurement of strain: Introduction, classification of strain gauges, Gauge factor, Temperature compensation, Quarter, Half and Full Bridge circuit, Application to measurement of load/force, Torque. [04 hrs]

Unit 2

Measurement of Pressure: importance of pressure and vacuum measurement, Range of high pressure and vacuum, Bourdon tubes, Dead weight pressure gauge testers, Diaphragm gauge, LVDT, Piezoelectric pressure gauge, MCLeod gauge, Thermal conductivity gauge. [04 hrs]

Measurement of flow: Importance of flow measurement, Water meter, Turbine meter, Rota meter, Air/Gas flow meter, Hot wire anemometer, Electromagnetic flow meter, Venturimeter, Pitot tube. [03 hrs]

Unit 3

Temperature Measurement: Importance of Temperature Measurement, Thermometers, Themisters, Thermocouples and its laws, Pyrometers. [03 hrs]

Speed Measurement: Importance of Angular Speed Measurement, Tachometer-Mechanical and Eddy current type, Mechanical counter, Stroboscope, Non-contact type counters-Inductive pickup, capacitive pickup and photoelectric pickup. [03 hrs]

Unit 4

Introduction to Metrology:

Definition, Linear measurement – Standards, Classification of standards, Vanier calliper, Height gauge, Depth gauge, Feeler gauge, Slip gauge, Micrometre [02 hrs].

Limits, Fits and Gauges: Terminology, Definitions, Hole basis and Shaft basis system, Limit, Fits, Tolerances, Taylor's principle of gauge design, Principles of gauge design (Simple numerical problems on limits of size, tolerances etc.), Types of gauges, Interchangeability, Selective assembly. [03 hrs]

Unit 5

Comparators: Types and working principles of mechanical, pneumatic, electronic, optical, electrical comparators and their applications. [03 hrs]

Interferometry: Principles of interferometry, Sources of light, Optical flat, Fringe patterns, Toolmakers microscope, Profile projector. [03 hrs]

Unit6

Surface Finish Measurement: Definitions, Surface texture terminology, Measurement of surface roughness, Symbols and values of surface roughness. [03 hrs]

Angular Measurement: Bevel protractor, Sine bar, Sine center and table, Angle gauge, Clinometer, Autocollimator, Angle dekkor. [03 hrs]

Metrology of Screw Threads / Gear Metrology: Screw thread terminology, Screw thread micrometer, Floating carriage micrometer. Gear terminology, Measurement of tooth thickness by

gear tooth vernier caliper. [03 hrs]

Advances in Metrology: Universal Measuring, Applications of LASER in measurement, Metro scope, Automatic inspection system. [03 hrs]

Term Work:

It shall consist of various assignments and practical based on above syllabus.

List of Experiments:

Mechanical Measurement (Any five)

1) Study of Generalized Measurement System with typical instrument.

- 2) Temperature measurement using Thermocouple, Themister and Pyrometers.
- 3) Experiment on pressure measurement:- U-tube manometer, Bourdon tube, DeadWeight tester.
- 4) Flow measurement using Rota meter / Water meter.
- 5) Angular speed measurement using stroboscope, pickups and tachometers.
- 6) Experiment on Force / Torque measuring instruments:- Spring balance, Proving ring, Dynamometer.

7) Study of LVDT.

Metrology (Any five)

1) Study of precision measuring instruments for linear measurement.

2) Study of comparator of different types.

3) Experiment on sine bar for measurement of taper angle.

- 4) Study of autocollimator/angle dekkor
- 5) Study and applications profile projector and Tool maker's microscope.
- 6) Measurement of screw thread using floating carriage micrometer.
- 7) Measurement of gear tooth thickness by gear tooth vernier caliper.

8) Assignment on design of gauges.

Practical Examination:

End Term Examination shall be a practical /oral examination based on above syllabus.

Text Books:

- 1. Beckwith & Buck, Mechanical Measurement, McGraw Hill publication, 2009.
- 2. R. K Jain, Mechanical Measurement, Khanna publication, New Delhi.

- 1. Donald P. Eckman, Industrial Instrumentation, Wiley eastern Ltd.
- 2. Dobler, Metrology, Tata McGraw Hill Co. New Delhi.
- 3. R.K. Jain, Engineering Metrology, Khanna Publishers.
- 4. D.S. Kumar, Mechanical Measurement and control, Metropolitan Book Company, 1979

			T		MF2	05 _ 1	Mate	erials]	Fngi	neeri	nσ				
									0		0	`			
			<u>`</u>	EDH	SIH	IEOF	(Y:)	03, PR	ACI	ICA	L: 01)			
Course code	e: PCC-	ME20)5										(L- 0.	3, T- 0, F	'- 2)
Course Obj	ectives:														
and 2. To d mate	propert levelop rials.	ies of the	engin enginability	neerir y am	ng ma ong t	terial the st	s tude	nts to	und	erstar	nd ph	ase d	compositi liagrams ne powde	of diffe	erent
proce		1			.1				C		• .				
4. To m											osite	mater	ials.		
Course Out CO1. Demoi										,	ast iro	ons			
CO2. Apply	knowle s applic appropr	dge fo ations riate h	or sele s. leat tr	ecting reatmo	g/man ent fo	ufact r met	uring als a	g partion	cular bys fo	ferro or par	us noi ticula:	n ferro r appl	ication.	rials for	
	5 KIIO WI	leage	<u>uoou</u>	<u>, pow</u>				n Mat		1 113 u	ppnee	110115	•		
PO/PSO	⇒ a	b	С	d	e	f	g	h	i	J	k	I	PSO1	PSO2]
CO 1	3		1				3			3			3		-
CO2	3		ļ	<u> </u>			2						2		4
CO3	3	2					2						2		-
CO4	5	2		$\lfloor N$	ote: 1-	-Low.		edium o	 r 3- H	ligh			2		
										0					
Evaluation	Scheme	:													
	Theor	ry						Prac	tical						
	Mid T	erm:	30 M	arks				Cont	inuoı	ıs Eva	aluatio	on: 50)%		
	End T	erm:	50 M	arks				Cont	inuoı	ıs Eva	aluatio	on: 50)%		
	In Ser	nestei	r Eval	uatio	on: 20	Mark	S								
Course Con	tent:														
Unit 1															
Engineering Ceramics: 7 Composites:	radition	nal ai	nd en	nginee	ering	cerai	nics	, Poly	mers						
Unit 2															
Steel Makin	i g: Pig i	ron P	roduc	tion,	Steel	maki	ng p	rocess	es: B	asic o	oxygei	n, Ele	ectric arc.	[3 hrs]	

Plain Carbon and Alloy Steels: Lever rule, Iron - Carbon equilibrium diagram, Critical

temperatures, Microstructures of slowly cooled steels, Non-equilibrium cooling of steels, Classification and applications of steel, Specifications of steels, Transformation products of austenite, TTT diagram, Effects of alloying elements and examples of alloy steels, Stainless steels, Tool steels. [08 hrs]

Unit 4

Cast Irons: Classification of Cast irons Gray cast irons, Nodular cast irons, White cast irons, Malleable cast irons, Chilled and Alloy cast irons, Effect of various parameters on structure and properties of cast irons, Applications of cast irons. [6 hrs]

Unit 5

Heat Treatment of Steels: Heat treatment of steels, Cooling media. Annealing, Normalizing, Hardening, Retention of austenite, Tempering, Secondary hardening, Temper brittleness, Quench cracks, Hardenability, Carburizing, Nitriding, Carbonitriding, Flame and Induction hardening. Commercial heat treatment practice of gears of different sizes, tools, lathe beds, springs, etc. [7 hrs]

Unit 6

Engineering Non-Ferrous Metals: Copper and copper alloys, Brasses, Aluminum and Aluminum alloys, Nickel and Nickel alloys, Tin and tin alloys and Bearing materials. [5 hrs]

Unit 7

Powder Metallurgy: Sintered structural components, Advantages and Limitations of powder metallurgy, Powder manufacture, Testing and Characterization, Manufacturing of typical P/M products: Self-lubricating bearings, Cemented carbides, Cermets. [6 hrs]

Term Work:

1. It shall consist of various assignments on above syllabus.

2. It shall consist of a journal based on the below mentioned laboratory/study experiments.

List of Experiments:

The term work shall consist of following laboratory/study experiments

- 1. Study of metallurgical microscope.
- 2. Preparation of specimen for microscopic examination by mounting.
- 3. Study of microstructure of plain carbon steels of various compositions.
- 4. Study of microstructure of various types of C.I.
- 5. Study of microstructure of various types of alloy steels.
- 6. Study of microstructure of non ferrous metals and their alloys.
- 7. Determination of hardenability of steel material by Jominy End Quench test.
- 8. Study of surface hardening processes and microstructures.

Practical Examination:

End Term Examination shall be a practical /oral examination based on above syllabus and practical.

Text Books:

1. V. D. Kodgire, "Material Science and Metallurgy For Engineers" Everest Publication House.

- 1. V. Raghavan, "Physical Metallurgy Principles and practice".
- 2. R. Balasubramanium, "Callister's Materials Science and Engineering" Wiley.
- 3. Sidney H. Avner, "Introduction to Physical Metallurgy", Tata McGraw-Hill Education, 1997
- 4. R. Higgnis, "Engineering Metallurgy Applied Physical Metallurgy, Sixth Edition,

HMC 278 – Human Values and Professional Ethics
(CREDITS THEORY: 02, PRACTICAL: 00)
Course code: HMC 278 (L- 02, T- 0, P- 0)
Course Objectives:
1. To create an awareness on Professional Ethics and Human Values.
2. To help students understand the Harmony for life.
3. To understand co-existence.
4. To study the moral issues and decisions confronting individuals and organizations in profession.
Course Outcomes: At the end of course, student will be able to;CO 1 Understand the core human values that shape the ethical behavior of a person.
CO 2 Understand how values act as an anchor of actions for life.
CO 3 Learn the need of Human values and Professional ethics in life.
CO 4 Understand Harmony at Four levels of life.
CO 5 Learn the moral issues and problems in profession and find the solution to those problems.
Articulation Matrix
$\begin{array}{ c c c c c c } PO \implies a & b & c & d & e & f & g & h & i & j & k & 1 & PSO1 & PSO2 \\ \hline CO & & & & & & & & & & & & & & & & & & $
CO-1 2 3 .
CO-2 3
CO-3 3 3 CO 4 2 3 3
CO-4 2 3
Note: 1-Low, 2-Medium or 3- High
Evaluation Scheme:
Theory
Mid Term: 30 Marks
End Term: 50 Marks
In Semester Evaluation: 20 Marks
Content:
Unit 1 Course introduction: Need, basic guidelines, content and process for value education, Moral values, Social, Environmental, Economic values, Purusharth, Duty, Justice, Equality. A look at basic aspirations: self exploration, happiness and prosperity, Fulfillment of human aspirations.

Understanding the harmony:

Thoughtful human being harmony, sentient, attitude and its importance in relationship, significance of restraint and health *(Yama and Niyama)*, Egoism, Altruism, Universalism (idea of Sarvodaya and Vasudevkutumbakam), The problem of hierarchy of values and their choice (View of Pt Madan Mohan Malviya and Mahatma Gandhi), human goal settings and life management techniques.

Unit 3

Understanding professional ethics:

Harmony at various levels and understanding professional ethics, creating environmentally aware engineers, humanistic universal education, humanistic universal education, natural acceptance of human values, ethical human conduct.

Unit 4

Competence of professional ethics

Management models for present technologies, strategies for integrating humans in family and at all levels of existence, relevance of the above strategies in becoming responsible engineers, technologists and managers.

Unit 5

Motivation

Contribution of ancestors in science and technology development to raise self esteem in Indian context.

Text Books:

1. R. R. Gaur, R. Sangal, G. P. Bagaria, A Foundation Course in Value Education, 2009.

- 1. Nagraj, Jeevan Vidya ek Parichay, Divya Path Sansthan, Amarkantak, 1998.
- 2. Sussan George, How the Other Half Dies, Penguin Press. Reprinted 1986, 1991
- 3. L. Dhar, R. R. Gaur, Science and Humanism, Commonwealth Purblishers, 1990.
- 4. A. N. Tripathy, Human Values, New Age International Publishers, 2003.
- 5. Subhas Palekar, How to practice Natural Farming, Pracheen (Vaidik) Krishi Tantra Shodh, Amravati, 2000.
- 6. Donella H. Meadows, Dennis L. Meadows, Jorgen Randers, William W. Behrens III, Limits to Growth Club of Rome's report, Universe Books, 1972.
- 7. E. G. Seebauer & Robert L. Berry, Fundamentals of Ethics for Scientists & Engineers, Oxford University Press, 2000.
- 8. M. Govindrajran, S. Natrajan & V. S. Senthil Kumar, Engineering Ethics (including Human Values), Eastern Economy Edition, Prentice Hall of India Ltd.

BSC261 – Mathematical Foundation for Engineering (CREDITS THEORY: 00, PRACTICAL: 00) Mandatory Audit course for DSE

Course code: BSC 261 (L-03, T-0, P-0)

Course Objectives:

1. To develop the sound conceptual understanding of Algebra, coordinate geometry, complex

numbers, vectors, matrices, Calculus and Differential Equations.

2. To develop the foundation for engineering mathematics and other engineering courses.

Course Outcomes: After successful completion of this course student will be able to: CO1-Analyze the structure of complex numbers, quadratic equations, vectors and matrices and

their uses.

CO2 -Find the standard and general equations of lines, circles, conic sections, and their properties.

CO3- Sketch the graphs of functions and can evaluate limit, continuity, derivatives, integration.

CO4 -Formulate and solve first order differential equations.

						A	rticu	latior	n mat	rix					
PO	-	а	b	С	d	е	f	g	h	i	j	k	1	PSO1	PSO2
PO ↓CO															
CO 1		3	3	1	2										2
CO2		3	3	1	2										1
CO3		3	3				1								1
CO4		3	3	2			1								2

Note: 1-Low, 2-Medium or 3- High

Evaluation Scheme:

Continuous Evaluation	Theory
Before Mid Term: 10 Marks	Mid Term: 30 Marks
After Mid Term: 10 Marks	End Term: 50Marks
In Semester Evaluation: 20 Marks	

Course Content

Unit-1 Complex Numbers (05 hours)

Complex numbers as ordered pairs. Argand's diagram. Triangle inequality. Powers and roots of

complex numbers, De Moivre's Theorem.

Unit-2 Algebra (05 hours)

Quadratic equations and express-ions. Permutations and Combinations. Binomial theorem for a positive integral index.

Unit-3 Coordinate Geometry (07 hours)

Coordinate Geometry: Locus. Straight lines. Equations of circle, parabola, ellipse and hyperbola in standard forms. Parametric representation.

Unit-4 Vectors and Matrices (08 hours)

Addition of vectors. Multiplication by a scalar. Scalar product, cross product and scalar triple product with geometrical applications. Matrices and Determinants: Algebra of matrices. Determinants and their properties. Inverse of a matrix. Cramer's rule.22

Unit-5 Differential Calculus (10 hours)

Function. Inverse function. Elementary functions and their graphs. Limit. Continuity. Derivative and its geometrical significance. Differentiability. Rules of derivatives, Applications of Derivatives: Tangents and Normals, Increasing and decreasing functions. Maxima and Minima

Unit-6 Integral calculus (10 hours)

Integration as the inverse process of differentiation. Integration by parts and by substitution.

Definite integral and its application to the determination of areas (simple cases). Solving first order

differential equations: Exact differential equations and first order linear differential equations.

Reference Books:

1. Bernard and Child, Higher Algebra, Macmillan and Co. Pvt. Ltd, New York.

2. J.V. Uspensky, Theory of equations, macGraw Hill Publications.

3. S. L. Loney, The Elements of Coordinate Geometry, Macmilliams and Co., New York

4. G.B. Thomas, M.D. Weir, J. Hass, Thomas' calculus, 12th edition, Pearson Publications

5.H.Anton, C. Rorrers, Elementary Linear Algebra Applications version, 9th edition, Wiley publications.

			(CF	REDI	TS T	HEO	RY:	03, P	RAC	TICA	AL: 0)			
Course code:	BSC	274											(L	-03, T-0,	P-0
Course Obje	ctives	:													
in varie 2. To uno 3. To lean 4. To uno 5. To uno integra	ed app lersta n the erstar erstar tion. n vari omes: lop te oprob oerties istica e co-vo o the r t num	blication nd pro- statist nd the nd the ious n : After schniq lem s s of di l tests varian numer erical	ons ir bbabi tical p meth inter umer r succ ues o olvin screte in tes ces, a ical s integ	n engi lity di param od of polat <u>ical ta</u> esssfu f data g tech e and sting i and co kills i gration	ineeri istribu eters curve ion an echnic l corre nique conti hypot prrela for fir n and	ng an ations for d e fitti nd ap <u>ques</u> ppleti preta es neo heses tions, nding diffe	d scie s and ifferen ng, te proxi to soly on of tion. eded t s distr s on d Appl roots rentia	ence. their their sting matio <u>ve ord</u> this c o accu ibutic ata. y the of po tion.	prop tribut of hy on, N linary ourse urate on fur tests olyno	erties tions, pothe umeri <u>y and</u> e stude ly cal- nctior of go mial a	corre esis, g cal d partia ent w culate us.	elatior goodn iffere <u>al diff</u> vill be e prot ss of t	n and reg ess of fit ntiation a <u>ferential o</u> able to: pabilities fit.	and nume	ribe
							Ilatio			U					
PO →	а	b	с	d	е	f	g	h	i	j	k	I	PSO1	PSO2	
↓ CO															_
CO 1	3	3										2	-		-
CO2 CO3	3	3	2			1				_		2			-
11112	3	3	2	3		1			<u> </u>	_	1	2			-
CO4	1.7		17	12		1					1	2			

Evaluation Scheme:

Continuous Evaluation	Theory
Before Mid Term: 10 Marks	Mid Term: 30 Marks
After Mid Term: 10 Marks	End Term: 50Marks
In Semester Evaluation: 20 Marks	

Course Content:

Unit 1

Analysis of Statistical Data (03 hours) Frequency distribution; Frequency curve and histogram; Measure of central tendency and dispersion.

Random variables and Probability Distributions (08 hrs)

Basic concepts of probability and its properties; Conditional probability and independent events; Random variables, discrete and continuous random variables, Mean and variance of Binomial, Poisson and Normal distributions and applications.

Unit 3

Sampling Distributions and Interval of Estimation (08 hours)

Sampling Distributions: t distribution, Chi-square distribution, F-distribution,; Interval of estimation Unit 4

Testing of Hypothesis (08 hours)

Relation between confidence interval and testing of hypothesis; testing of hypothesis, classification of hypothesis tests; large sample tests, small sampe tests.

Unit 5

Numerical Methods – 1(08 hours)

Solution of polynomial and transcendental equations – Newton-Raphson method and Regula-Falsi method. Finite differences, Interpolation using Newton's forward and backward difference formulae. Interpolation with unequal intervals: Lagrange's formulae. Numerical Differentiation, Numerical integration: Trapezoidal rule and Simpson's 1/3rd and 3/8 rules.

Unit 6

Numerical Methods – 2 (10 hours)

Numerical solutions to differential equations: Taylor series method, Euler method, Runge-Kutta method, predictor-corrector methods for initial value problems, Adams-Moulton method, Numerical solutions to partial differential equations: Finite difference method, Explicit, implicit, Crank-Nicolson method.

- 1. E. Kreyszig, Advanced Engineering Mathematics, Eighth Edition, John Wiley and Sons, 2015.
- 2. Steven C. Chapra and Raymond P. Canale, Numerical Methods for Engineers, 7th Edition, McGraw Hill.
- 3. S.S. Sastry, Introductory Methods of Numerical Analysis, PHI learning Pvt. Ltd.
- 4. V. K. Rohatgi and A.K. Md. Ehsanes Saleh, An Introduction to Probability and Statistics, 2nd Edition.
- 5. D. C. Montgomery and G.C. Runger, "Applied Statistics and Probability for Engineers", 5th edition, John Wiley & Sons, (2009).
- 6. P. S. Mann, Introductory Statistics, Wiley Publications, 7th edition (2013).

~ -	D <i>C</i> =			EDI	IS TI	IEOF	(Y:(13, Pk	AC 1	ПСА	L: 01	.)			
Course code:			206										(L-0	03, T- 0, I	P- 2
Course Obje	ctives:														
Otto, I CO 2 Calcul CO 3 Analyz perform	lerstar te the f cycle lerstar re the Domes: nstrate Diesel, ate the ze the mance	nd the effices and con <u>know</u> At the and e e calo basi	e cher ciency mpres <u>ledge</u> e end comb rific	nistry y of t ssors = abou l of co ledge ustion value heat	and it and it and it tourse in es n type s of d stean	ombus rious s effic am No studen timati e of cy ifferen n cyc	tion engi ozzle nt wi ng th cles. nt fue les i	nes w y. s ll be a ne effi els. n ord	orkir able to cienc er to	ng on D; y of the carr	the va	, Die arious t cal	s engines	l Combu working on syst	; or
CO 4 Evalua calcula							proca	iting a	ir coi	mpres	ssor c	ycles	in order	to carry	out
eureure	110115		uomm	e per		rticu	latio	n Mat	trix						
PO/PSO	▶ a	b	c	d	e	f	g	h	i	J	k	1	PSO1	PSO2]
CO 1	3	2								2			2		
CO2	3	2											2		_
CO3 CO4	3	2	2	2	2							2	2		-
Evaluation S	cheme	2:			ote: 1	-Low,	2-Me	dium o	r 3- H	lgh					
	Theo	ry						Prac	tical						
_	Mid T	erm	: 30 N	Aarks				Cont	inuou	ıs Eva	aluati	on: 5	0%		
	End T	erm :	50 N	Aarks				Cont	inuou	ıs Eva	aluati	on: 5	0%		
-	In Ser	neste	r Eva	luatio	on: 20	Mark	ĸs								
Course Conto				e f f		1	с	-1	of fu	-1	- d :4a	1.4		, combu	

Steam Generators: Classification of boilers, boiler details, requirements of a good boiler, merits and demerits of fire tube and water tube boilers, boiler mountings and accessories. Boiler Draught: Classification of draught, draught losses. [08 hrs]

Vapor and gas power cycles: Carnot cycle, ideal Rankine cycle, calculation of thermal efficiency, specific steam consumption, work ratio, Air standard Otto, Diesel and Dual cycle, Strirling cycle, Joule-Brayton cycle [08 hrs]

Unit 4

Steam Nozzles: Types of Nozzles, flow of steam through nozzles, condition for maximum discharge, expansion of steam considering friction, super saturated flow through nozzles, General relationship between area, velocity and pressure. [08 hrs]

Unit 5

Steam Turbines: Advantages and classification of steam turbines, Condensers and Cooling Towers advantages of using condensers, types of condensers, cooling towers. [06 hrs]

Unit 6

Air compressors: classification of air compressors, Terminology, single stage reciprocating air compressor, performance of single stage & multistage air compression, advantages and disadvantages, two stage air compressor with perfect intercooling & imperfect intercooling, minimum work required for a two stage compressor with perfect intercooling, Comparison between reciprocating and rotary compressors, classification of rotary compressors, roots blower compressor, vane blower compressor, centrifugal compressor, comparison between centrifugal and axial compressor [08 hrs]

Term Work:

It shall consist of various assignments and practical based on above syllabus

List of Experiments:

To perform following experiments (Minimum 8);

- 1. Determination of calorific value of solid/liquid fuel by using Bomb calorimeter.
- 2. To determine calorific value of gases fuel by Junkers Gas Calorimeter.
- 3. To determine the dryness fraction of wet steam by using Separating throttling calorimeter
- 4. Study of Cochran boiler.
- 5. Study of Babcock and Wilcox boiler.
- 6. Study of Lancashire boiler.
- 7. Study of Locomotive boiler.
- 8. Study of boiler mountings and accessories.
- 9. To determine volumetric, isothermal efficiency of rotary air compressor.
- 10. To study cooling tower and find its efficiency.
- 11. To determine volumetric, isothermal & isentropic efficiency of two stage reciprocating air compressor.

Practical Examination:

End Term Examination shall be a practical /oral examination based on above syllabus.

Text Books:

P. K. Nag, "Engineering Thermodynamics", Tata McGraw Hill Publishing Company Ltd. 1. New Delhi.

- Yunus A. Cengel, "Thermodynamics- An Engineering Approach," Tata McGraw Hill
 R. K. Rajput, "Thermal Engineering", Laxmi Publications Pvt. Ltd, New Delhi.
 B. K. Sarkar, "Thermal Engineering", Tata McGraw Hill Publishing Company Ltd. New Delhi.

PCC-ME207–FLUID MECHANICS & HYDRAULIC MACHINES (CREDITS THEORY: 03, PRACTICAL: 01)

Course code: PCC- ME 207

(L:03, T:0, P:02)

Course Objectives:

- 1. To familiarize the students with fluid statics and fluid dynamics.
- 2. To find the losses occurs in flow through the pipes.
- 3. To demonstrate the types of flows and equation of continuity.
- 4. To introduce the concepts of the working and design aspects of hydraulic machines like turbines and pumps and their applications.

Course Outcomes: At the end of course student will be able to;

CO1. Demonstrates basic knowledge on fluid statistics, fluid dynamics, closed conduit flows.

CO2. Classify and demonstrate basic knowledge about turbines and pumps

CO3. Design various components of pumps and turbines.

CO4. Evaluate efficiency of different pumps and performance of the pumps with determination of characteristics curves.

					Ar	ticul	ation	mat	rix					
PO/PSO⇒ ↓CO	a	b	c	d	e	f	g	h	i	J	k	1	PSO1	PSO2
↓ CO														
CO 1	3						2		2	2			3	
CO2	3						2		2	2			2	
CO3	3	3	2	2	2		1						2	2
CO4	3	3	3	2	2		1						2	2

Note: 1-Low, 2-Medium or 3- High

Evaluation Scheme:

Theory	Practical
Mid Term : 30 Marks	Continuous Evaluation: 50%
End Term : 50 Marks	Continuous Evaluation: :50%
In Semester Evaluation: 20 Marks	

Unit1

Fluid Statics: Dimensions and Units, Physical properties of fluids – mass density, specific weight, specific volume, specific gravity, viscosity, surface tension, vapour pressure and their influence on fluid motion. Atmospheric pressure, gauge pressure and vacuum pressure, measurement of pressure – Piezometers, U-tube and differential manometers – mechanical pressure gauges. [06 hrs]

Unit2

Fluid Kinematics: Stream line, path line and streak lines and stream tubes. Classification of flows ideal fluid and real fluid – steady and unsteady flows, uniform and non-uniform flows, laminar and turbulent flows, rotational and irrotational flows, equation of continuity for one-dimensional flows [06 hrs]

Unit3

Fluid Dynamics: Various forces acting on a fluid element- Euler's and Bernoulli's equation for flow along a streamline, momentum equation and its applications for pipe bend problem. Closed

conduit flow – Reynolds number, Reynolds experiment – "Darcy –Weisbach" equation – Minor losses in pipes – pipes in series and pipes in parallel – total energy line – hydraulic gradient line, measurement of flow: Pitot tube, venturimeter, orificemeter and flow nozzle meter. [06 hrs]

Unit 4

Basics of Turbo Machinery: Hydrodynamic force on jets on stationary and moving flat, inclined and curved vanes, jet striking centrally and at tip, velocity diagrams, work done and efficiency, flow over radial vanes. [06 hrs]

Unit 5

Hydraulic Turbines : Classification of turbines – Impulse and reaction turbines, Pelton wheel, Francis turbine and Kaplan turbine – working principles, workdone, efficiencies, hydraulic design, draft tube theory, functions and efficiency [06 hrs]

Performance of Hydraulic Turbines: Geometric similarity, unit and specific quantities,

characteristic curves, governing of turbines, selection of type of turbines, cavitation, surge tank, water hammer. [05 hrs]

Unit 6

Centrifugal and Reciprocating Pumps: Classification working of centrifugal pump, work done – manometric head – losses and efficiencies – specific speed – pumps in series and parallel – performance characteristic curves, NPSH. Working of reciprocating pumps, discharge, slip, percentage slip, Indication diagrams. [10 hrs]

Term Work:

It shall consist of various assignments and practical based on above syllabus.

Practical Examination:

End Term Examination shall be a practical /oral examination based on above syllabus.

Text Books:

1. Dr. R.K. Bansal "A Text book of Fluid Mechanics and Hydraulic Machines", 9th Edition, Laxmi Publications Pvt. Ltd., New Delhi, 2010.

- 1. D.S. Kumar, "Fluid Mechanics and Fluid Power Engineering", 2nd Edition, SK. Katania and Sons, 2010.
- 2. P.N. Modi and S.M. Seth "Hydraulics, fluid mechanics and hydraulic machinery", 14th Edition, Standard Book House, New Delhi 2002.
- 3. A.K.Jain, "Fluid Mechanics Including Hydraulic Machines", 8th Edition, Khanna Publishers, New Delhi, 2003.
- 4. Cengel and Cimbala ," Fulid Mechanics Fundamentals and Applications"McGraw-Hill

			ES	C-MI	E 208	– Ma	chine	e Dra	wing	& C.	ADD				
			(CR	EDIT	TS TH	IEOF	RY: 0	93, PF	RACI	FICA	L: 01	.)			
Course code	e: ESC	-ME20	08										(L-0)3, T-0, P	-02)
Course Obj	ective:														
3. To f	repare amilian oonents	asseml rize th	bly dr ie stu	awing dents	gs bo s wit	th ma h var	nuall ious	y and stanc	using lards	g stan on c	dard drawi	CAD ng p	package ractices	s and stan	
Course Out															
CO1. Identif CO2. Analyz CO3. Constr genera CO4. Evalua drawir CO5. Create	ze a bil uct a s il notes ite vari ng.	l of ma et of m s. ous pa	ateria nachin rt dra	ls and ne ass wing	l crea embly and i	te a ty y incl ts din	ypica uding nensi	l drav g asse ons, l	ving s mbly imits	draw	nce n rings,	umbe part	ers. specifica	tions, and	1
		_				rticu									
PO/PSO	➡ a	b	c	d	e	f	g	h	i	J	k	1	PSO1	PSO2	
CO 1	3	2	2								1		3		
CO2	3	2	2										3	2	_
CO3 CO4	3	2	2	2								2	2 3	3	-
CO4 CO5	3				3							2	2	2	
				N	ote: 1	-Low,	2-Mea	dium c	or 3- H	ligh					
Evaluation	Schem	e:													
	The	ory						Pra	ctical						
	Mid	Term	: 30 N	Marks	5			Con	tinuo	us Ev	aluati	ion: 5	50%		
	End	Term	: 50 N	Marks				Con	tinuo	us Ev	aluati	ion: :	50%		
	In Se	emeste	er Eva	luatio	on :20) Mar	ks								
Course Con Unit 1	tent:							<u> </u>							
Introduction (CADD) [0		oducti	on to	o ma	chine	drav	ving,	Con	npute	r aide	ed di	aftin	g and d	ocumenta	ation
Convention joints along gears. Repre [05hrs]	with th	eir act	ual d	rawin	igs, C	onvei	ntiona	al rep	resen	tation	for v	ariou	is types o	of springs	s and
Unit 2															

Production Drawing: Introduction, Types of production drawings, Detailing or Part Drawings, Working Assembly Drawings, Examples. [05 hrs]

Machine Parts: Screwed Fastenings: Locking Arrangement of Nuts, Foundation Bolts. Pipe Joints: Flanged, Socket and Spigot Joints, Hydraulic, Union Joints, Expansion Joints and Stuffing Box. Riveted Joints: Single and Double Riveted Butt and Lap Joints, Keys, Cotter Joints; Knuckle Joint. [08 hrs]

Unit 4

Assembly and detail drawing : Assembly and detail drawing with complete dimensioning, tolerance, materials and surface finish of different small machines and machine components [08 hrs]

Unit 5

Computer Aided Drafting and Documentation: Introduction, Required Equipment, Starting AutoCAD, planning for a drawing, types of modeling, Isometric drawing, Basic dimensioning [08 hrs]

Unit 6

Using AutoLISP: Using AutoLISP to Communicate with AutoCAD, Using AutoLISP to create AutoCAD Objects, Using Autocad Scripts, Introduction to Autocad VBA. [8 hrs]

Term Work:

The term work shall consist of record of Computer aided drafting assignments, drawing sheets and sketch book based on the above syllabus.

List of Experiments:

Minimum six Practicals shall be performed consisting of the following:

- 1. Conventional representation of Symbols.
- 2. Pencil Drawings of some standard components. (e.g. Screw Fasteners)
- 3. Pencil Drawings of standard assemblies with components.(e.g. Couplings)
- 4. Pencil Drawing of a small assembly with components (e.g. Screw Jack)
- 5. Pencil Drawings of detailed drawings of Assembly

6. Computer Print out of 2D drafting (assembly or detail) using CAD software.

Practical Examination:

End Term Examination shall be a practical /oral examination based on above syllabus.

Text Books:

1. Dr. Dhawan,"A Text Book of Machine Drawing," S. Chand publications 2014

- 2. N.D. Bhatt & V.M. Panchal, "Machine Drawing," Charotar Publishing House, 2001
- 3. G. Pohit and G. Ghosh, Machine Drawing with AutoCAD -Pearson Education, 2005
- 4. P.S. Gill, Machine Drawing S. K. Kataria and Sons, Delhi, 2002
- 5. Tutorials, manuals and documentation of CAD software.
- 6. Auto CAD & Autolisp Manuals by AutoDesk Corp., USA

			PC	CC-N	1E209) –Ma	anufa	icturi	ing P	roces	ses-I				
			(CR	EDI	ГS TF	IEOI	RY: ()3, PI	RAC	ГІСА	L: 01	l)			
Course code	e: PCC	C-ME2	.09										(L- 0.	3, T- 0, P	- 2)
Course Obj	ectives	5:													
draw 3. To de	lemons ing.	strate trate d	metal iffere	l fori nt pla	ming astic m	proce	esses ng pro	such	as as	-		-	g. , extrusio	on and v	wire
Course Out									e able	e to;					
CO1. Classif CO2. Demon CO3. Select CO4. Analyz defect CO5. Analyz CO6. Demon	nstrate the ma ze four s. ze Hot	the kr anufac ndry p and C	nowleo turing practic	dge o g proc es lik /orkin	of prin cess fo ce pat ng, Ro	nary r or the tern r olling	partio nakin , Forg	cular ng, m ging,	engir old m Extru	neerin naking	g con g, cor	e mal	king and i	-	n of
	istrate	KIIOW	icage	01 va			latio								
PO/PSO CO	→ a	b	c	d	e	f	g	h	i	J	k	1	PSO1	PSO2]
CO 1	3					+							3		-
CO2	3									2]
CO3	2	1											2		-
CO4 CO5	2	1											2		-
CO5	$\frac{2}{2}$		+	+		+			_	2			2		-
Evaluation	Schem	ie:			Note: 1	-Low,	2-Mea	dium c	or 3- F	High					
	The	ory						Pra	ctical	l					
	Mid	Term	: 30 1	Mark	S			Con	tinuo	us Ev	aluat	ion: 5	0%		
	End	Term	: 50 N	Marks	5			Con	tinuo	us Ev	aluat	ion: 5	0%		
	In S	emest	er Eva	ıluati	on: 20) Mar	·ks								
Course Con	tent:														
Unit 1															
Introduction	n: Conc	cept of	Manı	ıfactu	ıring P	roces	ss, Cla	assific	ation	of ma	nufac	cturing	g process	[02 hrs]	
Unit 2					C		-					·			
Casting: Intr process. Spec	cial mo	lding	and ca	sting	proce	esses -	– Lost	t Foar	n Pro	cess,	Shell	Mold	ing, Inves	tment cas	sting,

Die casting, Centrifugal casting, and Continuous casting. Melting, Pouring and Feeding. Furnaces – Types – Cupola - Construction, operation, zones, Chemistry, etc. Gating system, advantages and limitations of casting process. Pattern Making, Molding and Casting: Sand casting, pattern types, materials, pattern making allowances, molding sand types, properties and testing, hand and machine molding process and equipment's, core type and manufacturing. Design of casting: Solidification and Cooling, Riser and Gating design, design consideration in casting. Cleaning and Inspection of casting: Defects in casting. Inspection and Testing, NDT methods. [14 hrs]

Unit 3

Processing of Plastics: Introduction of plastic molding – Various plastics molding processes and materials [02 hrs]

Unit 4

Welding: Arc welding- Theory, SMAW, GTAW, GMAW, FCAW, Submerged arc welding, Stud welding Resistance welding- Theory, spot and seam projection welding processes Gas welding Friction welding, Ultrasonic welding, Thermit welding, EBW and LASER welding. Use of adhesive for joining, classification of adhesives, types of adhesive and their application, surface preparation and various joints welding defects and quality. [12 hrs]

Unit 5

Hot and Cold Working of Metals: Principles of rolling, forging, drop, press, upset, roll forging, extrusion, drawing, spinning, and effect of hot working. Cold working processes, Cold rolling, swaging, forging, extrusion- forward, backward and impact roll forming, tube drawing, wire drawing, spinning, shot penning, high energy rate forming [12 hrs]

Term Work:

The term work shall include numerical assignments and study assignments on below mentioned topics:

- 1. Study of Sand Testing Equipment's
- 2. Study of Cupola
- 3. Study of Casting
- 4. Study of NDT methods
- 5. Study of Arc Welding
- 6. Study of Gas Welding
- 7. Study of Processing of Plastics
- 8. Study of Metal working processes
- 9. Pattern making
- 10. Mould and Core Making
- 11. One Job on welding

(While writing study assignments it is desirable to visit laboratory/industrial set up in addition to referring the text and reference books.)

Practical Examination:

End Term Examination shall be a practical /oral examination based on above syllabus.

Text Books:

1. P. N. Rao – "Manufacturing Technology (Foundry, Forming and Welding)" 2nd Edition (TMH)

- 1. Chapman W.A.-"Workshop Technology, Vol. I, II, & III", Edward Arnold Pub. Ltd. London.
- 2. Serope Kalpakjian- "Manufacturing Engineering and Technology" Prentice Hall, Sixth Edition.
- 3. HMT Hand book- Production Technology
- 4. Roy A. & Linberg- "Processes and materials of manufacturing", Prentice Hall of India Delhi.
- 5. Hajara Choudhari, Bose S.K. Elements of workshop Technology Vol. I &II , Asian Publishing House

			P	CC-]	ME2	10-Ki	inem	atics	& Tł	neory	of M	[achi1	nes		
				(CR	EDIT	TS TH	IEOI	RY: ()	3, PI	RAC	ГІСА	L: 01	l)		
Co	urse code: F	PCC-	ME2	10										(L-0	3, T-0, P-02)
Co	urse Object	ive:													
1.	To make th	ne stu	dent	conve	ersant	with	com	monl	y use	d mee	chanis	sm foi	r indu	strial app	lication.
2.								-							and complex
	mechanism		1	5		U		5				U		1	1
3.	To develop	o an a	bility	to de	sign	gear (drive	and c	am p	rofile	e for g	given	appli	cation.	
4	-		-		-	-			-		-				
4.	To impart t	the kr	nowle	dge o	of wo	rking	of fly	ywhee	el, go	verno	or and	l gyro	scope	2.	
Co	urse Outcor	nes:/	At the	end	of co	urse s	tuder	nt wil	l be a	ble to):				
	1. Demonstr										,				
	2. Evaluate										aphica	al met	thods		
CO	3. Demonstr	rate tl	ne kir	iemat	ics of	f cam	s and	follo	wers,	flyw	heel,	gover	rnors,	and their	r
	character														
	4. Design ge													applicati	ons.
CO	5. Analyze s	stabil	izatio	n of s	sea ve	ehicle	s, air	crafts	and	auton	nobile	e vehi	cles.		
						Δ	rtiou	lation	Ma	triv					
	PO/PSO ➡	a	b	c	d	e	f	g	h	i	J	k	1	PSO1	PSO2
	LCO														
	CO 1	3								2	2			3	
	CO2	3	3	3	2									2	2
	CO3	3	2	2	2	2								2	2
	CO4	3	2	3	3						_			2	3
	CO5	3	2	2	2	2	<u> </u>		1.					2	2
					Λ	ote: I	-Low,	2-Mee	dium c	or 3- E	tigh				

Evaluation Scheme:

Theory	Practical
Mid Term : 30 Marks	Continuous Evaluation: 50%
End Term : 50 Marks	Continuous Evaluation: :50%
In Semester Evaluation :20 Marks	

Course Content:

Unit 1:

Fundamentals of kinematics and mechanisms

Kinematic link, Types of links, Kinematic pair, Types of constrained motions, Types of Kinematic pairs, Kinematic chain, Types of joints, Mechanism, Machine, Degree of freedom (Mobility), Kutzbach criterion, Grubler's criterion, Inversion, Four bar chain and its inversions, Grashoff's law, Slider crank chain and its inversions, Double slider crank chain and its inversions. [6 hrs]

Velocity and acceleration analysis

Velocity and acceleration analysis of mechanisms with single degree of freedom system using graphical method, Instantaneous center, Kennedy's theorem, Velocity analysis of mechanisms using instantaneous centre method. [12 hrs]

Unit 3

Cam

Introduction, Types of Cams, Types of followers, Follower motions, viz. Simple Harmonic Motion, Constant Velocity, Uniform Acceleration & Retardation, Cycloidal motion, layout of Cam profile for specified displacement characteristics. Cams with Oscillating follower system. [6 hrs]

Unit4

Gears

Classification, Gear Terminology, Law of Gearing, profiles used in gears, Length of path of contact, Arc of contact, contact ratio, Interference of involutes teeth, methods of preventing interference and under cutting. [6 hrs]

Unit 5

Flywheel & Governors

Turning Moment Diagram for single cylinder & multi-cylinder engine, Flywheel and its applications. Introduction, types of governors- Porter, Proell and Hartnell governor. [6 hrs]

Unit 6

Gyroscope

Gyroscopic couple, Effect of precision motion on the stability of moving vehicles such as motor car, motor cycle, air plane and ship. [4 hrs]

Term Work:

It shall consist of various assignments on above syllabus

List of Drawing Sheets

- 1. One drawing sheet consisting of two problems on Velocity analysis by instantaneous centre method.
- 2. One drawing sheet consisting of two problems on Velocity analysis by relative velocity method.
- 3. One drawing sheet consisting of two problems on Acceleration analysis.
- 4. One drawing sheet consisting of two problems on Cam.

List of Experiments:

The term work shall consist of journals on following laboratory experiments

- 1. To Plot Relevant Displacements Between Crank and Rocker in Four Bar Mechanism
- 2. To Plot Relevant Displacements Between Crank and Slider in Slider Crank Mechanism

- 3. To Plot Relevant Displacements Between Crank and Slider in Whitworth Quick Return Mechanism
- 4. To Plot Relevant Displacements Between Crank and Slider in Scotch Yoke Mechanism
- 5. To Determine Coriolli's Component of Acceleration Theoretically and Experimentally
- 6. To Determine the Characteristic Curves, Sensitiveness and Range of Speed of Watt Governor
- 7. To Determine the Characteristic Curves, Sensitiveness and Range of Speed of Porter Governor
- 8. To Determine the Characteristic Curves, Sensitiveness and Range of Speed of Proell Governor
- 9. To Determine the Characteristic Curves, Sensitiveness and Range of Speed of Hartnell Governor
- 10. To Determine Gyroscopic Couple on Motorized Gyroscope

Practical Examination:

End Term Examination shall be a practical /oral examination based on above syllabus and practicals.

Text Books:

1. Rattan, S.S, "Theory of Machines", 2nd Edition, Tata McGraw-Hill, Publishing Co. Ltd., New Delhi, 2006.

- 1. Bevan T., "Theory of Machines: A text book for engineering students", 3rd Edition, CBS, NewDelhi.
- 2. Uicker Jr, J. J., Penock G. R. and Shigley, J. E. "Theory of Machines and Mechanisms' 3 rd Edition, Oxford University Press, Tata McGraw Hill. 2005.
- 3. Ballaney, P. "Theory if Machines and Mechanisms", Khanna Publications.
- 4. John Hannah and Stephens, R. C., "Mechanics of Machines: Advanced Theory and Examples", 1970, Hodder; Student international edition, ISBN 0713132329 Edward Arnold London

			I	MAC	-277	Indi	an Co	onstit	ution	l				
				(Ma	ndat	ory A	Audit	Cou	rse)					
Course co	de: MAC-27	7										(L	-02, 7	Г-0, Р-0, С-
Course Ol	jectives:													
	understand th							c law	for th	ne go	verna	nce o	f our	nation, the
	ory and the d													
	understandin													
	erstand the d			ts ei	nshrir	ned ir	the (Const	itutio	n and	lunde	erstan	d the	rights and
	ies of the gov understand th			d prod	odur	aofa	mon	lmont	0					
	know the diff									xecui	tive			
	know how ou											r righ	ts are	what life
	like, how lif												u u u	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Course Ou				0,			<u> </u>	r	1	j				
CO 1 Stuc	lent will be al	ble to	unde	erstan	d hov	v Ind	ia has	come	e up v	vith a	a Con	stituti	on w	hich is the
com	bination of th	ne pos	sitive	aspec	cts of	other	Con	stituti	ons.					
	lent will be al					-								
	lent will be a													
	lps in unders	tandi	ng the	e diff	erent	aspeo	ets co	vered	unde	r the	diffe	rent i	mpor	tant
	cles.		1		1.1	1.	1	1	• ,		<i>.</i> .	T T 1		1.4
	lent will be al									rpret	ation.	Und	erstan	id the
	ortant amend lent will be al									outiv	a hatt	or		
	lent will be al												ill on	e's duties
			' tilat i					latrix			icus i	0 Iuii		e s duttes.
	PO/PSO	a	b	c	d	e	f	g	h	i	J	k	1	
	↓ CO													
	CO 1							2	3				2	_
	CO2											_	2	_
	CO3 CO4						2	2		2			2	_
	CO4 CO5							2	2				2	_
	CO5						2						2	_
	CO7								2					_
	<u></u>			Note:	1-Lov	v, 2-M	lediun	or 3-	High	1				
	~ •													
Evaluation	i Scheme:		T	ieory	,									
				•										
			M	id Te	rm : 3	30 Ma	arks							
			Er	nd Ter	rm : 5	50 Ma	arks							
			In	Seme	ester]	Evalu	ation	: 20 N	Aarks					
Course Co	ntent:													
	ning of the	e con	stitut	ion 1	law a	and	consti	tutio	nalisn	n. H	istori	cal r	erspe	ective of t
	stitution of Ir											-	-	
2. Sch	eme of the f	funda	menta	al rig	hts.	The s	schem	e of	the I	Funda	ament	tal D	uties	and its les
										GIIG	4111011			
statı	is. Directive P													

structure and distribution of legislative and financial powers between the Union and States.

- 4. Parliamentary form of Government in India. The constitution powers and status of the President of India.
- 5. Amendment of the Constitutional Powers and Procedure. The historical perspectives of the constitutional amendments in India.
- 6. Emergency Provisions: National Emergency, President Rule, Financial Emergency.
- 7. Local Self Government Constitutional Scheme in India.
- 8. Scheme of the Fundamental Right to Equality. Scheme of the Fundamental Right to certain Freedom under Article 19. Scope of the Right to Life and Personal Liberty under Article 21.

Text Books:

- 1. Introduction to the Constitution of India by Durga Das Basu (Students Edn.) Prentice-Hall EEE, 19th /20th Edition, 2001.
- 2. An Introduction to Constitution of India by M. V. Pylee, Vikas Publishing, 2002.