Course of Study T. Y. B. Tech. (Electrical Engineering) (With effective from Academic Year 2020-21)

Department of Electrical Engineering, SGGS Institute of Engineering and Technology, Vishnupuri, Nanded-431606 (MS), India (An Autonomous Institute of Government of Maharashtra)

Program Outcomes (POs)

Engineering Graduates will be able to:

- 1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
- 2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Educational Objectives (PEOs)

Engineering Graduates will be able to:

- 1. Excel in growing careers involving design, development of electrical / electronic systems by working in the diversified sectors of the industry, government organizations, public sector and multinational corporations and/or pursue higher education at various reputed institutes.
- 2. Make considerable progress in their chosen domain of interest and will build up additional technical expertise to remain globally competitive.
- 3. Be able to demonstrate inter-personal skills, professional and personal leadership and growth with commitment to ethical and social responsibilities.

Program Specific Outcomes (PSOs)

- 1. Specify, design, plan and implement new electrical systems and modification of existing systems in the field of Electrical Engineering.
- 2. Test, operate, supervise and maintain different Electrical and Electronics equipment's and integrated systems.
- 3. Analyze and select appropriate techniques for optimum operation of Power System, Electrical machines, Power electronics and Industrial drives system.

Correlation between the PEOs and the POs

PO/PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PEO															
PEO1	\checkmark	✓				\checkmark	\checkmark						<		~
PEO2		✓	✓	√		√		✓	√		✓	✓	\checkmark	\checkmark	
PEO3				✓	\checkmark	✓	✓			✓	✓	✓		\checkmark	✓

SGGS Institute of Engineering and Technology, Vishnupuri, Nanded Department of Electrical Engineering

T. Y. B. Tech. Curriculum Structure of T. Y. B.Tech.

(With effective from Academic Year 2020-21)

	Semester- I					
Course Code	Name of the Course	L	Т	Р	Cre	dits
					Th	Pr
PCC-EE301	Power System Engineering	03	-	02	03	01
PCC-EE302	Feedback Control System	03	-	02	03	01
PCC-EE303	Microprocessor and Microcontroller	03	01	02	04	01
PCC-EE304	Digital Signal Processing	03	-	02	03	01
PEC-EE3**	Elective-I	03	-	-	03	
PRJ-EE308	Mini Project and Seminar-I	-	-	04	-	02
	Sub Total	15	01	12	2	2
	Semester-II					
Course Code	Name of the Course	L	Т	Р	Cre	dits
					Th	Pr
PCC-EE309	Power System Analysis and Stability	03	-	02	03	01
PCC-EE310	Control System Design	03	-	02	03	01
PCC-EE311	Power Electronics	03	-	02	03	01
PCC-EE312	Power Plant Engineering	03	-	-	03	
PEC-EE3**	Elective-II	03	-	-	03	
PRJ-EE316	Mini Project and Seminar-II	-	-	04	-	02
	Sub Total	15	0	10	2	0

L—No of Lecture Hours/Week, T—No. of Tutorial Hours/Week, P—No. of Practical Hours/Week

Elective- I						
PEC-EE305	Basic of Photovoltaic System					
PEC-EE306	Renewable Energy Technologies					
PEC-EE307	PEC-EE307 Electrical Installation and Design					
	Elective- II					
PEC-EE313	Energy Audit and Conservation					
PEC-EE314	Electrical Machine Analysis					
PEC-EE315	Utilization of Energy and Management					

Attendance Criteria: Students have to maintain 75% attendance in all the registered courses in a semester to be eligible for appearing examinations

PCC-EE301 Power System Engineering									
Teaching sch	eme:	Examination scheme:							
Lectures	3 hrs/week	Theory							
Tutorials	hrs/week	In Semester Evaluation : 20 Marks							
Practical's	2 hrs/week	Mid Semester Examination: 30 marks							
Credits	4	End Semester Examination : 50 marks							
Course Obje	ctives:								
1.	To introduce students to the basic structure and requirements of an electric power supply system								
2.	2. To develop an understanding of components in a power system and to understand the basic principles involved in these components.								
3.	To explore analysis and design principles for the complete power system								
Course Outco	omes: On successful comp	letion of this course students will be able to							
PCC-EE301.1	Understand the concepts of	power systems							
PCC-EE301.2	Understand the various pov	ver system components							
PCC-EE301.3	Estimate the parameters of transmission line, understand its operation, role and select the model for various studies.								
PCC-EE301.4	Build model and analyse various power system components like, generator, transformers, and load.								
PCC-EE301.5	Apply knowledge in evaluating performance of power system								

$\begin{array}{c} \text{PO/PSO} \rightarrow \\ \downarrow \text{CO} \end{array}$	PO1	PO2	PO3	PO4	PO 5	PO 6	PO 7	PO 8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PCC-EE301.1	3	1	1	-	2	-	-	-	1	-	-	1	3	3	1
PCC-EE301.2	3	1	1	-	2	-	-	-	1	1	-	1	3	3	1
PCC-EE301.3	3	2	3	2	3	-	-	-	1	3	-	2	2	2	2
PCC-EE301.4	2	2	3	3	3	-	-	-	3	3	-	3	2	2	3
PCC-EE301.5	3	3	3	3	3	-	-	3	3	3	-	3	2	1	3

Syllabus:		
Unit 1	Fundamentals of Power Systems:	(6 Hours)
	Evolution of Power Systems and Present-Day Scenario. Structure of a power system: Bu	ulk Power
	Grids and Micro-grids.	
	Generation: Conventional and Renewable Energy Sources. Distributed Energy Resources	s. Energy
	Storage. Transmission and Distribution Systems: Line diagrams, transmission and	distribution
	voltage levels and topologies (meshed and radial systems), Synchronous Grids and As	synchronous
	(DC) interconnections. Review of Three-phase systems. Analysis of simple three-phase	ase circuits.
	Power Transfer in AC circuits and Reactive Power.	
Unit 2	Electrical Design of Overhead Transmission Lines: (8)	8 Hours)
	Resistance, Inductance: Definition, Inductance due to internal flux of two wire single pl	hase line of
	composite conductor line, Concept of GMD, Inductance of three phase line with equal	l & unequal
	spacing, vertical spacing.	
	Capacitance: Concept of electric field, Potential difference between two points in space	e, Effect of

	earth's surface on electric field, Computation of capacitance of single phase, three phase
	transmission lines with & without symmetrical spacing for solid & composite conductors. Concept
	of GMR and GMD, Skin effect, Proximity Effect, Ferranti effect.
Unit 3	Transmission line modelling and performance: (6 Hours)
	Performance of Transmission Lines: Classification of lines such as short, medium, long lines
	Voltages and currents at sending end and receiving end of the lines, effect of load p.f. on regulation
	and efficiency, Determination of generalized ABCD constants in them, , Surge Impedance Loading.
	Series and Shunt Compensation of transmission lines.
Unit 4	Modeling of Power System Components (8 Hours)
	Power Transformers: Three-phase connections and Phase-shifts. Three-winding transformers.
	autotransformers. Neutral Grounding transformers. Tap-Changing in transformers. Transformer
	Parameters Single phase equivalent of three-phase transformers
	Synchronous Machines: Steady-state performance characteristics. Operation when connected to
	infinite bus Real and Reactive Power Canability Curve of generators. Typical waveform under
	balanced terminal short circuit conditions – steady state, transient and sub-transient equivalent
	circuits Loads: Types Voltage and Frequency Dependence of Loads Per-unit System and per-unit
	calculations
Unit 5	Mechanical design of overhead transmission line: (7 Hours)
Cint 5	Main components of overhead line conductor materials line supports Insulators: Type of
	insulators, potential distribution over suspension insulator string, string officiency, methods of
	improving string officiency. Coronau Dhenomenon of corona factors officiency areas
	improving string efficiency. Corona: Phenomenon of corona, factors affecting corona,
	advantages and disadvantages of corona, methods of reducing corona. Sag: Sag in overnead
TI 4 C	line, calculation of sag, Effects of wind & ice coating on transmission line.
Unit 6	Distribution System: (6 Hours)
	Classification of distribution, AC and DC distribution system, overhead versus underground
	system, connection scheme of distribution system, Requirements of Distribution System,
	Design Consideration in Distribution Systems, Numerical Problems
Text/ Refe	rence Books:
1.	Grainger John J and W D Stevenson Jr,"Power system analysis" Mc-Graw Hill.
2.	I. J. Nagrath, D. P. Kothari, "Modern Power System Analysis" (3rd Edition), Tata McGraw Hill
	Publishing Co. Ltd.
3.	C.L. Wadhwa, "Electrical Power Systems", 6th Edition, New Age International, Latest Edition
4.	O. I. Elgerd, "Electrical energy systems theory: An introduction" Tata McGraw Hill, edition 1999.
5.	A. R. Bergen and Vijay Vittal, "Power system analysis", (2nd edition), Pearson Education Asia,
	2001.
6.	Hadi Sadat, "Power system analysis", McGraw Hill International, 1999
7.	V.K.Mehta, Rohit Mehta "Principles of Power System", Fourth Edition, S.Chand Publications,
	Latest Edition
Term wor	k:
	The laboratory consists of minimum EIGHT experiments from following list.
	1. Visit to HV/EHV substation, power generating station.
	2. Study of transmission line inductance.
	3. Study of transmission line capacitance.
	4. Study of different components of power system. (e.g. different types of line conductors,
	insulators, pole structure)
	5. Study of regulation and transmission efficiency for short, medium and long transmission lines.
	6. Study and Determination of ABCD parameters of short, medium and long transmission lines.
	7. Study of corona effect for transmission lines.
	8. Study of different effects of power system. (e.g. skin effect, Ferranti effect, proximity effect,
	surge impedance loading)

	_
9. Simulation of the effect of line parameters on performance of transmission line.	
. 10Simulation of typical power system- familiarization with generator, line and load models.	
The computational work is to be carried preferably by using software tools like MATLAB, Mi-Power, ETAI),

Scilab or any open source software.

Independent Learning Experiences:

• https://swayam.gov.in

NPTEL Equivalent Course : "Power System Engineering" by Prof. Debapriya Das, IIT Kharagpur

PCC-EE302 Feedback Control System

Teaching s	schem	ne:	Examination scheme:		
Lectures		3hrs/week	Theory		
Tutorials		-	In Semester Evaluation : 20 Marks		
Practicals		2hrs/week	Mid Semester Examination: 30 marks		
Credits		4	End Semester Examination : 50 marks		
Course Ob	ojectiv	ves:			
1.	Intro	oduction to concepts of mod	elling of physical systems.		
2.	Intro	duction to time domain and	l frequency domain modelling.		
3. Analyse the system response and			d stability in time domain and frequency domain.		
Course Ou	itcom	es: On successful comple	etion of this course students will be able to		
1.	Exhi diffe simp	bit the capability to repr rential equations; Laplace blify complicated control system	esent the mathematical model of physical systems using linear transform and use block diagram algebra, Mason's gain formula to stems.		
2.	To d spec	letermine time response of f ify control system performa	first, second and higher order systems to standard test signals and to ance in terms of time and frequency domain specifications.		
3.	Cons singl	struct Hurwitz determinant, le variable feedback control	Routh array, root-locus, polar plot, Bode plot and Nyquist plot for systems and investigate system stability.		
4.	Realize lead, lad and lag lead compensators using electrical, electronic and mechanical components.				
5.	5. Validate the concepts of time domain, frequency domain and stability analysis using MATLAB.				
6.	Gain	some practical experience	in control engineering which might become a future research point		
	for t	hem. (Some is not specific	e and measurable)		

$\begin{array}{c} \text{PO/PSO} \rightarrow \\ \downarrow \text{CO} \end{array}$	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PCC-EE302.1	3	2	-	2	-	-	-	-	1	1	-	-	3	1	2
PCC-EE302.2	3	2	2	3	1	-	-	-	1	1	-	-	3	1	1
PCC-EE302.3	2	2	2	3	1	-	-	-	1	1	-	-	2	2	2
PCC-EE302.4	1	1	2	-	-	-	-	-	1	1	-	-	3	1	1
PCC-EE302.5	1	2	-	-	3	-	-	-	2	2	-	1	3	2	2
PCC-EE303.6	1	2	2	2	3	-	-	-	2	2	-	3	1	2	2

Syllabus:	
Unit 1	Introduction to control systems (04 Hours)
	Definition, history, elements of control systems, examples of control systems, open- loop (non-
	feedback) and closed loop (feedback) control systems, effect of feedback on overall gain,
	parameter variations, external disturbances or noise and control over system dynamics,
	regenerative feedback, linear versus nonlinear control systems, time- invariant versus time-
	varying systems, SISO and MIMO systems
Unit 2	Mathematical modelling of dynamic systems(10 Hours)
	Introduction, canonical form of feedback, control systems, transfers function and impulse
	response, differential equations and transfer functions of physical systems such as mechanical,
	electrical, electromechanical, thermal, pneumatic and liquid-level systems, analogous systems,
	force-voltage, force-current, torque-voltage and torque- current analogies, loading effects in
	interconnected systems, systems with transportation lags, linearization of nonlinear
	mathematical models, block diagram representation of control system, rules and reduction
	techniques, signal flow graph: elements, definition, properties, masons gain formula, application
	of gain formula to block diagrams
Unit 3	Time- domain analysis of control systems(08 Hours)
	Standard test signals, transient response, steady state error and error constants, dynamic error
	series, time response of first and second order systems and transient response specifications,
	dominant poles of transfer function, basic control actions and response of control systems,
	effects of integral and derivative control action on system performance, higher order systems
Unit 4	Stability of linear control systems(04 Hours)
	Concept of stability, BIBO stability: condition, zero input and asymptotic stability, Hurwitz
	stability criterion, Routh-Hurwitz criterion in detail, relative stability analysis, effect of adding
	poles and zeros to transfer functions on stability
Unit 5	The Root–Locus technique (04 Hours)
	Introductions, basic properties of the root loci, general rules for constructing root loci, Root
	Locus analysis of control systems
Unit 6	Frequency domain analysis (12 Hours)
	Frequency response of closed loop systems, frequency domain specifications of the prototype
	second order system, correlation between time and frequency response, effect of adding a pole
	and a zero to the forward path transfer function, polar plots, Bode plots, phase and gain margin,
	stability analysis with Bode plot, Nyquist stability criterion: mathematical preliminaries, stability
TI	and relative stability analysis (02 Herery)
Unit 7	Compensators (03 Hours)
	Introduction, different types of compensators, Realization of lead, lag and lag lead compensators
	(Electrical, Electronic and Mechanical type), their transfer functions and frequency responses
Text/Reference	Books
1	K Ogata "Modern Control Engineering" Fourth Edition Pearson education India 2002
1.	R. Ogata, Modern Control Engineering, Fourth Edition Prentice –Hall of India 2002.
2.	Norman S. Nise "Control systems Engineering" Third Edition John Wiley and Sons Inc.
5.	Singapore 2001
1	R C Dorf and R H Bishon "Modern Control systems" Fighth Edition Addison Wesley
т.	1999
5	I I Nagrath and M Gonal "Control systems Engineering" Third Edition New age
5.	International Publishers India 2001
Term work•	
It will consist of	at least eight experiments/assignments/programs from the following list:
it will consist of	a reast eight experiments/assignments/programs nom me tonowing list.

	-
1.	Determination of transfer function of an armature controlled d. c. motor.
2.	Determination of transfer functions of D. C. generator.
3.	Effect of feedback on D. C. generator.
4.	Transient response of second order system.
5.	Study of D. C. positional servo system.
6.	Study of A. C. servo voltage stabilizer.
7.	Study the performance of an open and closed loop control system using electronic amplifiers using OPAMPs.
8.	Study the performance of a second order system (Use any OPAMP based electronic system such as an active second order Butterworth filter).
9.	Study the performance of any first order and second order system
	Experiments based on software (programs)
1.	Introduction to MATLAB, MATLAB's simulink and control systems toolbox (with some examples) or any other control system related software package.
2.	Compare and plot the unit-step responses of the unity-feedback closed loop systems with the given forward path transfer function. Assume zero initial conditions. Use any computer simulation program.
3.	Study of effect of damping factor on system performance by obtaining unit step response and unit impulse response for a prototype standard second order system. Consider five different values for $x = 0.1, 0.3, 0.5, 0.7$ and 1.0. Also study the effect of varying undammed natural frequency by taking three different values. Comment on the simulations obtained.
4.	Write a program that will compute the step response characteristics of a second order system i.e. Percent overshoot, rise time, peak time and settling time. Generalize it for accepting different values of undammed natural frequency and damping factor.
5.	Study and plot the unit step responses of addition of a pole and a zero to the forward path transfer function for a unity feedback system. Plot the responses for four different values of poles and zeros. Comment on the simulations obtained.
6.	Study and plot the unit step responses of addition of a pole and a zero to the closed loop transfer function. Plot the responses for four different values of poles and zeros. Comment on the simulations obtained.
7.	Program for compensator design using Bode plot.
8.	Program for compensator design using Root Locus analysis.
9.	Plot and comment on various properties of any three systems (problems) using
	Routh-Hurwitz criterion
	Root locus technique
	• Bode plots
	Nyquist plots
	Use any software package.

PCC-EE3	PCC- EE303 Microprocessor and Microcontroller								
Teaching Sc	heme :	-	Examination Scheme:						
Lectures		3 Hrs./ Week	Theory: Mid Term: 30 Marks						
Tutorials	1 Hrs/Week Continuous Evaluation : 20 Marks								
Practical		2 Hrs./Week	End Sem. Exam :50 Marks						
Credits		5							
Prerequisite	s Courses:								
1	Analog an	nd Digital Circuits							
Course Obj	Course Objective:								
1	To teach the students to familiarize with microprocessor and microcontroller architecture ar								
	functioning.								
2	To train th	ne students to program the	ne microprocessor and microcontrollers for any application.						
Course Out	comes: Stu	idents' will be able to:							
1.	To describ	be basics of 8085, 8051 a	and its instruction set.						
2.	To understand historical development of microcontrollers and to know different 8, 16, 32 bit								
	microcontrollers.								
3.	To solve assembly language programs based on the instruction set of 8085 and 8051.								
4.	To get insight of 8051 based hardware system and so to study ADC, keyboard etc.								
5.	To execut	e assembly language pro	ograms based on the instruction set of 8051						
6.	To develop 8085, 8051 based instrumentation system.								

$\begin{array}{c} \text{PO/PSO} \rightarrow \\ \downarrow \text{CO} \end{array}$	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PCC-EE303.1	3	1	-	-	-	-	-	-	-	-	-	2	3	2	3
PCC-EE303.2	3	1	-	-	-	-	-	-	-	-	-	1	3	2	2
PCC-EE303.3	2	2	3	2	3	-	-	-	-	-	-	-	3	2	3
PCC-EE303.4	2	2	3	2	3	-	-	-	-	-	-	-	3	2	1
PCC-EE303.5	1	3	3	3	2	-	-	-	3	1	2	3	3	3	3
PCC-EE303.6	1	3	3	3	2	3	3	-	3	2	3	2	2	2	3

Syllabus :	
Unit 1	Introduction to 8085
	Architecture and operation, pin out diagram. Assembly language programming for 8085 microprocessor, instruction classification, instruction set study in details, addressing modes, writing assembly language programs, stacks subroutines, instruction set timing diagrams, a minimum configuration for 8085, interrupt structure of 8085, internal interrupt circuit, hardware and software interrupts.
Unit 2	Interfacing memories to 8085
	Interfacing memories EPROM and RAM with 8085 with exhaustive and partial decoding
	techniques.
Unit 3	Peripheral devices used in 8085 systems
	Following structure programmable peripheral devices are to be studied in details as regards
	block diagram, software for their interfacing with 8085: 8255, 8253, 8279, ADC.
Unit 4	Introduction to microcontrollers and Programming 8051
	8051 Architecture, pin out diagram, 8051 oscillator and clock, Program counter and Data

	pointer, A and B CPU registers, flags and PSW, internal memory, stack and stack pointer,							
	SFRS, internal ROM, I/P and O/P ports. Assembly language programming for 8051							
	microcontroller, instruction classification, instruction set Arithmetic and Logical operations,							
	jump and call instructions etc., writing assembly language programming based on instruction							
	set, stacks and subroutines.							
Unit 5	Timers in 8051 and Serial data transmission							
	Interrupts of 8051, counters and timers, timer modes, timer/counter programming. Introduction							
	to serial data transmission methods.							
Unit 6	Interfacing peripherals to 8051 and Design of 8051 based systems							
	8051 microcontroller interfacing with: keyboard and display, A/D and D/A chips. Design of							
	dedicated systems using 8051 for temperature indication OR/AND control, flow indication.							
	OR/AND control, stepper motor control, embedded control systems, Smart transmitters.							
Text/ Refere	ence Book:							
1.	K. L. Short, "Microprocessor and programming logic", Second Edition, Prentice- Hall India Pvt.							
	Ltd.							
2.	R. S. Gaonkar, "Microprocessor Architecture, Programming and application with 8085/8085A",							
	Fourth Edition, Willey Eastern Ltd.							
3.	B. Ram, "Fundamentals of microprocessor and Microcomputer", Dhanpat Rai and Sons, Eighth							
	Edition, New Delhi.							
4.	Ayala K. J., "8051 Microcontroller: Architecture, Programming and applications" Second Edition,							
5	Penram international.							
5.	Muhammad Ali Mazidi, Janice G. Mazidi and Rolin D. McKinlay, "The Microcontroller and Embadded Systems" Second Edition Deerson 2012							
Defenence D	enhanced Systems , Second Edition, Pearson, 2012.							
1	OOKS: D. Dom "Advanged Microprocessor and Interfacing" Tate McGrow Hill Dubliching Company I td							
1.	First Edition New Delhi							
2	Aiit Pal "Microprocessor Principles and Applications" Tata Mc-Graw Hill First Edition New							
2.	Delhi.							
3.	U. V. Kulkarni and T. R. Sontakke, "The 8085A Basics: Programming and Interfacing", Sadusudha							
	Prakashan, First Edition, Nanded.							
4.	Intel Mcs, "8085 users manual", Intel Corporation.							
5.	Myke Predko, "Programming and customizing the 8051 Microcontroller", Tata McGraw-Hill, First							
	Edition, New Delhi.							
6.	N.G. Palan, "8031 Microcontroller – Architecture, Programming and Hardware Design", Technova							
	publishing House.							
Term Work	:							
It will consist	t of a record of at least eight of the following experiments based on the							
Prescribed sy	llabus.							
1.	Study of Dyralog 8085 kit.							
2.	Writing simple programs based on 8085 Instruction set.							
3.	Write a program to find largest number from a series of numbers.							
4.	Write a program to transfer a block of data.							
5.	Write a program for arranging numbers in ascending / descending order.							
6.	To study interfacing of 8255 with LEDs, 7-Segment display.							
7.	To study interfacing of 8255 with Keyboard, ADC.							
8.	To study 8051 Simulator.							
9.	To write simple programs using 8051 simulator like-							
	a. Finding largest/smallest number.							
	b. arranging numbers in ascending / descending order.							
	c. Anumeuc of 10-bit numbers.							

10.	Interfacing of stepper motor with microcontroller.						
11.	Mini project based on 8051.						
Note: The co	Note: The computational work is to be carried preferably by using software tools likeMATLAB, Scilab.						
Practical Examination:							

The examination will be of three hours duration and will consist of an experiment based on term-work and followed by an oral based on above syllabus.

PCC-EE3	PCC-EE304 Digital Signal Processing								
Teaching Sc	heme :		Examination Scheme:						
Lectures		3 Hrs/ Week	Theory: Mid Term: 30 Marks						
Tutorials	Continuous Evaluation : 20 Marks								
Practical		2 Hrs/Week	End Sem. Exam :50 Marks						
Credits (Th)		4							
Prerequisite	s Courses	•							
1	Signals a	nd Systems							
Course Obj	ective:								
1	To provi	ide better understan	ding of discrete-time signals with representation in time and						
	frequency	y domain.							
2	To provi	de knowledge for ana	alysis and design of linear and time-invariant (LTI) systems using						
	mathema	tical tools like Fourie	er Transform and z-transform.						
3	To provi	de knowledge for et	fficient realization of digital systems (FIR and IIRfilters) using						
	hardware	and software.							
Course Out	comes: Stu	udents' will be able	to:						
1	to unders	stand benefits and lin	nitations of processing signals digitally and properties of discrete-						
	time LTI	systems.							
2	Represen	t and analyze the dis	crete-time signals and LTI systems in the frequency domain using						
	Discrete-	Time Fourier T	Transform (DTFT), z-transform and Discrete Fourier						
	transform (DFT) tools.								
3	Implement DFT efficiently using Fast Fourier Transform (FFT) algorithms and use in practical								
	applications.								
4	Design a	n FIR or IIR filter for	the specifications given in frequency domain.						
5	To realiz	e digital system whose	se coefficients are known using hardware or software.						
6	To propose and design a digital system for simple real application.								

$\begin{array}{c} \text{PO/PSO} \rightarrow \\ \downarrow \text{CO} \end{array}$	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PCC-EE304.1	3	1	-	-	-	-	-	-	-	-	-	-	3	2	3
PCC-EE304.2	3	2	-	2		-	-	-	-	-	-	-	2	2	2
PCC-EE304.3	2	2	1	-	2	-	-	-	-	-	-	-	3	2	3
PCC-EE304.4	3	3	3	-	1	-	-	-	-	-	-	-	2	2	3
PCC-EE304.5	2	2	2	-	1	-	-	-	-	-	-	-	2	3	3
PCC-EE304.6	2	3	3	1	2	-	-	-	-	-	-	1	2	3	3

Syllabus:							
Unit 1	Introduction						
	Discrete-time signals and systems, time-domain characterization of discrete-time LTI systems,						
	sampling theorem, benefits and limitations of processingsignal digitally. Correlation of signals.						
	The Z-transform: inverse Z-transform and Z-transform properties for one-sided and two-sided z-						
	transforms. Discrete-Time Fourier Transform (DTFT) and its properties.						
Unit 2	LTI Discrete-Time Systems in Transform Domain						
	The frequency response, the transfer function, types of transfer functions, Allpass transfer						
	function, minimum-phase and maximum-phase transfer functions, inverse systems.						
Unit 3	Discrete Fourier Transform						
	Discrete Fourier Transform (DFT) and its properties. Computation of DFT (FFTalgorithms),						
	Decimation-In-Time (DIT), Decimation-In-Frequency (DIF) and radix-n algorithms of FFT.						
Unit 4	Digital filter structures						
	Digital filter structures: block diagram representation, equivalent structures, basic FIR						
	structures, basic IIR structures, All pass filters, IIR tapped cascadedlattice structures, FIR						
	cascaded lattice structures.						
Unit 5	Digital Filter Design						
	IIR Filter Design: Analog Filter Approximations – Butterworth and Chebyshev approximations.						
	Frequency Transformations: low-pass to low-pass, low-pass to high-pass, low-pass to band-						
	pass and low-pass to band-stop transformations. Analog to Digital Transformations: Impulse						
Invariant Technique and Bilinear Transformation Technique. FIR Filter Design: window							
	technique, frequency sampling technique, and computer aided design.						
Unit 6	Digital Signal Processor						
	Harvard architecture and modified Harvard architecture. Introduction to fixed-point and						
floating-point DSP processors, architectural features, computationalunits, bus architecture a							
	memory architecture, data addressing, addressgeneration unit, pipelining, on-chip peripherals.						
Text/Refere	ence Books:						
1.	A. V. Oppenheim, R. W. Schafer, "Discrete-Time Signal Processing", Prentice-Hallof India,						
2.	J. G. Proakis, D. G. Manolakis, "Digital Signal Processing – Principles, Algorithmsand						
2	Applications", Prentice Hall of India, 2002.						
3.	S. K. Mitra, "Digital signal processing- A computer based approach", TataMcGraw Hill, 2002.						
4.	E. C. Ifeachor, B. W. Jarvis, "Digital Signal Processing- A Practical Approach", Second Edition,						
5	Pearson Education, New Defin, 2002.						
<u> </u>	Son M Kup and Dah H. Las "Deal Time Digital Signal Processing, Prenuce-Hallol India, 2011						
0.	Sen M Kuo and Bob H. Lee, Real-Time Digital Signal Processing: Implementation						
Town work	Applications and Experiments with the TWIS 520C55X John Whey and Sons, New York						
Term work	shall consist of six to eight assignments/tutorials/prostical based on above syllabus. Some						
renn work	shall consist of six to eight assignments/tutofials/plactical based on above synabus. Some						
based on th	a syllabus. Students are supposed to write the programs (at least eight) on general purpose						
computer us	sing any development environment $(C/C + /Matlab)$ or on any DSP processor and development						
environmen	t						
1	Digital signal generation						
2	Simple operations on signals						
3	Linear and Circular Convolutions						
<u> </u>	Discrete time Fourier transform (DTFT) and its properties						
5	Discrete Fourier Transform (DFT) – Direct computation DIT algorithm DIF algorithm						
5.	Linear and Circular Convolutions, using DET						
0.	Linear and Circular Convolutions using DF1.						

7.	FIR filters design and software realization using (i) Rectangular Window (ii) Generalized
	Hamming Window (iii) Bartlet Window and (Iv) Kaiser Window.
8.	Frequency Sampling Design of FIR Filter.
7.	IIR filter design and software realization using Butterworth Filter Approximation with(i)
	Impulse Invariance Method and (ii) Bilinear Transformation Method.
8.	IIR filter design and software realization usingChebyshev Approximation with(i) Impulse
	Invariance Method and (ii) Bilinear Transformation Method.

Equivalent SWAYAM/NPTEL Course:

Title: Discrete-Time Signal Processing Faculty: Prof. Mrityunjay Chakraborty, IIT Kharagpur Duration: 8 Weeks

NOTE: In SWAYAM/NPTEL it is offered in even semester

ELECTIVES –I

PEC-EE	305 Basics of Photovoltai	c Systems						
Teaching s	scheme:	Examination scheme:						
Lectures	3 hrs/week	Theory						
Tutorials		In Semester Evaluation : 20 Marks						
Practical's	8	Mid Semester Examination: 30 marks						
Credits	3	End Semester Examination : 50 marks						
Course Ol	ojectives:							
1.	1. To introduce students with basics of PV systems							
2.	To develop an understanding of PV cells and their characteristics, basic components of PV systems							
3.	To make students understand the energy from sun and its estimation							
4.	To teach students battery characteristics, combination, selection and interfacing with PV							
5.	To explain design and analysis of MPPT, Charge controllers and their algorithms							
Course Ou	Course Outcomes: On successful completion of this course students will be able to							
1.	Understand different characteristics of PV cells, their series-parallel combination and protection.							
2.	Calculate incident energy from the sun.							
3.	Determine battery rating and PV sizing as per the load.							
4.	Understand MPPT and its algorithm							
5.	Perform PV Battery interface							
6.	Understand the application of PV Systems and its Life cycle costing.							

$PO/PSO \rightarrow \downarrow CO$	PO1	PO2	PO 3	PO4	PO 5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PEC-EE 311A.1	1	2	1	1	2	-	•	-	-	-		1	1		•
PEC-EE 311A.2	2	1	1	1	1	2	-	-	-	-	-	2	-	1	-
PEC-EE 311A.3	2	1	3	3	3	2	-	-	-	-	2	-	2	2	-
PEC-EE 311A.4	1	2	1	2	2	-	-	-	-	-	-	-	-	-	-
PEC-EE 311A.5	2	3	3	3	3	-	-	-	-	-	2	-	1	2	-
PEC-EE 311A.6	1	1	3	3	2	2	-	-	-	-	-	3	-	-	-

Syllabus:	
Unit 1	Photo Voltaic Cells: (6 Hours)
	Historical Perspective of PV cells, Cell efficiency, data sheet study, effect of temperature on PV
	cells and related calculation, form factor, fill factor, model of PV cell, PV cell characteristics
	and equivalent circuits, Short circuit, open circuit and peak power parameters
Unit 2	Series Parallel Interconnection and Protecting circuit of PV cells(6 Hours)

	Identical cells in series, Load Line, Non identical cells in series, Protecting Cells in series,							
	interconnecting cells in series, Identical cells in parallel, Non identical cells in parallel,							
	Protecting Cells in parallel, interconnecting cells in parallel							
Unit 3	Energy from Sun and Incident Energy estimation(6 Hours)							
	Insolation and Irradiance, Insolation variation with time of day, Earth centric view point and							
	declination, solar geometry, insolation on a horizontal flat plate collector, Energy on a							
	horizontal flat plate collector, sunrise and sunset angles, Energy on a tilted flat plate collector,							
	atmospheric effects, energy with atmospheric effects, Clearness index and air mass							
Unit 4	Battery characteristics and PV Sizing(8 Hours)							
	Sizing PV for applications without batteries, Introduction to batteries, Battery capacity, C-							
	rating, efficiency, energy and power densities, battery comparison and selection, other energy							
	storage methods, PV system design related to -load profile, days of autonomy, battery sizing							
	PV array sizing.							
Unit 5	Maximum Power Point Tracking and Algorithms (MPPT)(8 Hours)							
	MPPT Concept, input impedance of boost converter, input impedance of buck converter, input							
	impedance of buck-boost converter, PV module, impedance control methods, reference cell							
	voltage scaling method, reference cell current scaling method, sampling method, power slope							
	methods, Hill climbing method, Practical point for housekeeping power supply, gate drivers,							
	MPPT for non-resistive loads							
Unit 6	PV-Battery Interface and Applications of PV systems (6 Hours)							
	Direct PV battery connections, charge controller, battery charger understanding current control,							
	battery charger slope compensation, batteries in series charge equalization, batteries in paralle.							
	Applications of PV systems in Water pumps and Grid Connection Principles							
	Life Cycle Costing							
Text/ Refer	ence Books:							
1.	Chetan Singh Solanki, Solar Photovoltaics Fundamentals, Technologies and Applications, PHI							
	Learning, Third Edition, April 2015.							
2. Chenming H. and White, R. M., Solar Cells from B to Advanced Systems, McGraw								
2	1983 Dusshanhash, US, Salar Call Array Design Hand Varmastrand Deinhald NV, 1090							
5.	Ruschenbach, HS, Solar Cell Alfay Desigli Hallu Valmostland, Reinhold, NT, 1980							
4.	Proceedings of IEEE Photovoltaics Specialists Conferences, Solar Energy Journal							
5.	S. P. Sukhalme, J. K. Nayak Solar Energy- Principles of Thermal Conection and Storage (3rd addition). Teta McGray, Hill Publication							
6	Mullic and G N Tiwari "Renewable Energy Applications" Pearson Publications							
0.	Website powermin nic in www.mnre.gov.in							
7. Torm work	• (Parformance in Term Work will be added to In-Somester Evaluation)							
It will consis	at of a record of the following experiments based on the prescribed syllabus (Any 8)							
Any of the f	ollowing software's can be used MATLAB. ETAP. NgSpice. gschem, octave etc							
1.	To study the PV cell Sub circuit.							
2.	To study the PV cell characteristics and its equivalent circuit							
3.	Simulation of Cells in Series							
4.	Simulation of Cells in Parallel							
5.	Design and Simulation of Boost Converter							
6.	Design and Simulation of Buck Converter							
7	Design and Simulation of Buck-Boost Converter							
8	Simulation of PV and DC-DC converter interface							
9. 9	Simulation of MPPT							
10	Simulation of Battery Charger Current Control Method							
10.								

PEC- EE306 Renewable Energy Technologies									
Teaching Sc	heme :		Examination Scheme:						
Lectures		3Hrs/ Week	Theory: Mid Term: 30 Marks						
Tutorials			Continuous Evaluation : 20 Marks						
Practical			End Sem. Exam :50 Marks						
Credits		3							
Prerequisite	s Courses:	:							
1	Engineeri	ing Physics, Environmen	tal Science, Engineering Chemistry						
Course Obj	ective:								
1	To develo	op fundamental understar	ding about Solar Thermal and Solar Photovoltaic systems.						
2	To provid	le knowledge about deve	lopment of Wind Power plant and various operational as well						
	as perform	nance parameter/characte	eristics						
3	To explai	n the contribution of Bio	mass Energy System in power generation						
4	To teach	Integration and Economi	cs of Renewable Energy System.						
Course Out	comes: Stu	idents' will be able to:							
1	Explain the	heory of sources like sola	r, wind and also experiments of same						
2	Analyse operating conditions like stand alone and grid connected of renewable sources								
3	Reproduc	e different Storage Syste	ms, concept of Integration and Economics of Renewable						
	Energy System								
4	Summarizing forthcoming renewable technologies								
5	Design th	e solar tracking system for	or roof top application						
6	Simulate and implement solar charge controller in practical applications								

$\begin{array}{c} \text{PO/PSO} \rightarrow \\ \downarrow \text{CO} \end{array}$	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PEC-EE305B.1	3	1	3	1	-	1	2	1	-	-	-	3	2	3	2
PEC-EE305B.2	3	1	2	1	-	2	2	1	-	-	-	2	3	2	2
PEC-EE305B.3	3	1	3	1	-	1	2	1	-	-	-	3	3	2	2
PEC-EE305B.4	3	1	2	1	-	1	1	1	-	-	-	2	3	2	1
PEC-EE305B.5	3	2	3	2	1	2	2	1	-	-	-	2	2	2	3
PEC-EE305B.6	3	2	3	2	1	2	2	1	-	-	-	2	2	3	3

Syllabus :	
Unit 1	Introduction to Renewable Energy Sources: (06 Hours)
	Energy sources: classification of energy sources, introduction to renewable energy, Renewable
	energy trends, and key factors affecting renewable energy supply, advantages and
	disadvantages of RES and their uses, national and international policies on RES
Unit 2	Solar Energy: (08 Hours)
	Solar Photovoltaic: Technologies-Amorphous, monocrystalline, polycrystalline; V-I
	characteristics of a PV cell, PV module, array, Maximum Power Point Tracking (MPPT)
	algorithms. solar thermal conversion: basics, solar concentrator and tracking system, flat plate
	collectors-liquid and air type, theory of flat plate collectors, selective coatings, advanced
	collectors: ETC, solar Pond
Unit 3	Wind Energy: : (08 Hours)

	Power available in wind, wind turbine power & torque characteristics, types of rotors,
	characteristics of wind rotor, local effects, wind shear, turbulence & acceleration effects,
	measurement of wind, wind speed statistics, energy estimation of wind regimes, capacity factor,
	aerodynamics of wind turbines, airfoil, lift & drag characteristics, power coefficient & tip speed
	ratio characteristics, electrical generator machines in wind energy systems.
Unit 4	Biomass Energy: : (06 Hours)
	Overview of biomass as energy source, biomass as a fuel, physicochemical and thermal
	characteristics of biomass as fuel, biochemical conversion of biomass for energy production,
	liquid biofuel, energy plantation- overview on energy plantation, basis of selecting the plants
	for energy plantation, waste land utilization through energy plantation
Unit 5	Forthcoming renewable technologies:(06 Hours)
	Geothermal Energy Generation, ocean-thermal energy generation, tidal energy generation,
	magneto hydro dynamic power generation- working, layout, different
	components, advantages, limitations.
Unit 6	Storage Technologies: (06 Hours)
	Introduction, need for storage for RES, basic thermodynamic and electrochemical
	Principles, classification, traditional energy storage system- battery, fuel cell, principle of
	operation, types, applications for power generation.
Text Books:	
1.	Gary-L. Johnson Wind Energy Systems Tata Mc-Graw-Hill Book Company.
2.	Boyle, Godfrey. 2004. Renewable Energy (2 nd edition). Oxford University Press, 450 pages
	(ISBN: 0-19-926178-4).
Reference B	ooks:
1.	S. P. Sukhatme, J. K. Nayak Solar Energy- Principles of Thermal Collection and Storage (3rd
	edition), Tata McGraw-Hill Publication.
2.	Paul Gipe Wind Power, Renewable Energy for Home, Farm, and Business.
3.	Mullic and G.N.Tiwari, "Renewable Energy Applications", Pearson Publications.
4.	Website :powermin.nic.in, www.mnre.gov.in

PEC-EE3	PEC- EE307 Electrical Installation and Design								
Teaching Sc	heme :		Examination Scheme:						
Lectures		3Hrs/ Week	Theory: Mid Term:30 Marks						
Tutorials			Continuous Evaluation : 20 Marks						
Practical			End Sem. Exam :50 Marks						
Credits (Th)		3							
Prerequisite	s Courses:								
1	Electrical	Measurement, Electrical	l machines						
2	Power Sy	vstem							
Course Obje	ective:								
1	Study of e	essentials of electrical ins	stallation.						
2	Study of	wiring system and their e	estimation.						
3	To study	various aspects of illumin	nation.						
4	To study	estimation and costing of	f H.T and L.T conductors for installation.						
5	All Indian	n Electricity Rules.							
Course Out	comes: Stu	idents' will be able to:							
1	Design th	he electrical wiring syst	tems for residential, commercial and industrial consumers,						
	representi	ing the systems with stan	dard symbols and drawings, SLD						
2	Substation arrangement studies								
3	Find out specifications of cables, insulators for various voltage ratings.								
4	Acquainte	ed with different methods	s of measuring resistances.						
5	Start his/h	Start his/her own consultancy and business opportunities in electrical installation							
6	Design and representing the electrical systems with standard symbols and drawings, SLD								

$\begin{array}{c} \text{PO/PSO} \rightarrow \\ \downarrow \text{CO} \end{array}$	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PEC-EE305C.1	3	1	3	1	-	1	2	1	-	-	-	3	2	3	2
PEC-EE305C.2	3	2	2	1	-	2	2	1	-	-	-	2	3	2	2
PEC-EE305C.3	2	1	3	1	-	1	2	2	-	-	-	3	2	1	1
PEC-EE305C.4	3	1	2	1	-	1	1	1	-	-	-	2	3	2	1
PEC-EE305C.5	2	1	3	2	1	2	2	1	-	-	-	2	2	1	3
PEC-EE305C.6	2	2	3	2	1	2	2	2	-	-	-	2	2	2	2

Syllabus :	
Unit 1	Electrical Drawing: (06 Hours)
	Principles, Symbols, Single Line Diagrams (SLD), Introduction to common Electrical
	Components, such as contactor, switches, relays, timers, cables, lugs, connectors, MCCB,
	ELCB, panel meters etc. Different Tools Used: Screwdriver, Pliers of various types, wrench,
	and blowlamp, Precaution for using tools
Unit 2	Wiring System: (06 Hours)
	Selection of types of wiring, Methods of wiring (Cleat, Casing capping, Metal sheathed and
	Conduit) Calculation and Estimation of power rating of different AC and DC machines.
	Electrical system design for a typical midsize housing complex, mechanical workshop,
	auditorium and IT industry, Estimation for a light and fan system, Process of tendering and
	Construction and Design of MCC and PCC for a typical industry

Unit 3	Complete arrangement of substation (Single and double bus bar), key diagrams for typical
	substations. Various type's pole structure, Insulators, cables and their types. Review of
	Insulated Wires: Types: Rubber covered taped and compounded or VIR, Lead alloy sheathed,
	Tough rubber sheathed, Weather proof, Flexible wire splicing, Termination (Twist splicing,
	Married joint, Tap joint, Pig tail joint) (06 Hours)
Unit 4	Illumination: Radiant Energy, Terms and Definitions, Laws of Illumination, Polar Curves,
	Photometry, Methods of Lighting calculations, Consideration points for planning a lighting
	installation ,Design consideration of good lighting scheme, Luminous Efficacy, Electrical
	Lamps, Design of Interior and Exterior Lighting Systems, Illumination Levels for Various
	Purposes, Light Fittings, Factory Lighting, Flood Lighting, Street Lighting, Energy
	,Conservation in Lightin (06 Hours)
Unit 5	Measurement of earth resistance & Testing: (08 Hours)
	Measurement of Earth Resistance ,Two Point Methods, Three Point method, Fall of potential
	method, Direct measurement of Earth resistance, Testing of Installations,
	Estimating & Conductor size calculations for internal wiring H.T & L.T Overhead Lines
	and Underground cables: Estimating, Price catalogue, Schedule of rates & Estimating data,
	Determination of conductor size, Current carrying capacity, Voltage drop, Minimum
	permissible size, Conductor size calculation for internal domestic wiring, Underground cable,
	Overhead lines with A.C.S.R
Unit 6	Estimates for L.T Distributors & Street Light Feeders, Estimates for 11 kV Feeders, All Indian
	Electricity Ruleslike 1956,2003,2005, National Tariff Policies (06 Hours)
Text Books:	
1.	K.B. Raina & S.K. Bhattacharaya – Electrical Design Estimating & Costing, New age
	international publishers (1991), 1st Edition.
2.	S. L.Uppal and G.C. Garg – Electrical Wiring, Estimation & Costing, Khanna Publication
	(2008).
Reference B	ooks:
1.	J. B. Gupta, "Utilization of Electric Power and Electric Traction", 2002, S. K. Kataria and Sons.
2.	Pratab H., "Art and Science of Utilization of Electrical Energy", Second Edition, DhanpatRai
	and Sons, New Delhi.
3.	Surjeet Singh, "Electrical Estimating and Costing" Dhanpat Rai and Company (P) Ltd, Reprint
	2008.

PRJ-EE308 Mini Project and Seminar-I

Credit (2)

The project work is intended to develop skill of electrical hardware assembly, electronics PCB design and assembly for small gadgets amongst the students. This skill may become useful during their final year project.

The students should undertake an electrical/electronic based hardware project and they have to submit report on the same. The project should include design and development of a small gadget useful in day-to-day life, in consultation with the faculty advisor.

SEMESTER-VI

PCC-EE309 Power System Analysis and Stability

	op i over system i mary	sis and stasinty								
Teaching sc	heme:	Examination scheme:								
Lectures	3 hrs/week	Theory								
Tutorials	- hrs/week	In Semester Evaluation : 20 Marks								
Practical's	2 hrs/week	Mid Semester Examination: 30 marks								
Credits	4	End Semester Examination : 50 marks								
Course Obj	ectives:									
1	To understand the need of lo	To understand the need of load flow and short circuit analysis								
2	To impart knowledge of Load flow Analysis, Short circuit studies and power system stability									
3	To develop skills for performing stability studies									
Course Out	comes: At the end of this co	ourse, students will demonstrate the ability to								
PCC-EE307.1	Use numerical methods to analyse a power system in steady state									
PCC-EE307.2	Understand methods to control the voltage, frequency and power flow.									
PCC-EE307.3	Understand the monitoring and control of a power system.									
PCC-EE307.4	Produce report of load flow analysis and stability analysis of practical power system network in software.									
PCC-EE307.5	Understand the basics of pov	Understand the basics of power system economics.								

$\begin{array}{c} \text{PO/PSO} \rightarrow \\ \downarrow \text{CO} \end{array}$	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PCC-EE307.1	3	3	2	2	3	-	-	-	-	-	-	3	3	3	3
PCC-EE307.2	3	3	2	3	3	2		-	-	-	-	3	3	2	3
PCC-EE307.3	2	3	3	3	3	2	2	2	2	-	-	3	2	3	3
PCC-EE307.4	3	3	3	3	3	2	2	2	2	-	-	3	3	3	3
PCC-EE307.5	2	2	2	3	1	2	2	1	-	2	3	3	3	3	2

Syllabus:	
UNIT 1	Power Flow Analysis: (06 Hours)
	Loop Equations and Node Equations, Bus admittance and bus impedance matrix, network solution
	using matrix algebra, per unit system, single line diagram.
	Load Flow Studies: Load flow problem Bus classification, Nodal admittance matrix, Network
	model formulation and development of load flow equations. Iterative methods of solution a) Gauss
	Sidel method b) Newton Raphson method c) Fast decoupled method.
UNIT 2	Symmetrical and Unsymmetrical Fault Analysis:(08 Hours)
	Transient in RL series circuits, short circuit of synchronous machines, Short Circuit of a loaded
	synchronous machine, The bus impedance matrix in fault calculations, selection of circuit breaker,
	Symmetrical Components of Unsymmetrical Phasors, sequence Networks,
	Unsymmetrical faults on unloaded alternator and three phase power system with a) line to ground b)
	line to line c) double line to ground d) one conductor open fault e) Two conductor open fault,
	Simplified models of synchronous machines for transient analysis.

UNIT 3	Power System Stability: (08 Hours)
011220	Introduction to Power system stability problem. Rotor dynamics, m/c representation, Swing
	equation, power angle equation for two m/c system. Steady state stability and transient state
	stability, equal area criterion for stability and its application. Numerical solution of swing equation,
	factors affecting transient stability, methods for improving stability of Power system.
UNIT 4	Control of Frequency and Voltage : (07 Hours)
	Turbines and Speed-Governors, Frequency dependence of loads, Droop Control and Power Sharing.
	Automatic Generation Control. Generation and absorption of reactive power by various components
	Of a Power System. Excitation System Control in synchronous generators, Automatic Voltage
	Regulators. Shunt Compensators, Static VAR compensators and STATCOMs. Tap Changing
	Transformers.
UNIT 5	Monitoring and Control: (06 Hours)
	Overview of Energy Control Centre Functions: SCADA systems. Phasor Measurement Units and
	Wide-Area Measurement Systems. State-estimation. System Security Assessment. Normal, Alert,
	Emergency, Extremis states of a Power System. Contingency Analysis. Preventive Control and
	Emergency Control.
UNIT 6	Power System Economics and Management : (07 Hours)
	Basic Pricing Principles: Generator Cost Curves, Utility Functions, Power Exchanges, Spot Pricing.
	Electricity Market Models (Vertically Integrated, Purchasing Agency, Whole-sale competition,
	Retail Competition), Demand Side-management, Transmission and Distributions charges, Ancillary
	Services. Regulatory framework
Text/ Refer	ence Books:
1.	Grainger John J and W D Stevenson Jr,"Power system analysis" Mc-Graw Hill.
2.	I. J. Nagrath, D. P. Kothari, "Modern Power System Analysis" (3rd Edition), Tata McGraw Hill
	Publishing Co. Ltd.
3.	C.L. Wadhwa, "Electrical Power Systems", 6th Edition, New Age International, Latest Edition
4.	O. I. Elgerd, "Electrical energy systems theory: An introduction" Tata McGraw Hill, edition 1999.
5.	A. R. Bergen and Vijay Vittal, "Power system analysis", (2nd edition), Pearson Education Asia, 2001.
6.	Hadi Sadat, "Power system analysis", McGraw Hill International, 1999
7.	V.K.Mehta, Rohit Mehta "Principles of Power System", Fourth Edition, S.Chand Publications,
	Latest Edition
8.	B. M. Weedy, B. J. Cory, N. Jenkins, J. Ekanayake and G. Strbac, "Electric Power Systems",
	Wiley, 2012.
Term work	
	The laboratory consists of following experiment list.
	1. Simulation of typical power system- familiarization with generator, line and load models.
	2. Formulation of Y-bus matrix using computer program.
	3. Computer aided solution of power flow problem by Gauss Siedal/ Newton-Raphson method.
	4. Simulation and analysis for a symmetrical three phase fault by simulation.
	5. Simulation and analysis of unsymmetrical fault - LL, LG and LLG.
	6. Problems on stability using Equal area criteria, Swing equations Critical Clearing angle,
	Critical Clearing time.
	/. Visit to load dispatch centre is suggested
	Power, ETAP, Scilab or any open source software.
	Independent Learning Experiences:
	NPTEL Equivalent Course : "Power System Analysis" by Prof. Debapriya Das, IIT Kharagpur
	• https://swayam.gov.in

PCC-EE	310	Control System Desig	n					
Teaching s	schem	ne:	Examination scheme:					
Lectures		3hrs/week	Theory					
Tutorials			In Semester Evaluation : 20 Marks					
Practicals		2hrs/week	Mid Semester Examination: 30 marks					
Credits		4	End Semester Examination : 50 marks					
Course Ob	ojectiv	ves:						
1.	Mod	eling of Physical systems u	sing state space technique.					
2.	Anal	sis and Design of control	system using state space technique.					
3.	Prov	ide the knowledge of variou	us nonlinearities observed in real world.					
4.	Desi	gn a control system using le	ead – lag compensator, P, PI and PID controllers.					
5.	Prov	ide the knowledge of absolu	ute and relative stability.					
Course Ou	itcom	es: On successful comple	etion of this course students will be able to					
1.	App	ly the concepts of state space	e modeling, analysis and design.					
2.	Unde	erstand the various nonlinea	arities and their behaviour observed in real world.					
3.	Anal Lyap	yse the nonlinear system punov theory.	with describing function method and phase plane method and					
4.	App respo	ly Ziegler-Nichol PID tun onse and stability of system	ing methods and determine PID controller settings, analyse the with different controllers.					
5.	Desi evalu dom	Design series compensators to meet desired time domain and frequency domain specifications and evaluate the performance of compensated and uncompensated systems in time and frequency domain.						
6.	Valie MA	date the performance of TLAB.	systems without and with controllers through simulation using					

Course Articulation Matrix	: Mapping of	Course outcome an	d Program outcome
-----------------------------------	--------------	-------------------	-------------------

$\begin{array}{c} \text{PO/PSO} \rightarrow \\ \downarrow \text{CO} \end{array}$	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PCC-EE308.1	2	3	3	3	1	-	-	-	1	1	-	-	3	2	2
PCC- EE308.2	1	1	-	-	-	-	-	-	1	1	-	-	2	3	2
PCC- EE308.3	2	2	-	3	-	-	-	-	1	1	-	-	2	3	2
PCC- EE308.4	1	1	3	3	-	-	-	-	1	1	-	-	2	2	3
PCC- EE308.5	1	2	3	3	1	-	-	-	1	1	-	-	2	3	3
PCC-EE308.6	1	2	1	3	3	-	-	-	2	2	-	-	2	3	3

Syllabus:	
Unit 1	State Space Representation of LTI systems:(10 Hours)
	Terminology of state space representation: Concept of state, state variable, state vector, state space
	and state model, state space representation using physical, phase and canonical variables,
	determination of transfer function from state model, similarity transformation for diagonalization of
	plant matrix, solution of homogeneous state equation, state transition matrix its properties and
	computation using Laplace transform, Caley Hamilton, similarity transformation and infinite series
	method, solution of non homogeneous state equation
Unit 2	State Space Analysis and Design: (06 Hours)
	Concept of Controllability and Observability, investigation of controllability using Kalman and
	Gilbert test, design for pole placement using state feedback regulator, concept of state observer,
I.I	types of state observer, design of full order state observer (04 Hours)
Unit 5	Non-linear control systems: (04 Hours) Rehavior of poplinger systems, common physical poplingerities. Concept of describing function
	behavior of nonlinear systems, common physical nonlinearnes, concept of describing function,
Unit 4	Fundamentals of Lyanunov Theory: (06 Hours)
Omt 4	Fauilibrium points concept of stability linearization and local stability. I vanunov's Direct method:
	positive definite functions and Lyapunov functions equilibrium point theorems stability analysis of
	LTI systems using Lyapunov's direct method. Krasovski's method. Variable gradient method for
	stability of nonlinear systems.
Unit 5	PID controllers: (06 Hours)
	Introduction to Proportional (P), Integral (I) & Derivative (D) controller, individual effect on
	overall system performance, P, PI, PD & PID control and effect on overall system performance,
	Tuning of PID controllers using Ziegler-Nichol methods
Unit 6	Compensator Design using Root Locus and Bode Plot:(12 Hours)
	Review of compensators, Compensator design using root locus: design of lead, lag and lag-lead
	compensators using root locus approach for meeting desired time domain specifications,
	Compensator Design using Bode Plot: Reshaping Bode plot, design of lead, lag and lag-lead
	compensators using Bode plot approach for meeting desired frequency domain specifications
T 4 /D - f	
I ext/Refer	
1.	Norman Nise, "Control system Engineering", 3rd edition, 2000, John Wiley
2.	I. J. Nagrath and M. Gopal, "Control system engineering", Wiley Eastern Ltd, 3rd edition, 2000
3.	J. E. Slotine and W. Li, "Applied Nonlinear Control", Prentice Hall International, 1991.
4.	Benjamin C. Kuo, "Automatic Control system", Prentice Hall of India Pvt Ltd.
5.	John J. D'Azzo, C. H. Houpis, Linear control system analysis and design (conventional and
	modern), McGraw Hill International Fourth edition.
0.	Katsuniko Ogata, Modern Control Engineering, Prenuce Hall of India Pvt Ltd.
/. Tamm man	
I erm work	A:
	Introduction to MATLAB and Control system Design toolbox
1.	Solution of Ordinary differential equation using MATLAB
2.	Modeling of Dhysical Systems using MATLAD.
3.	Modeling of Physical Systems using Simulink
4. 5	Producting of Finysteen Systems using Simultik.
J.	Conversion of given transfer function to State Space forms and vice versa.
0. 7	Design and tuning DID controller using MATLAD/Simulink
/.	Design of controller in state space Domain
ð.	Design of controller in state space Domain.

PCC-EE311	Power Electronics
------------------	--------------------------

Teaching s	chem	e:		Examination scheme:			
Lectures		3	hrs/week	Theory			
Tutorials			hrs/week	In Semester Evaluation : 20 Marks			
Practical's		2	hrs/week	Mid Semester Examination: 30 marks			
Credits		4		End Semester Examination : 50 marks			
Course Ob	jectiv	es:					
1.	Study	y different j	power electron	ic devices			
2.	To ex	ktend simpl	e power electro	onic converters to realize rectifiers and inverters.			
3.	To d	evelop and	l quantify con	nmon performance objectives for power electronic circuits such as			
	effici	ency, powe	er factor, etc.				
4.	To an	halyze and	design DC/DC	converter (chopper) circuits.			
5.	To an	halyze and	evaluate the op	peration of cycloconverters and voltage controllers.			
6.	To or system	utline oper ms, etc.	ating principle	es of application of power electronic circuits as motor drives, UPS			
Course Ou	tcome	es: On suc	cessful comp	letion of this course students will be able to			
1.	To u swite	inderstand hing device	the basic pries.	inciple, characteristics and applications of power electronic and			
2.	Analy	ytical study	of different typ	es of Power Converter systems.			
3.	Solve the numerical problems on semiconductor switches, rectifier, converter, inverter, choppers and cycloconverter, circuits.						
4.	Simulate DC-DC converters						
5.	Simu	late and De	sign DC-AC In	verters			
6.	Apply	y PWM tech	nnique				

$\begin{array}{c} \text{PO/PSO} \rightarrow \\ \downarrow \text{CO} \end{array}$	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PCC-EE309.1	3	2	2	1	1	-	-	-	-	-	-	-	3	3	2
PCC-EE309.2	3	1	2	2	-	1	-	-	-	-	-	-	3	3	2
PCC-EE309.3	3	1	2	-	-	-	-	-	-	-	-	-	3	3	2
PCC-EE309.4	3	2	3	1	1	-	-	-	-	-	-	-	3	3	2
PCC-EE309.5	3	2	3	1	1	-	-	-	-	-	-	-	2	3	3
PCC-EE309.6	3	1	1	1	-	-	-	-	-	-	-	-	2	2	3

Syllabus:		
Unit 1	Power Semiconductor Devices	(06 Hours)
	Modern power semiconductor devices and their characteristics, gate drive speci ratings, applications, turn ON and turn OFF methods, design of gate triggering UJT and thyristor protection circuits.	fications, circuits using

Unit 2	Phase controlled rectifiers(06 Hours)
	Single phase rectifiers: Half wave, center tapped, bridge (half controlled and fully controlled)
	with R and RL load. Three phase rectifiers: half wave, bridge with R and RL load effect of
	source inductance, dual converters, power factor improvement methods
Unit 3	DC chopper (08 Hours)
	Basic chopper, continuous and discontinuous current conduction, TRC, CLC methods,
	classification of choppers, step-up chopper, switching mode regulators.
Unit 4	AC voltage controller & cycloconverters (06 Hours)
	AC voltage controller: types of ac voltage controllers, single-phase and three phase ac voltage
	controllers with R and RL load, transformer tap changers, single phase to single phase
	cycloconverters, three phase to single phase cycloconverters, three phase to three phase
	cycloconverters with circulating and non-circulating mode.
Unit 5	Inverters (08 Hours)
	Single phase inverters: series, parallel and bridge configurations with R load, PWM inverters.
	Three phase inverters: 120° and 180° conduction with R and load RL, voltage control and
	harmonics reduction.
Unit 6	Application in power electronics (06 Hours)
	UPS and SMPS, basic characteristics of DC motors, operating modes, DC motor control using
	different rectifiers, induction motor drives, performance characteristics, stator voltage control,
	rotor voltage control, frequency control, voltage and frequency control.
Toyt/Dofor	ana Books
	D. S. Dhimra "Dowar Electronics" - Vhanna Dublishers (2010)
1.	P. S. Binnira Power Electronics, Knanna Publishers (2010).
۷.	3rd Edition
3	M D Singh and K B Khanchandani Power Electronics Tata McGraw-Hill Publishing
5.	Company Limited New Delhi (India) 1998
4.	P.C. Sen, "Power Electronics". Tata McGraw-Hill Publications India
5.	Mohan, Undeland& Robins "Power Electronics, Converter Applications and Design", John
	Wiley and sons (Asia) Pvt. Ltd
6.	"G. K. Dubey and Others Thyristorised Power Controller", Wiley Eastern Ltd
7.	B.K. Bose, "Modern Power Electronics and A.C. Drives", Prentice Hall of India Pvt. Ltd.
	Publication
8.	B. W. Williams, "Power Electronics", John Willey.
Term wor	k: It will consist of a record of at least six to eight experiments based on the following list
1.	UJT Characteristics.
2.	SCR Characteristics.
3.	TRIAC Characteristics.
4.	Power Control using SCR.
5.	Power Control using TRIAC.
6.	Single Phase Half Wave Controlled Rectifier.
7.	Single Phase Full wave Controlled Rectifier.
8.	Single Phase Inverter using Transistor/ MOSFET/SCR.
9.	Basic Step-Down Chopper.
10.	Basic Step-Up Chopper.
11.	Study of D.C. Motor control using controlled Rectifiers.
12.	Study of D.C. Motor control using chopper.
13.	Study of A.C. Motor control using Inverter.
Note: The	above set of computational work is to be carried preferably using software like

PEC- EE3	12 Power	r Plant Engineering					
Teaching Sc	heme :		Examination Scheme:				
Lectures		3 Hrs/ Week	Theory: Mid Term:30 Marks				
Tutorials			Continuous Evaluation : 20 Marks				
Practical			End Sem. Exam :50 Marks				
Credits (Th)		3					
Prerequisite	s Courses:						
1	Power Sy	stem Engineering,					
2	Electrical	machines					
Course Obje	ective:						
1	To develo	op fundamental understa	nding about various energy sources				
2	To provid	le knowledge about work	king of steam power plant, Hydro power plant, nuclear power				
	plant and	diesel power plant					
3	To teach	Economics of combined	working power plants				
Course Out	comes: Stu	idents' will be able to:					
1	Classify o	lifferent sources of energ	y and analyse economics of power plant				
2	Explain the working of various power plant						
3	Reproduce Economics of combined working power plants						
4	Understau	nd mechanical and chemi	ical aspect related to power plant engineering				
5	Analyse of	lifferent components of p	power plants				

$\begin{array}{c} \text{PO/PSO} \rightarrow \\ \downarrow \text{CO} \end{array}$	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PCC-EE310.1	2	1	3	1	-	1	2	1	-	-	-	3	1	1	2
PCC-EE310.2	3	1	2	1	-	2	2	1	-	-	-	2	2	2	2
PCC-EE310.3	2	1	3	1	-	1	2	1	-	-	-	3	2	2	2
PCC-EE310.4	3	1	2	1	-	1	1	1	-	-	-	2	2	2	1
PCC-EE310.5	2	2	3	2	1	2	2	1	-	-	-	2	2	2	2

Syllabus :		
Unit 1	Sources of Energy and Economics of Power Plant	(06 Hours)
	Sources of energy, Fuels, Types of fuels, Solid fuels, Liquid fuels, Gaseous	fuels, Calorific
	value of fuels, Types of coal, Coal selection, Requirements of fuel ,HydelPe	otential energy,
	Nuclear energy – Comparison of Sources of power – Non conventional sources	of energy Solar
	energy, Wind energy, Tidal power and Bio gas. Types of loads. Economi	c load sharing,
	Economics in plant selection, Economic of power generation, Choice of power	station, Energy
	rates	
Unit 2	Steam Power Plant	(08 Hours)
	Thermal Station: Introduction, selection of sites, Layout of Steam power Plan	it, Fuel and ash
	handling, Combustion for burning coal, Mechanical stackers, Pulverized	s, Electrostatic
	Precipitators, Draughts-Different types, Surface condensers - Types of cooling	g towers, Steam
	turbines, Steam engines: Advantages of steam turbines over steam engines, Be	oilers: Types of
	boilers, Principles of steam power plant design, Factors affecting steam plant of	lesign ,Thermal

	nower plants environmental control simple numerical examples
I.I	Dower plants environmental control, simple numerical examples.
Unit 5	Hydro Electric Power Plant (00 Hours)
	Lay out of Hydroelectric power plant: Elements of Hydroelectric power plan, Classification of
	Hydroelectric power plant, Advantages of Hydroelectric power plant, Mini and Micro hydro
	power plants, Types of Dams, Pen stock, Draft tube, Surge tank, Hydraulic turbines,
	Classifications, Turbine governing, Cavitation's, Safety measures in Hydro power stations,
	Control room functions, Switch gear, Site selection, Comparison of Hydroelectric power plant
	and steam power plant.
Unit 4	Nuclear Power Plant(08 Hours)
	Review of atomic physics (atomic number, mass number, isotopes, atomic mass, unit rate of
	radioactivity, mass equivalent number, binding energy and mass defects), Nuclear power plant
	layout, Elements of Nuclear power plant, Types of reactors, Pressurized water reactor, Boiling
	water reactor, Waste disposal and safety, Advantages of Nuclear power plant, Comparison of
	Nuclear power plant and steam power plant, Site selection and Commissioning procedures,
	simple numerical, India's nuclear power program.
Unit 5	Diesel Engine & Gas Turbine Power Plant (06 Hours)
	Types of diesel engine power plants, Layout and components. Diesel engine power plant
	auxiliaries. Engine starting methods. Advantages of Diesel engine power plant. Application of
	Diesel engine power plant. Site selection. Gas turbine power plant. Classification. Elements of
	simple gas turbine power plant, Layout, Open and Closed cycles, Reheating, Regeneration and
	Inter cooling – Combined cycles - Applications and advantages of Gas turbine plant, simple
	numerical examples
Unit 6	Combined working of power plants: (06 Hours)
	Economics of combined working power plants base load and peak load stations numped
	storage plants inter- connections of power stations. Tariff: Fixed cost running cost and their
	interrelation for all types of conventional power plants depreciable cost different types of
	tariffs numerical example based on above effect of deregulation on pricing
Toxt Books	
1 1	DK Neg "Dewer Plant Engineering" Third Edition Tate McGrew Hill 2007
1.	C. D. Nagnel "Device Plant Engineering", Third Edition, Tata McGraw – Hill, 2007
<u>∠.</u>	G.K. Nagpai Power Plant Engineering, Knanna Publishers.
Reference B	00K:
1.	Arora S.C and Domkundwar, "A Course in Power plant Engineering's, DhanpatRai, 2001.
2.	EI-Wakil M.M, "Power Plant Technology", Tata McGraw-Hill
3.	Rai G.D, "Introduction to Power Plant Technology", Khanna Publishers.

ELECTIVES -II

PEC-EE3	313 Energy Audit and Conservation									
Teaching Sc	heme :		Examination Scheme:							
Lectures		3 Hrs/ Week	Theory: Mid Term:30 Marks							
Tutorials			Continuous Evaluation : 20 Marks							
Practical			End Sem. Exam :50 Marks							
Credits		3								
Prerequisite	s Courses:									
1	Generatio	on, transmission and distr	ibution of Electric Power Switchgear and Protection							
Course Obje	ective:									
1	To explain the current energy scenario and need of energy conservation.									
2	To demonstrate the advantages of energy audit.									
3	To demon	nstrate importance of ene	rgy management.							
4	To identit	fy importance of energy	efficiency in electrical utility.							
Course Out	comes: Stu	idents' will be able to:								
1	To imple	ment conservation of ene	rgy techniques in electrical system.							
2	Evaluate	the technical economic f	easibility of the energy audit technique.							
3	To understand various kinds of tariffs in electrical utility.									
4	Explain captive power generation.									
5	Apply fin	ancial management in el	ectrical conservation.							
6	Analyse o	captive power generation	and co-generation.							

$\begin{array}{c} \text{PO/PSO} \rightarrow \\ \downarrow \text{CO} \end{array}$	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PEC-EE311A.1	3	2	3	2	-	1	2	1	-	-	-	3	3	3	3
PEC-EE311A.2	3	1	2	1	3	2	2	1	-	-	-	2	3	3	2
PEC-EE311A.3	3	2	3	1	-	1	2	1	-	-	-	3	3	3	3
PEC-EE311A.4	2	1	2	1	-	1	1	1	-	-	-	2	3	3	2
PEC-EE311A.5	3	2	3	2	1	2	2	1	-	-	-	2	3	3	2
PEC-EE311A.6	3	1	3	2	-	1	2	1	-	-	-	3	3	3	2

Syllabus :	
Unit 1	Energy scenario: (06 Hours)
	Energy scenario: Introduction, energy problems, energy use trends in developing countries,
	prospects of changes in energy supply, strategies for sustainable development, finite fossil
	reserve, Energy and environment, Need for renewable and energy efficiency, Energy
	conservation principles, Energy conservation in industries, generation, transmission and
	distribution, household, commercial sectors, transport, agriculture.
Unit 2	Energy Audit: (06 Hours)
	Energy flow diagram, strategy of energy audit, comparison with standards, considerations in
	implementing energy with conservations programmes, instruments for energy audit, energy audit
	of illumination system, energy audit of electrical system, energy audit of heating ventilation and
	air conditioning systems, energy audit of compressed air system, energy audit of building,
	distribution and utilization system, economic analysis. Energy conservation Act 2003, energy
	audit of an industry .

Unit 3	Energy Management and Integrated Resource Planning:(06 Hours)
	Definition and Objectives of Energy management, Energy management strategy, Key elements,
	Responsibilities and duties of Energy Manager, Energy efficiency Programs, Energy Monitoring
	System, Importance of SCADA, Analysis techniques, Cumulative sum of differences (CUSUM).
Unit 4	Energy efficiency in electrical utility:(06 Hours)
	Electrical billing, power factor management, distribution and transformer losses, losses due to
	unbalance and due to harmonics, Demand Side Management, Demand-Response, Role of tariff
	in DSM and in Energy management, TOU tariff, Power factor tariff, Energy conservation in
	lighting system, HVAC system, Electrical Motors, Pump and pumping System.
Unit 5	Financial Analysis and Management:(06 Hours)
	Investment need, Financial analysis techniques, Calculation of Simple Pay-back period, return
	on investment, cash flows, risk and sensitivity analysis, Time value of money, Net Present value,
	Breakeven analysis, Cost optimization, Cost and Price of Energy services, Cost of Energy
	generated through Distributed Generation.
Unit 6	Captive Power Generation: (06 Hours)
	Types of captive power plants, financing of captive power plants, captive power plants in India,
	energy banking, energy wheeling, Carbon credits Cogeneration- Cogeneration technologies,
	industries suitable for cogeneration, allocation of costs. Sale of electricity to utility, impact of
	pricing of cogeneration, electric power plant reject heat, agricultural uses of waste heat, Potential
	of cogeneration in India, energy audit of renewable or hybrid industry/plant.
Text/ Refer	rence Books:
1. B. R. Guj	pta, "Generation of Electrical Energy" S.Chand Publication.
2. S. Rao a	& Dr. B. B. Parulekar, "Energy Technology: Non-conventional, Renewable and Conventional"
Khanna Pub	olishers.
3. Frank Kr	eith and George Burmeister, "Energy Management & Conservation", Amazon Publishers.
4. Beggs an	d Clive, "Energy Management Supply and Conservation", Wall Mart Publishers
5. K.Bhatta	charya, MHJ Bollen, J .E.Dalder, "Operation of Restructured Power System", Kluwer Academic
Publications	
6.S. C. Trip	athy, "Utilization of Electrical Energy", Tata Mc Graw Hill.
7. Energy C	Conservation Act 2001.
8. Bureau of	f Energy Efficiency India web-site <u>http://www.bee-india.com</u> .
Term Wo	ork:
Students ha	ve to submit audit report on following topics :
1. Computin	ng efficiency of DC motor/Induction Motor/Transformer.
2. Draw the	energy flow diagram for an industry/shop floor division and prepare energy audit report.
3. Study o	of various energy efficient equipment like LED lighting devices. Energy Efficient motors.
Electronics	ballast etc.
1 Study of	Variable frequency drive based IM speed control for energy conservation
4. Study 01	variable frequency drive based for speed control for energy conservation.
5. Industry	visit with an aim of
(i) Studying	y various energy management systems prevailing in a particular industry/Organization
(ii) Identify	ing the various energy conservation methods useful in a particular industry
6. Studving	g the various energy conservation methods useful in power generation, transmission and
distribution	

7. Study of APFC panel or Estimating the requirement of capacitance for power factor improvement.

08. Evaluating the energy conservation opportunity through various methods like simple payback period IRR and NPV.

09. Determine depreciation cost of a given energy conservation project/equipment.

10. Study of various measuring instruments used for energy audit: Lux meter, Power analyzer, flue gas analyzer.

11. Identifying the energy conservation opportunities in a lab, department or institute.

12. Internship

PEC-EE3	14 Electr	rical Machine Analy	sis				
Teaching Sc	heme :		Examination Scheme:				
Lectures		3Hrs/ Week	Theory: Mid Term:30 Marks				
Tutorials			Continuous Evaluation : 20 Marks				
Practical			End Sem. Exam :50 Marks				
Credits (Th)		3					
Prerequisite	s Courses						
1	Electrom	agnetism					
2	Electrical	Machines					
Course Obj	ective:						
1	Introduction to basic concepts of magnetically coupled circuits						
2	Study of various principles of electromechanical energy conversion						
3	To under	stand the concept of spac	e vector on d-axis and q-axis variables				
4	Study of	Clarke and Park's Transf	formations				
5	Study of	various models of induct	ion and synchronous machines				
Course Out	comes: Stu	idents' will be able to:					
1	Understan	nd the limitations of conv	ventional models of electrical machines				
2	Determin	e the torque produced in	electrical machines using the concept of co energy				
3	Determine the performance of machines using reference frame theory						
4	Select strategies to control the torque for a given application						
5	Apply Clarke and Park's Transformations for analysis of synchronous machines						
6	Evaluate	the performance of induc	ction machine				

$\begin{array}{c} PO/PSO \rightarrow \\ \downarrow CO \end{array}$	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PEC-EE 311B.1	3	2	3	2	-	1	2	1	-	-	-	3	3	3	3
PEC-EE 311B.2	3	2	2	2	3	2	2	1	-	-	-	2	3	3	2
PEC-EE 311B.3	3	2	3	2	2	1	2	1	-	-	-	3	3	3	3
PEC-EE 311B.4	3	2	2	2	2	1	1	1	-	-	-	2	3	3	2
PEC-EE 311B.5	3	2	3	2	2	2	2	1	-	-	-	2	3	3	2
PEC-EE 311B.6	3	2	3	2	3	1	2	1	-	-	-	3	3	3	2

Syllabus:	
Unit 1	Magnetically coupled circuits: (06 Hours)
	Review of basic concepts, magnetizing inductance, Modelling linear and nonlinear magnetic circuits.
Unit 2	Electromechanical energy conversion: (08 Hours)
	Principles of energy flow, concept of field energy and co-energy, Derivation of torque

	expression for various machines using the principles of energy flow and the principle of co
	energy, Inductance matrices of induction and synchronous machines
Unit 3	Theory of DC machines : (08 Hours)
	Review of the DC machine, mathematical model of commutator, State-space model of a DC
	machine, reduced order model & transfer function of the DC machine, Reference Frame
	Theory-Concept of space vector, components of space vector, direct and quadrature axis
	variables.
Unit 4	Transformation: :(06 Hours)
	Types of transformation, condition for power invariance, zero-sequence component, Expression
	for power with various types of transformation, Transformations between reference frames,
	Clarke and Park's Transformations, Variables observed from various frames, Simulation
	studies
Unit 5	Theory of symmetrical Induction Machines:(06 Hours)
	Voltage and torque in machine variables, Derivation of dq0 model for a symmetrical induction
	machine, Voltage and torque equation in arbitrary reference frame variables, Analysis of steady
	state operation, State-space model of induction machine in'd-q' variables, Simulation studies
Unit 6	Theory of synchronous machines:(06 Hours)
	Equations in arbitrary reference frame, Park's transformation, Derivation of dq0 model for a
	salient pole synchronous machine with damper windings, Torque expression of a salient pole
	synchronous machine with damper windings and identification of various components
Text Books:	
1.	E. Fitzgerald, Charles Kingsley, Stephen D. Umans: Electric Machinery,
	TMH, 5th Ed
2.	A. K. Sawhney, "A Course in Electrical Machine Design", DhanpatRai and Sons, Delhi
3.	Say.M.G. "Performance & Design of Alternating Current Machine" (English LanguageBook
	Society), CBS Publisher (2002)
Reference B	ooks:
1.	Rik De Doncker, Duco W. J. Pulle, André Veltman: Advanced Electrical Drives: Analysis,
	Modeling, Control Springer, 2011.
2.	Paul C. Krause, Oleg Wasynczuk, Scott D. Sudhoff: "Analysis of Electric Machinery & Drive
	systems"-IEEE Press, 2002
3.	K.M. Vishnu Murthy, B.S. "Computer Aided Design of Electrical Machines" Publications,
	2008
4.	Rama Krishnan: Electric motor drives: Modeling, analysis, and control. Prentice Hall, 2001.

PEC-EE3	15 Utilization of Energy and Management								
Teaching Sc	heme :		Examination Scheme:						
Lectures		3Hrs/ Week	Theory: Mid Term: 30 Marks						
Tutorials			Continuous Evaluation : 20 Marks						
Practical			End Sem. Exam :50 Marks						
Credits (Th)		3							
Prerequisite	s Courses								
1	Power Sy	stem Engineering, Electr	rical Machine						
Course Obje	rse Objective:								
1	To give an overview of various areas of application of Electrical Energy.								
2	Study of Speed-time curves and mechanics of train movement.								
3	Study of	various methods of Cont	rol of traction motors.						
4	Study of	various electrical motors	and DG start up assessment						
Course Out	comes: Stu	idents' will be able to:							
1	Understan	nd selection of electrical	motors according to load						
2	Understand basic principles of electric heating and welding								
3	Evaluate speed time curves for traction								
4	Understanding and planning of Energy Audit								
5	Analysis	of DG system start up pr	ocess						
6	Do Energ	y Audit of commercial of	organization						

$\begin{array}{c} \text{PO/PSO} \rightarrow \\ \downarrow \text{CO} \end{array}$	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PEC-EE 311C.1	2	2	3	2	-	1	2	1	-	-	-	3	2	2	3
PEC-EE 311C.2	2	2	2	2	3	2	2	1	-	-	-	2	2	3	2
PEC-EE 311C.3	2	2	3	2	2	1	2	1	-	-	-	3	2	2	3
PEC-EE 311C.4	2	2	2	2	2	1	1	1	-	-	-	2	2	3	2
PEC-EE 311C.5	2	2	3	2	2	2	2	1	-	-	-	2	2	3	3
PEC-EE 311C.6	3	3	3	3	3	3	2	2	-	-	-	3	2	3	3

Syllabus:					
Unit 1	Industrial application of Electrical Motors: (06 Hours)				
	Selection of motor for particular application, heating and cooling curves, load equalization,				
	capitalization of losses.				
Unit 2	Heating and Welding: (06 Hours)				
	Classification, design of resistance ovens, dielectric heating, arc furnaces, electric welding and				
	its control				
Unit 3	Speed-time curves and mechanics of train movement: (06 Hours)				
	Introduction to electric traction, traction systems, track electrification systems, ST curv				
	mechanics of train movement, coefficient of adhesion, specific energy consumption.				
Unit 4	Control of traction motors: (08 Hours)				
	Series-parallel control, drum controller, multiple unit control, regenerative braking, systems of				
	current collection and train lighting, negative booster, traction sub-station.				
Unit 5	General aspects of Energy Audit and Energy Management (EAM): (06 Hours)				
	Energy scenario, basics of energy and its various forms EM&A, Energy monitoring and				
	targeting, and electrical systems.				

Unit 6	Efficiency and performance assessment:(06 Hours)Electrical motors, lighting system, DG set system, energy efficient technologies in electricalsystems, application of non-conventional and renewable energy resources				
Text Books:					
1.	J. B. Gupta"Utilization of Electrical Power and Electric Traction", , 8th edition 2006				
2.	H. Partab"Art and Science of Utilization of Electrical Energy", , 2nd Edition, 2005.				
3.	"Bureau of Energy Efficiency, Energy manager training" – ebook1- Chapter 1,2,3,8; ebook3-				
	Chapter 1,2,8,9,10; ebook4- Chapter 5,10,12				
Reference Books:					
1.	Visit to a local industry for the study of electrical energy utilization.				
	A comprehensive report to be submitted.				
2.	Prepare the energy audit report for the industry visited.				
3.	Prepare a model of renewable energy source and submit a report on the same.				

PRJ- EE316 Mini Project and Seminar-II

Credit (2)

The project work is intended to develop skill of electrical hardware assembly, electronics PCB design and assembly for small gadgets amongst the students. This skill may become useful during their final year project.

The students should undertake an electrical/electronic based hardware project and they have to submit report on the same. The project should include design and development of a small gadget useful in day-to-day life, in consultation with the faculty advisor.

List of Equivalent Subjects from SWAYAM/NPTEL for Credit Transfer:

Third Year B.Tech

Sr. No.	Institute Cours	se	Details of course from SWAYAM/NPTEL			
SEMESTER-I						
1.	PCC-EE301	Power System Engineering	Power System Analysis			
			Prof. Debapriva Das. IIT Kharagpur			
			Power System Engineering			
			Prof. Debapriya Das, IIT Kharagpur			
2.	PCC-EE302	Feedback Control System	Control System,			
			Dr. Shankar Raman, IIT Madras			
			Control Engineering,			
			Prof. R. Pasumarthy, IIT Madras			
3.	PCC-EE303	Microprocessor and	Microprocessor and Microcontroller			
		Microcontroller	Prof. Santanu Chattopadhyay,			
			IIT Kharagpur			
4.	PCC-EE304	Digital Signal Processing	Discrete-Time Signal Processing			
			Prof. MrityunjayChakraborty, IIT Kharagpur			
5.	PEC-EE305	Elective-II : Basic of Photovoltaic	Design of photovoltaic systems			
6		(PV) System	Prof. L Umanand, IISc Bangalore			
0.	PEC-EE306	Elective-II : Renewable Energy				
7	DEC EE207	Fluction H. Electrical				
7.	PEC-EE307	Elective-II: Electrical				
		Installation and Design	п			
		SEWIESTER	-11			
1.	PCC-EE309	Power System Analysis and	Power System Analysis			
		Stability	Prof. Debapriya Das, IIT Kharagpur			
			Power System Engineering			
			Prof. Debapriya Das, IIT Kharagpur			
2.	PCC-EE310	Control System Design	Control System,			
			Dr. Shankar Raman, IIT Madras			
			Control Engineering,			
			Prof. R. Pasumarthy, IIT Madras			
3.	PCC-EE311	Power Electronics	Power Electronics			
			Prof. G. Bhuvaneshwari, IIT Delhi			
4.	PCC-EE312	Power Plant Engineering	Steam Power Engineering			
5	DEC EE212	Elective III - Energy Audit and	PIOL VINAYAK N KUIKATNI, III GUWANATI			
5.	rec-eesis	Conservation				
6	DEC EE21A	Elective III · Electrical Machine				
0.	rec-eesi4	A nalvaja				
7		Floating III + Utilization of				
/.	rec-eesis	Energy and Management				
1	1	Energy and management				