Revised T. Y. B. Tech (Department of Electronics & Tele-Communication Engineering) Curriculum Academic year 2020-21

Shri Guru Gobind Singhji Institute of Engineering and Technology, Nanded (An Autonomous Institute of Government of Maharashtra)

Program Educational Objectives (PEOs)

- **PEO I:** To study the physics of semiconductor device technology and develop proficiency in computational methods for advanced modeling and simulation (preparation).
- **PEO II:** To study signal and image processing concepts (Core competence) and to design embedded and VLSI systems (Core competence).
- **PEO III:** To study and design digital, analog, and mixed signal VLSI systems (Breadth). Understand the state of art in the recent areas of research in signal and image processing, pattern recognition and computer vision techniques (Breadth).
- **PEO IV:** Provide academic environment aware of excellence, leadership, and ethical codes to students; and teach them lifelong learning skills including research component needed for successful professional career (Learning environment).

Program Outcomes (POs)

Engineering Graduates will be able to:

- **PO1** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO 2 Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO 3 Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO 4 Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO 5** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO 6** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO 7** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO 8** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO 9** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings
- **PO 10 Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to

comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

- **PO 11 Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO 12** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes (PSOs)

- **PSO1.** Model and simulate electronics and telecommunication systems to conduct experiments and analyze the performance using modern tools.
- **PSO2.** To meet realistic constraints like economic, social, environmental, ethical, health and safety of stakeholders by implementing Signal and Image Processing algorithms and their realization using VLSI and Embedded System knowledge.
- **PSO3.** Engage in society need based innovations and contribute to make in India by gaining awareness of IPRs, Finance, Economics and Entrepreneurship etc in the field of electronics and telecommunication engineering.

PO/PSO	PO	PO	PO	PO	РО	PO	РО	РО	PO	РО	РО	РО	PSO1	PSO2	PSO3
PEO 🔽	1	2	3	4	5	6	7	8	9	10	11	12			
PEO I	\checkmark	\checkmark	\checkmark	\checkmark										\checkmark	
PEO II	\checkmark			\checkmark									\checkmark		
PEO III											\checkmark				
PEO IV						\checkmark									

Correlation Matrix (Correlation between the PEOs and the POs)

Note: The cells filled in with $\sqrt{}$ indicate the fulfillment /correlation of the concerned PEO with the PO.

Shri Guru Gobind Singhji Institute of Engineering and Technology, Nanded (An Autonomous Institute of Government of Maharashtra) T.Y. B. Tech. Electronics & Tele-Communication Engineering Curriculum Structure (Effective from Academic Year 2020-21)

Structure of curriculum

	Semester	- V					
Code	Course Title	L	Т	Р	Cre	edits	
Coue	Course Tute	L	1	1	Th.	Pr.	
PCC-EC-301	Electromagnetic Engineering	3	1	0	4	0	
PCC-EC-302	Control Systems	3	0	2	3	1	
PCC-EC-303	Communication Systems Theory	3	0	2	3	1	
PCC-EC-304	Signals and Systems	3	0	2	3	1	
PEC-EC-3**	Program Elective - I	3	0	0	3	0	
HMC392	Industrial Management for Engineers	2	0	0	2	0	
SEM-EC-315	Seminar	0	0	2	0	1	
	Total	17	1	8	22		
	SEMESTEI	R – VI					
Code	Course Title	L	Т	Р	Credits		
Coue	Course Tute	L	1	1	Th.	Pr.	
PCC-EC-316	Linear Integrated Circuits	3	0	2	3	1	
PCC-EC-317	Digital Communication	3	0	2	3	1	
PCC-EC-318	Digital Signal Processing	3	0	0	3	0	
PCC-EC-319	Embedded Systems	3	0	2	3	1	
PEC-EC-3**	Program Elective - II	3	0	2	3	1	
PRJ-EC-330	Mini Project	0	0	4	0	2	
		15	0	12	2	21	

N.B.: Lectures/Tutorials/Practical are mentioned in Hours/Week

Program Elective – I	Program Elective - II
(Any one from the following)	(Any one from the following)
PEC-EC-305 Probability and Statistics	PEC-EC-320 Machine Learning
PEC-EC-306 Computer Organization	PEC-EC-321 Computer Security
PEC-EC-307 Bio Medical Signal Processing	PEC-EC-322 Digital VLSI Design
PEC-EC-308 Microelectronics	PEC-EC-323 Robotics
PEC-EC-309 DSP Processors	PEC-EC-324 Satellite Communication
PEC-EC-310 Linear Algebra	PEC-EC-325 Power Electronics
PEC-EC-311 Antenna and Wave Propagation	PEC-EC-326 Consumer Electronics
PEC-EC-312 Digital Telephony	PEC-EC-327 System Software and Operating Systems
PEC-EC-313 Digital System Design with Verilog	PEC-EC-328 Electronic Design Automation Tools
PEC-EC-314 Physiology for Engineers	PEC-EC-329 Electronic Materials and Devices

*Practical for Electives can be converted in to either assignments, quizzes, surprise tests, mini projects, seminars, field work, etc., or any combination of the same decided by the course coordinators which should be announced at the commencement of the course. However, the midterm and end-term evaluation based on the performance of the students is compulsory as per the examination scheme of the courses.

Semester V

PCC-EC-301	Elect	romagnetic Engineering								
Teaching scheme:		0 0 0	Examination scheme:							
Lecture		3 hrs /week	Theory							
Tutorial		1 hrs/week	In Semester Evaluation : 20 Marks							
Practical		hrs/week	Mid Semester Examination : 30 Marks							
Credit		4	End Semester Examination : 50 Marks							
Course Objective										
1.	To understa	nd three dimensional geom	etry.							
2.	To get the k	nowledge, communication	takes place using electric and magnetic fields through							
	free space.									
3.	To understa	nd the electric field and ma	gnetic field.							
4.	To get the	knowledge of electric an	d magnetic field are propagated in free space and							
changes with respect to distance.										
5.	To study the	ne different theorems usef	ful for signal propagation, like divergence theorem,							
	Stokes's Th	eorem.								
6.	To get the	knowledge of different law	vs useful for propagation of signal in free space, like							
	Gauss's law	y, Faraday's law, Coulomb'	s law, etc.							
7.	To understa	nd when charge moves the	ere is change in energy and potential.							
8.	To understa	nd field component change	s when medium changed.							
9.	To study an	d understand how Maxwell	's equation useful for communication.							
10.	To understa	nd the wave motion in free	space and perfect dielectric							
Course Outcome	S: On success	ful completion of this cours	se, students will be able to							
1.	Understand	ing the vector fields E, D, H	I & B.							
2. Cleared the Concepts Divergence and Stokes theorem										
3. Get an idea of the concepts: Work done, Potential, Potential gradient and dipole										
4.	Get the idea	of the terms Conductors, I	Dielectrics, boundary conditions and capacitance							
5.	Understand	ing of Poisson's and Laplac	ce's equations							
6.	Get knowle	dge about Time Varying Fi	eld and Maxwell's Equations							
7.	Get an idea	of Uniform Plane Wave us	ed for propagation							

PO/PSO	PO	PSO	PSO	PSO											
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	1	2	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	2	3	2	-	-	-	-	-	-	-	3	3	2
CO4	2	2	3	2	2	-	-	-	-	-	-	-	3	3	2
CO5	3	3	2	3	2	-	-	-	-	-	-	-	3	2	2
CO6	3	2	2	2	2	-	-	-	-	-		-	2	3	3
CO7	2	2	3	2	2	-	-		-	-	-	-	2	2	3
CO	17	15	15	16	14	-	-	-	-	-	-	-	19	18	16
(total)															
CO(avg)	2	2	2	2	2	-	-	-	-	-	-	-	3	3	3

Syllabus										
	Vector Analysis, Coulomb's Law, and Electric Field Intensity (10 hours)									
Unit 1	Dot product, cross product, c oordinate systems, transformations, experimental law of Coulomb, electric field intensity of point charge, field of line charge, field of sheet of charge, field due to a continuous volume charge distribution, and streamlines.									
	Electric Flux Density, Gauss's Law, and Divergence (4 hours)									
Unit 2	Electric flux density, Gauss's law, applications of Gauss's law, divergence, and divergence theorem.									
	Energy and Potential (7 hours)									
Unit 3	Energy expended in moving a point charge in electric field, line integral, definition of potential difference and potential, potential field of a point charge and system of charges, potential gradient, the dipole, energy density in the electrostatic field.									
T T •/ A	Conductors, Dielectrics and Capacitance (5 hours)									
Unit 4	Current, current density, continuity of current, conductor properties and boundary conditions, boundary conditions for perfect dielectric materials, and capacitance.									
T T •/ P	Poisson's and Laplace Equations (3 hours)									
Unit 5	Poisson's and Laplace's equations, example of the solution of Laplace's and Poisson's equation.									
	Steady Magnetic Field (6 hours)									
Unit 6	Biot-Savart law, Ampere's circuital law, Curl, Stoke's theorem, magnetic flux and magnetic flux density, scalar and vector magnetic potentials.									
	Time Varying Field, Maxwell's Equations, and Uniform Plane Wave (5 hours)									
Unit 7	Faraday's law, displacement current, Maxwell's equations in point form and integral form, Equation and solution of wave equation, wave motion in free space and perfect dielectric.									
Text/Reference B	ooks:									
1.	W.H. Hayt, Engineering Electromagnetics, Tata McGraw Hill.									
2.	R. K. Shevgaonkar, Electromagnetic Waves, McGraw Hill, 2005									
3.	M.A. Wazed Miah, Fundamentals of Electromagnetics, Tata McGraw Hill.									
4.	Engineering Electromagnetics by Nathan Ida, Springer									
5.	Electromagnetic Engineering by A. V. Bakshi and U. A. Bakshi, Technical Publications									

PCC-EC-302	PCC-EC-302 Control Systems										
Teaching scheme	:		Examination scheme:								
Lecture		3 hrs /week	Theory								
Tutorial		hrs/week	In Semester Evaluation : 20 Marks								
Practical		2 hrs/week	Mid Semester Examination : 30 Marks								
Credit		4	End Semester Examination : 50 Marks								
Course Objective	es:										
1.		• • •	m and express its internal dynamics and input- output ms, mathematical model and transfer functions.								
2.		nd the relationships betwee ansient behavior.	en the parameters of a control system and its stability,								
3.	3. Students should be able identify the parameters that the system is sensitive to. Determine the stability of a system and parameter ranges for a desired degree of stability using algebraic and frequency domain methods.										
4.	4. Understanding concept of controllers like P, PD, PI, or PID controller based on the transien and steady state response criteria.										
Course Outcome	s: On success	sful completion of this cour	rse, students will be able to								
1.		• •	its internal dynamics and input-output relationships by all model and transfer functions.								
2.		and explain the relationshi curacy, transient behavior.	ps between the parameters of a control system and its								
3.	-	parameters that the system anges for a desired degree of	is sensitive to. Determine the stability of a system and of stability.								
4.	Plot the Bode, Nyquist, Root Locus diagrams for a given control system and identify the parameters and carry out the stability analysis.										
5.	Determine trelative stab		a control system and use it to evaluate or adjust the								
6.	Design a P,	PD, PI, or PID controller b	ased on the transient and steady state response criteria.								
7.	Model and a	analyze the control systems	using state space analysis.								

PO/PSO	РО	РО	РО	РО	PO	PO	РО	РО	PO	PO	PO	РО	PSO	PSO	PSO
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	3	2	-	-	-	-	-	-	-	3	2	3
CO2	3	3	2	2	2	-	-	-	-	-	-	-	3	2	2
CO3	2	2	2	2	2	-	-	-	-	-	-	-	3	2	3
CO4	3	3	3	3	3	-	-	-	-	-	-	-	3	3	2
CO5	3	2	2	1	2	-	-	-	-	-	-	-	3	3	2
CO6	2	2	3	2	2	-	-	-	-	-	-	-	3	3	3
CO7	3	2	2	2	2	-	-	-	-	-	-	-	3	2	2
СО	19	17	17	15	15	-	-	-	-	-	-	-	21	17	17
(total)															
CO(avg)	3	2	2	2	2	-	-	-	-	-	-	-	3	3	3

SGGSIE&T, Nanded

Syllabus	
	Introduction to Control Systems
	Definition, history, elements of control systems, examples of control systems, open loop and
T T 1 / 4	closed loop control systems, effect of feedback on overall gain, parameter variations,
Unit 1	external disturbances or noise and control over system dynamics, regenerative feedback,
	linear versus nonlinear control systems, time- invariant versus time-varying systems, SISO
	and MIMO systems.
Unit 2	Laplace Transform
	Properties, transfer function, poles and zeros.
	Mathematical Modeling of Dynamic Systems
	Introduction, canonical form of feedback control systems, transfer function and impulse
	response, differential equations and transfer functions of physical systems such as
TL 14 0	mechanical, electrical, electromechanical, thermal, pneumatic and liquid-level systems,
Unit 3	analogous systems: force-voltage, force-current and torque-current analogies, linearization
	of nonlinear mathematical models, block diagram representation of control system, rules and
	reduction techniques, signal flow graph: elements, definition, properties, Masons gain
	formula, application of gain formula to block diagrams.
	Time-Domain Analysis of Control Systems
	Standard test signals, transient response, error and error constants, time response of first and
	second order systems and transient response specifications, effect of adding poles and zeros
Unit 4	to transfer functions, dominant poles of transfer function, basic control actions and response
	of control systems, effects of integral and derivative control action on system performance.
	Control system compensators: elements of lead and lag compensation, elements of
	Proportional-Integral-Derivative (PID) control.
	Stability of Linear Control systems
	Concept of stability, BIBO stability: condition, zero-input and asymptotic stability, Hurwitz
Unit 5	stability criterion, Routh-Hurwitz criterion in detail, relative stability analysis, Root-locus
	technique: introduction, basic properties of the root loci, general rules for constructing root
	loci, root-locus analysis of control systems.
	Frequency Domain Analysis
	Frequency response of closed loop systems, frequency domain specifications of the
Unit 6	prototype second order system, correlation between time and frequency response, polar
	plots, Bode plots, phase and gain margin, stability analysis with Bode plot, Log magnitude
	versus Phase plots. Nyquist stability criterion: Mathematical preliminaries, stability and
	relative stability analysis.
	State Variable Analysis and Design
Unit 7	Concept of state, state variable, and state model, state model for linear continuous time
	system, diagonalisation, solution of state equation, concept of controllability and
	observability.
Text/Reference B	•
1.	I J Nagrath and M Gopal, Control Systems Engineering, Fifth Edition, New age
	International Publishers, India, 2009.
2.	K. Ogata, Modern Control Engineering, Fourth edition, Pearson Education India, 2002.
3.	B.C. Kuo, Automatic Control Systems, Seventh Edition, Prentice–Hall of India, 2002.
4.	Norman S. Nise, Control systems Engineering, Third Edition, John Wiley and
	Sons Inc., Singapore, 2001.
5.	R.C. Dorf and R.H. Bishop, Modern Control Systems, Eighth edition, Addison-
5.	Wesley, 1999.
	WOODY, 1777.

PCC-EC-303	Commu	nication Systems The	eory						
Teaching scheme:			Examination scheme:						
Lecture	3	hrs /week	Theory						
Tutorial	0	hrs/week	In Semester Evaluation : 20 Marks						
Practical	2	hrs/week	Mid Semester Examination : 30 Marks						
Credit	4		End Semester Examination : 50 Marks						
Course Objectives:									
1. Kı	owledge abo	out the theory of random	n process statistical averages of random process.						
2. To understand modeling of noise in the communication system.									
3. To	understand t	he behavior of analog a	nd digital communication systems in presence of noise.						
4. Aı	alyze the ana	llog-to-digital conversion	on process with emphasis on Nyquist Sampling Criteria.						
	improve the nbol interfer	•	performance by understanding Matched filter and Inter						
Course Outcomes:	On successfu	ll completion of this co	urse, students will be able to						
1. Ur	derstand the	mathematical modeling	g of noise.						
2. At	alyze the bel	havior of Analog and D	igital Modulation Systems In presence of noise;						
3. Ai	alyze effect	of channel noise on the	digital communication system.						
4. De	sign the Opt	imum Filter like Matche	ed Filter to optimize the detector performance.						
5. UI	Understand the effect of Inter symbol interference (ISI) in channel modeling.								

PO/PSO	РО	PO	PO	PO	PO	РО	РО	РО	PO	PO	РО	РО	PSO	PSO	PSO
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	1	2	3	1	0	1	0	0	0	2			
CO2	3	3	1	2	3	1	0	1	1	1	0	1			
CO3	2	1	3	2	1	0	0	1	1	1	0	0			
CO4	3	2	2	3	2	1	0	1	1	1	0	1			
CO5	2	3	1	1	1	1	0	1	1	1	0	2			
CO (total)	13	12	8	10	10	4	0	5	4	4	0	6			
CO(avg)	3	3	1	2	3	1	0	1	1	1	0	2			

Syllabus	
0Unit 1	Introduction: The communication process, Primary Communication resources, Sources of information, Communication networks, communication channels, modulation process, analog and digital types of communications, Shannon's information capacity theorem, Review of random variables and operations on multiple random variables.
Unit 2	Random Processes: Mathematical definition of a random process, Stationary processes, mean, correlation and covariance functions, Ergodic processes, Transmission of a random process through a linear time invariant filter, power spectral density, Gaussian random process.
Unit 3	Noise Analysis: Gaussian Noise, narrowband noise, representation of narrowband noise in terms of in-phase and quadrature components, representation of narrowband noise in terms of envelope and phase components, sine wave plus narrow band noise.
Unit 4	Continuous-Wave Modulation: Superheterodyne receiver, Noise in CW modulation systems, noise in linear receivers using coherent detection, noise in AM receivers using envelope detection, noise in FM receivers.
Unit 5	Pulse Modulation: Sampling process, quantization process, PCM. Noise considerations in PCM systems. TDM, digital multiplexers, virtues, limitations and modification of PCM, Delta modulation, Linear prediction, differential pulse code modulation (DPCM), Adaptive DPCM.
Unit 6	Baseband Pulse Transmission: Matched filter, error rate due to noise, inter-symbol interference, Nyqiest's criterion for distortion less baseband binary transmission, correlative-level coding, base band M-ary PAM transmission, digital subscriber lines, optimum linear receiver, adaptive equalization.
Text/Reference I	books:
1.	Haykin S., "Communications Systems", 4th Ed., John Wiley and Sons, 2001.
2.	Proakis J. G. and Salehi M., "Communication Systems Engineering", Pearson Education, 2002.
3.	B. P. Lathi, Modern Analog and Digital Communication Systems, Prism Sounders.

РСС-ЕС-304	Sign	als and Systems							
Teaching scheme	•		Examination scheme:						
Lecture		3 hrs /week	Theory						
Tutorial		hrs/week	In Semester Evaluation : 20 Marks						
Practical		2 hrs/week	Mid Semester Examination : 30 Marks						
Credit		4	End Semester Examination : 50 Marks						
Course Objective	es:								
1. Coverage of continuous and discrete-time signals and systems, their properties ar representations and methods that are necessary for the analysis of continuous and discrete-tim signals and systems.									
2.	2. Knowledge of time-domain representation and analysis concepts as they relate to difference equations, impulse response and convolution, etc.								
3.	Knowledg tools, Z-tr		sentation and analysis concepts using Fourier analysis						
4.	Concepts	of the sampling process.							
5.		cation, digital signal and imag	ational skills and foundations needed in areas like ge processing, control systems which will be taught in						
Course Outcome	s: On succe	essful completion of this cour	se, students will be able to						
1.	Analyze d	ifferent types of signals							
2.	2. Represent continuous and discrete systems in time and frequency domain using different transforms.								
3.	Investigat	e whether the system is stable	2						
4.	4. Sampling and reconstruction of a signal.								

PO/PSO → CO	PO	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
* 00	1														
CO1	3	3	0	2	2	0	0	0	1	1	0	1	2	2	2
CO2	3	3	0	2	2	0	0	1	1	1	0	1	2	2	2
CO3	3	3	2	2	2	0	0	0	1	1	0	1	2	2	2
CO4	3	3	0	2	2	0	0	1	1	1	0	1	2	2	2
CO5	3	3	0	2	2	0	0	1	1	1	0	1	2	2	2
CO6	3	3	3	2	2	0	0	1	1	1	0	1	2	2	2
CO7	3	3	2	2	2	0	0	1	1	1	0	1	2	2	2
CO (total)	21	21	7	14	14	0	0	5	7	7	0	7	14	14	14
CO(avg)	3	3	1	2	2	0	0	1	1	1	0	1	2	2	2

Syllabus	
Unit 1	Introduction Signals and systems as seen in everyday life, and in various branches of engineering and science. Energy and power signals, continuous and discrete time signals, continuous and discrete amplitude signals. System properties: linearity: additivity and homogeneity, shift-invariance, causality, stability, realizability.
Unit 2	Linear Time-Invariant Systems Linear shift-invariant (LSI) systems, impulse response and step response, convolution, input output behaviour with aperiodic convergent inputs. Characterization of causality and stability of linear shift-invariant systems. System representation through differential equations and difference equations.
Unit 3	Fourier Analysis for Continuous-Time Signals and Systems Periodic and semi-periodic inputs to an LSI system, the notion of a frequency response and its relation to the impulse response, Fourier series representation, the Fourier Transform, convolution/multiplication and their effect in the frequency domain, magnitude and phase response, Fourier domain duality. The Discrete-Time Fourier Transform (DTFT) and the Discrete Fourier Transform (DFT). Parseval's Theorem. The idea of signal space and orthogonal bases.
Unit 4	The Laplace Transform, notion of Eigen functions of LSI systems, a basis of Eigen functions, region of convergence, poles and zeros of system, Laplace domain analysis, solution to differential equations and system behavior.
Unit 5	The Sampling Theorem and its implications- Spectra of sampled signals. Reconstruction: ideal interpolator, zero-order hold, first-order hold, and so on. Aliasing and its effects. Relation between continuous and discrete time systems.
Text/Reference B	ooks:
1.	A.V. Oppenheim, A.S. Willsky and I.T. Young, "Signals and Systems", Prentice Hall, 1983.
2.	R.F. Ziemer, W.H. Tranter and D.R. Fannin, "Signals and Systems - Continuous and Discrete", 4th edition, Prentice Hall, 1998.
3.	Papoulis, "Circuits and Systems: A Modern Approach", HRW, 1980.
4.	B.P. Lathi, "Signal Processing and Linear Systems", Oxford University Press, c1998.
5.	Douglas K. Lindner, "Introduction to Signals and Systems", McGraw Hill International Edition: c1999.
6.	Simon Haykin, Barry van Veen, "Signals and Systems", John Wiley and Sons (Asia) Private Limited, c1998.
7.	Robert A. Gabel, Richard A. Roberts, "Signals and Linear Systems", John Wiley and Sons, 1995.
8.	8. M. J. Roberts, "Signals and Systems - Analysis using Transform methods and MATLAB", TMH, 2003.
9.	9. J. Nagrath, S. N. Sharan, R. Ranjan, S. Kumar, "Signals and Systems", TMH New Delhi, 2001.
10.	Ashok Ambardar,"Analog and Digital Signal Processing", 2nd Edition, Brooks/ Cole Publishing Company (An international Thomson Publishing Company), 1999.

Program Elective – I

PEC-EC-305	Proba	bility and Statistics					
Teaching scheme):		Examination scheme:				
Lecture		3 hrs /week	Theory				
Tutorial		hrs/week	In Semester Evaluation : 20 Marks				
Practical		hrs/week	Mid Semester Examination : 30 marks				
Credit		3	End Semester Examination : 50 marks				
Course Objective	es:						
1.	To study con	re concept of probability th	eory.				
2.	To understa	nd basic principles of statis	tical inference				
3.	To understand conditional probabilities using Bayes theorem.						
4.	4. To get the knowledge of uniform, normal, exponential distribution.						
5.	To compute	the co-variance and co-rela	ation between jointly distributed variables.				
6.	To create an	nd interpret scatter plots and	histogram.				
7.	To understa	nd the basic statistical conc	epts and measures.				
Course Outcome	s: On success	sful completion of this cour	se, students will be able to				
1.			fundamental probability concepts, including random ve rules and conditional probability				
2.	· · ·	central limit theorem to sa oint estimates confidence in	mpling distribution and use estimation technique to nterval and sample size.				
3.		several well-known distriated ascal, Normal and Exponen	butions, including Binomial, Geometrical, Negative ntial Distribution.				
4.	Perform and two-sample		f means, proportions and variances using both one-and				
5.	Compute an	d interpret all of the results	of linear Regression.				

PO/PSO ➡	PO	РО	PO	PO	PSO	PSO	PSO								
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	3	2	1	-	-	-	-	-	-	-	3	3	1
CO2	3	3	2	3	2	-	-	-	-	-	-	-	2	2	2
CO3	3	2	2	2	2	-	-	-	-	-	-	-	3	3	2
CO4	2	3	3	2	2	-	-	-	-	-	-	-	2	2	2
CO5	3	1	2	2	2	-	-	-	-	-	I	-	2	2	2
CO (total)	14	11	12	11	9								12	12	9
CO(avg)	3	2	3	2	2	-	-	-	-	-	-	-	2	2	2

ndom
s of Central n, Variance
, Sampling
Influences, Confidence
eh.
OSS

PEC-EC-306	Comput	ter Organization						
Teaching scheme			Examination scheme:					
Lecture	3	hrs /week	Theory					
Tutorial		- hrs/week	In Semester Evaluation : 20 Marks Mid Semester Examination : 30 Marks					
Practical		- hrs/week	End Semester Examination : 50 Marks					
Credit	3							
Course Objective	s:							
1.	Provide the ba	sic concepts of com	nputer architecture and organization					
2.	Provide the kn	owledge about inpu	t output system of computer					
3.	Introduce with	different systems of	of computer					
Course Outcome	: On successfu	l completion of this	s course, students will be able to					
1.	Understand, C	lassify and compute	e the performance of machines.					
2.	Understand the basic of hardware and micro programmed control of the CPU.							
3.	3. Learn about various I/O Devices n I/O interface.							
4.	Apply arithme	tic's for ALU imple	ementation.					

Course Articulation Matrix: Mapping of Course outcome and Program outcome

PO/PSO	РО	РО	РО	РО	PO	PO	PO	РО	PO	РО	PO	РО	PSO	PSO	PSO
↓ CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	-	1	2	-	-	-	-	-	-	-	2	2	2
CO2	3	2	1	1	2	-	-	-	-	-	-	-	2	2	2
CO3	3	2	-	1	2	-	-	-	-	-	-	-	2	2	2
CO4	2	2	1	1	2	-	-	-	-	-	-	-	2	2	2
CO (total)	11	8	2	4	8	-	-	-	-	-	-	-	08	08	08
CO(avg)	3	2	1	1	2	-	-	-	-	-	-	_	2	2	2

Syllabus	
Unit 1	Introduction Computer Types, Function and structure of a computer, Functional components of a computer, Interconnection of components, Performance of a computer.
Unit 2	Representation of Instruction Machine instructions, Operands, Addressing modes, Instruction formats, Instruction sets, Instruction set architectures - CISC and RISC architectures.
Unit 3	Processing Unit Organization of a processor - Registers, ALU and Control Unit, Data path in a CPU, Instruction cycle, Organization of a control unit - Operations of a control unit, Hardware control unit, Microprogrammed control unit.
Unit 4	Memory Subsystem Semiconductor memories, Memory cells - SRAM and DRAM cells, Internal Organization of a memory chip, Organization of a memory unit, Error correction memories, Interleaved memories, Cache memory unit - Concept of cache memory, Mapping methods, Organization of a cache memory unit, Fetch and write mechanisms, Memory management unit - Concept of virtual memory, Address translation, Hardware support for memory management
Unit 5	Input/output Subsystem Access of I/O devices, I/O ports, I/O control mechanisms - Program controlled I/O, Interrupt controlled I/O, and DMA controlled I/O, I/O interfaces – Serial port, Parallel port, PCI bus, SCSI bus, USB bus, Firewall and Infiniband, I/O peripherals - Input devices, Output devices, Secondary storage devices.
Text/Reference B	ooks:
1.	C. Hamacher, Z. Vranesic and S. Zaky, "Computer Organization", McGraw-Hill, 2002.
2.	W. Stallings, "Computer Organization and Architecture - Designing for Performance", Prentice Hall of India, 2002.
3.	D. A. Patterson and J. L. Hennessy, "Computer Organization and Design - The Hardware/Software Interface", Morgan Kaufmann, 1998.
4.	J.P. Hayes, "Computer Architecture and Organization", McGraw-Hill, 1998

PEC-EC-307	Bio M	ledical Signal Processin	g							
Teaching scheme	:		Examination scheme:							
Lecture		3 hrs /week	Theory							
Tutorial		hrs/week	In Semester Evaluation : 20 Marks							
Practical		hrs/week	Mid Semester Examination : 30 Marks							
Credit		3	End Semester Examination : 50 Marks							
Course Objective	es:	I	1							
1.	To understa	nd basic of various Biomed	ical signals.							
2.	2. To study origin and characteristics of most commonly used biomedical signals, including ECG, EEG, evoked potential, and EMG.									
3.	To understa	To understand sources and characteristics of noise and artifacts in bio signals.								
4.	To understa investigation		mple diagnosis, patient monitoring and physiological							
5.	To explore t	he research in biomedical s	ignal processing.							
6.	To explore problems.	application of established	engineering methods to complex biomedical signals							
Course Outcome	s: On success	ful completion of this cour	se, students will be able to							
1.	Model a bio	medical system.								
2.	Understand	various methods of acquiri	ng bio signals.							
3.	Understand	various sources of bio sign	al distortions and its remedial techniques.							
4.	Analyze EC	G, EEG and PCG signal.								
5.	Have basic parameters.	understanding of diagnosing	g bio-signals and classifying them by detecting various							

PO/PSO	РО	РО	РО	РО	PO	РО	PO	РО	PO	РО	РО	РО	PSO	PSO	PSO
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	2	3	1	-	-	2	-	-	-	3	1	1
CO2	3	3	1	1	3	1	-	-	2	-	-	-	2	1	1
CO3	3	3	1	1	3	1	-	-	2	I	-	-	1	2	1
CO4	3	3	3	3	3	1	-	-	2	-	-	-	3	3	3
CO5	3	3	3	3	3	1	-	-	2	-	-	-	2	3	3
CO (total)	15	15	11	10	15	5	-	-	10	-	-	-	11	10	9
CO (avg)	3	3	2	2	3	1	-	-	2	-	-	-	2	2	2

Syllabus		
Unit 1		Essentials of continuous time signals and systems: Convolution, Fourier transform, system transfer functions; Discrete time signals and systems: sampling and quantization, the sampling theorem and signal reconstruction; Frequency analysis of discrete signals and systems: the discrete Fourier transform, power spectrum estimation and system identification
Unit 2		Discrete and continuous Random variables, Probability distribution and density functions. Gaussian and Rayleigh density functions, Correlation between random variables. Stationary random process, Ergodicity, Power spectral density and autocorrelation function of random processes. Noise power spectral density analysis, Noise bandwidth, noise figure of systems.
Unit 3		Data Compression Techniques: Lossy and Lossless data reduction Algorithms. ECG data compression using Turning point, AZTEC, CORTES, Hoffman coding, vector quantisation, DCT and the K L transform.
Unit 4		Cardiological Signal Processing: Pre-processing. QRS Detection Methods. Rhythm analysis. Arrhythmia detection Algorithms. Automated ECG Analysis. ECG Pattern Recognition. Heart rate variability analysis.
Unit 5		Adaptive Noise Canceling: Principles of Adaptive Noise Canceling. Adaptive Noise Canceling with the LMS adaptation Algorithm. Noise Canceling Method to Enhance ECG Monitoring. Fetal ECG Monitoring. Signal Averaging, polishing–mean and trend removal, Prony's method. Linear prediction. Yule–walker(Y–W) equations.
Unit 6		Neurological Signal Processing: Modeling of EEG Signals. Detection of spikes and spindles Detection of Alpha, Beta and Gamma Waves. Auto Regressive(A.R.) modeling of seizure EEG. Sleep Stage analysis. Inverse Filtering. Least squares and polynomial modeling.
Unit 7		Original Prony's Method. Prony's Method based on the Least Squares Estimate. Analysis of Evoked Potentials and PCG. Analysis of non-stationary processes: examples using Wavelet analysis and Time-series models; Examples of physiological signals and systems including feedback systems.
Text/Referen	ce Bo	ooks:
	1.	Rangaraj M. Rangayyan – Biomedical Signal Analysis. IEEE Press, 2001.
	2.	D.C.Reddy, Biomedical Signal Processing- principles and techniques, Tata McGraw-Hill, 2005.
	3.	Biomedical Digital Signal Processing, Willis J.Tompkins, PHI,
	4.	Weitkunat R, Digital Bio signal Processing, Elsevier, 1991.
	5.	Akay M, Biomedical Signal Processing, Academic: Press 1994
	6.	Cohen.A, Biomedical Signal Processing -Vol. I Time and Frequency Analysis, CRC Press, 1986.

PEC-EC-308	308 Microelectronics									
Teaching scheme	e:		Examination scheme:							
Lecture		3 hrs/week	Theory							
Tutorial		hrs/week	In Semester Evaluation : 20 Marks							
Practical		hrs/week	Mid Semester Examination : 30 Marks							
Credit		3	End Semester Examination : 50 Marks							
Course Objectiv	es:									
1.	Describe cr	ystal structure of solid	and Clarify basics of semiconductor.							
2.	2. Analyzing carrier concentration and energy band diagrams of extrinsic, P type, N typ semiconductor material under equilibrium condition.									
3.	3. Explain different phenomenon like Charge neutrality principle, Hall effect, Mass action law, drift, diffusion, carrier generation and recombination.									
4.	-	minal voltage and cur rgy band diagrams	rrent characteristics of PN junction and MOSFET with the							
5.	A comprehe BJT.	ensive understanding c	of manufacturing processes of PN junction and MOSFET and							
Course Outcome	es: On succes	sful completion of this	s course, students will be able to							
1.	Understand integrated of		iconductor material and use the concept in designing of							
2.	Compute ca	arrier concentration of	semiconductor under various conditions.							
3.	Compare co	onductivity and resistiv	vity of semiconductor material under various conditions.							
4.	Inspect terr	ninal voltage and curre	ent characteristics of PN junction, MOSFET.							
5.	Design integrated circuits with consideration of capabilities and limitations of fabrication technology.									

PO/PSO	РО	РО	РО	РО	PO	PO	PO	PO	PO	PO	РО	РО	PSO	PSO	PSO
↓ CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1	1	1	1	-	-	1	1	-	-	3	1	2
CO2	3	3	2	3	2	1	-	-	1	1	-	-	3	1	2
CO3	3	2	1	2	1	1	-	-	1	1	-	-	3	1	2
CO4	3	1	1	1	1	1	-	-	1	1	-	-	3	1	1
CO5	3	2	3	2	2	1	-	-	1	1	-	-	3	1	1
CO (total)	15	10	8	9	7	5	-	-	5	5	-	-	15	5	9
CO(avg)	3	2	2	2	1	1	-	-	1	1	-	-	3	1	2

Syllabus	
Unit 1	The crystal structure of solids, the semiconductor materials, types of solids, space lattices, atomic bonding, imperfections and impurities in solids
Unit 2	Theory of solids, principles of quantum mechanics, Energy band theory, density of states function, statistical mechanics, semiconductor in equilibrium, carrier distribution in extrinsic semiconductors, statistics of donors and acceptors, carrier concentration-effect of doping, position of Fermi energy level- effect of doping and temperature.
Unit 3	Carrier transport and excess carrier phenomena, carrier drift, carrier diffusion, graded impurity distribution, carrier generation and recombination, Hall effect.
Unit 4	The pn junction and metal semiconductor contact, basic structure of pn junction, metal semiconductor contact, doped pn junction, device fabrication techniques,
Unit 5	Fundamentals of MOSFET, MOSFET action, MOS capacitor, potential differences in the MOS capacitor, CV characteristics, MOSFET operations, small signal equivalent circuit
Unit 6	MOSFET scaling, non-ideal effects, threshold voltage modifications, additional electrical characteristics. The BJT action, minority carrier distribution, low frequency common base current gain, nonideal effects, hybrid Pi equivalent circuit model, large signal switching
Text/Reference B	Books:
1.	Donald Neamen, An introduction to semiconductor devices, McGraw Hill International Edition, 2006.
2.	Ben G. Streetman, S. Banerjee, Solid state electronic devices, Prentice Hall, 2000.
3.	R. F. Pierret, Semiconductor Device Fundamentals, Pearson Education, 2011.

PEC-EC-309	DSP	Processors							
Teaching schem	e:		Examination scheme:						
Lecture		3 hrs /week	Theory						
Tutorial		hrs/week	In Semester Evaluation : 20 Marks						
Practical		hrs/week	Mid Semester Examination : 30 Marks						
Credit		3	End Semester Examination : 50 Marks						
Course Objectiv	Course Objectives:								
1.	Provide understanding and working knowledge of design, of DSP Systems.								
2.	Understan	ding for implementation	n and analysis of DSP systems.						
Course Outcome	es: On succe	essful completion of this	s course, students will be able to						
1.	Recognize	e the fundamental archit	ecture of DSP systems.						
2.	Understan	Understand the architecture details and instructions sets of DSPs.							
3.	Use DSP j	Use DSP programming tools for applications.							
4.	Use and a	Use and apply detailed FPGA based DSP system.							

Course Articulation Matrix: Mapping of Course outcome and Program outcome

PO/PSO	РО	РО	PO	РО	PO	PO	РО	PO	PO	PO	PO	PO	PSO	PSO	PSO
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	2	-	-	-	-	-	-	-	-	-	-	2	2	2
CO2	3	2	-	1	-	-	-	-	-	-	-	-	3	2	2
CO3	3	-	2	-	2	-	-	-	-	-	-	-	2	2	2
CO4	3	2	2	2	2	-	-	-	-	-	-	-	2	2	2
CO (total)	12	6	4	3	2	-	-	-	-	-	-	-	9	8	8
CO(avg)	3	2	2	2	2	-	-	-	-	-	-	-	2	2	2

Syllabus	
Unit 1	Introduction to Programmable DSPs: Comparison of GP Processors and DSP processor Architecture, Multiplier and MAC, Modified Bus structures and Memory Access schemes, Multiple Access Memory, Dual port memory, VLIW Architecture, Pipelining, Special Addressing Modes, On-Chip Peripherals, RISC Vs CISC design.
Unit 2	Architecture of TMS32054X: Introduction, Architecture, buses, Memory organization, CPU, ALU, Barrel Shifter, On-chip Peripherals, Address Generation Logic.
Unit 3	TMS32054X Assembly Language Instructions, Programming in Assembly language Application Programmes in C54X: Code Composer Studio, Application Programmes in C54X.
Unit 4	TMS320C6xx DSPs: Features, Architecture, Memory Interfacing, Addressing Modes, Pipeline operation, Peripheral, C-Programming and DSP Application development like Speech coding Image processing and coding applications.
Unit 5	Recent trends in DSP System design, Media processor, FPGA Based DSP System Design.
Text/Reference B	ooks:
1.	B. Venkatramani, M. Basker: Digital Signal Processors: Architecture, Programming and Applicaions, TMS, 2004.
2.	Shehrzad Qureshi, EMBEDDED IMAGE PROCESSING ON THE TMS320C6000 [™] DSP (Examples in Code Composer Studio [™] and MATLAB), Springer Science 2005.

PEC-EC-310	Linea	r Algebra						
Teaching scheme	•		Examination scheme:					
Lecture		3 hrs /week	Theory					
Tutorial		hrs/week	In Semester Evaluation : 20 Marks Mid Semester Examination : 30 Marks					
Practical		2 hrs/week	End Semester Examination : 50 Marks					
Credit		4						
Course Objective	es:	L						
1. Work with matrices by performing operations with matrices, learn to solve systems of l equations.								
2.	Learn about and work with vector spaces and subspaces.							
3.	Learn the concepts of norm and orthogonality.							
4.	Learn to fin	d use of eigen values and	d eigen vectors of matrix.					
Course Outcome	s: On success	sful completion of this co	purse, students will be able to					
1.	-	-	s inverse and determinants and solve systems of linear neluding Gaussian elimination and matrix inversion.					
2.	Demonstrat	ion and understanding o	f the concepts of vector space and subspace.					
3.	Understanding and application of the concepts of vector and matrix norm, inner product and orthogonality by various techniques such as orthogonal decomposition, least squares.							
4.	Determine eigenvalues and eigenvectors and solve eigenvalue problems by similarity transformations and Jordon form and others.							
5.	Carry out matrix operations such as inverse and determinants and solve systems of linear equations using multiple methods, including Gaussian elimination and matrix inversion.							

PO/PSO ⇒	PO	PO	РО	PO	PO	РО	РО	PO	PO	РО	РО	PO	PSO	PSO	PSO
↓ CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2	-	-	-	-	-	-	-	-	-	1	-	1
CO2	3	1	1	-	-	-	-	-	-	-	-	-	1	2	-
CO3	3	2	2	-	-	-	-	-	-	-	-	-	1	1	1
CO4	3	1	-	-	-	-	-	-	-	-	-	-	-	2	2
CO5	3	2	1	-	-	-	-	-	-	-	-	-	2	-	1
CO (total)	15	8	6	-	-	-	-	-	-	-	-	-	5	5	5
CO(avg)	3	2	1	-	-	-	-	-	-	-	-	-	1	1	1

Syllabus	
Unit 1	Basic set theory
	Set Theory, Set Operations, Set of sets, Binary relation, Equivalence relation, Mapping,
	Permutation, Binary Composition, Groupoid.
Unit 2	Group Theory
	Group, Order of an element, Subgroup, Cyclic Group, Subgroup operations
Unit 3	Rings and Polynomial
	Left cosets, right cosets, Normal subgroup, Rings, Field.
Unit 4	Vector spaces over fields
	Vector spaces, sub-spaces, linear span, basics of vector space, Dimension of vector space.
Unit 5	Linear transformations and their matrices
	Complement od subspace, Linear transformation, Linear space.
Unit 6	Matrices and determinants
	Rank of matrix, system of linear equations, Row rank and column rank,
Unit 7	Eigen value and Eigen Vector
	Eigen value of a matrix, Eigen vector, Geometric multiplicity, similar matrices.
Text/Reference B	ooks:
1.	Carl D. Meyer, Matrix and Applied linear Algebra, SIAM.
2.	Gilbert Strang, Linear Algebra and Its Applications, Cengage Learning

PEC-EC-311	Ante	nna and Wave Prop	pagation					
Teaching scheme			Examination scheme:					
Lecture		3 hrs/week	Theory					
Tutorial		hrs/week	In Semester Evaluation : 20 Marks					
Practical		hrs/week	Mid Semester Examination : 30 Marks					
Credit		3	End Semester Examination : 50 Marks					
Course Objectives:								
1.	1. Students will be introduced to antenna basics and principle of operation							
2.	Students will be introduced fundamental parameters of antenna, Linear wire and loop antennas							
3.	Introduce t	he students to Antenna	arrays					
4.	Students w	ill be introduced to me	asurement of antenna parameters					
5.	Students w	ill be introduce to prop	agation of waves in different mediums					
Course Outcome	: On succes	ssful completion of this	s course, students will be able to					
1.	Define var	ious parameters of ante	nna					
2.	Evaluate a	ntennas for given speci	fication					
3.	Illustrate techniques for antenna parameter measurement							
4.	To understand various types of antennas							
5.	Discuss rad	dio wave propagation						

PO/PSO ➡	PO	PO	PO	PO	PO	PO	РО	РО	PO	РО	PO	РО	PSO	PSO	PSO
↓ CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	1	-	-	-	2	-	-	2	-	2	-	2	-	1
CO2	2	-	2	3	-	-	2	-	2	-	-	-	3	2	-
CO3	2	-	2	2	3	-	2	-	-	-	3	-	2	1	1
CO4	3	-	-	1	-	I	2	2	-	-	1	-	-	2	3
CO5	I	2	-	I	-	1	I	I	2	2	-	-	2	1	1
CO (total)	10	5	4	6	3	3	6	2	6	2	6	-	9	6	6
CO(avg)	2	1	1	1	1	1	1	1	1	1	1	-	2	1	1

Syllabus	
Unit 1	Introduction to Antenna: Resonance of antenna, Types of antenna, radiation mechanism of antenna in single wire, two wire and dipole.
Unit 2	Fundamental Parameters of Antenna : Power density, radiation intensity, radiated power, radiation intensity, gain directivity, efficiency, effective aperture, effective length, band width, polarization, antenna temperature.
Unit 3	Linear Wire and Loop Antennas: Infinitesimal dipole, small dipole, finite length dipole, half length dipole, small circular loop, polygonal loop, ferrite loop.
Unit 4	Antenna Arrays: Types of arrays, two element linear arrays, <i>n</i> -element linear arrays, continuous array, planar arrays.
Unit 5	Different Antennas: Folded dipole, Yagi-Uda antenna, long wire antenna, V antenna, inverted antenna, log periodic antenna, Helical antenna, Horn antenna, lens antenna.
Unit 6	Antenna Measurements: Measurement of impedance, gain, radiation pattern, phase, polarization, directivity, beam width, radiation resistance.
Unit 7	Wave Propagation: Modes of propagation, structure of atmosphere, ground wave propagation, sky wave propagation, duct propagation.
Text/Reference B	ooks:
1.	C. A. Balanis, Antenna theory: Analysis and design, Harper and Row Pow.(N.Y.)
2.	J.D. Kraus and R. J. Marahefka, Antennas for applications, Tata Mc-Graw Hill Pub.
3.	K. D. Prasad., Antenna and wave propagation, Satya Prakashan, New Delhi.

PEC-EC-312	Digita	al Telephony						
Teaching scheme	2:		Examination scheme:					
Lecture		3 hrs /week	Theory					
Tutorial		hrs/week	In Semester Evaluation : 20 Marks					
Practical		hrs/week	Mid Semester Examination : 30 Marks					
Credit		3	End Semester Examination : 50 Marks					
Course Objective	es:							
1.	To get know	vledge of fundamental	structure of telephone switching system.					
2.	To understand the working principle of telephone switching system.							
3.	To understa	nd traffic and losses in	n network.					
4.	To Know th	e ISDN Technology.						
5.	To understa	nd the principle of dig	gital Internet Protocol based telephony.					
6.	To grasp the	e knowledge of new te	echnology of transmitting voice over packet network.					
Course Outcome	s: On success	sful completion of this	s course, students will be able to					
1.	Understand	telephone network.						
2.	Analyze tra	ffic in telephone netwo	ork.					
3.	Interpret working of different switching networks.							
4.	Understand	various techniques of	transmitting digital data over telephone line.					
5.	Understand terminology of exchange of voice, video, fax and other form of information using internet protocol over telephone network.							

PO/PSO→ ↓ CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	2	1	-	-	2	-	1	-	-	-	-	_	_	2	_
CO2	3	2	1	1	-	1	-	1	-	-	2	-	-	3	1
CO3	2	-	2	2	1	2	-	2	-	-	2	-	-	2	1
CO4	1	2	-	-	2	1	-	-	-	1	-	-	-	1	1
CO5	3	2	-	2	1	2	-	-	-	-	2	2	1	-	2
CO(tot)	11	7	3	5	6	6	1	3	-	1	6	1	8	7	5
CO(avg)	2	1	1	1	1	1	1	1	-	1	1	1	2	1	1

Syllabus	
	Telephony Background
Unit 1	An overview of telephone networks, transmission system, switching system, signaling, echo cancellation, working principles of telephone, DC (pulse) and DTMF (tone) signaling.
Unit 2	Traffic Analysis
	Traffic characterization, loss systems, network blocking probabilities, delay systems.
	Digital Switching and Networks
Unit 3	Space division switching, time division switching, time space time (TST) switch, space time space (STS) switch, comparison of TST and STS switches, network synchronization, control and management timing, timing inaccuracies, network synchronization, network control, Network management.
	Digital Subscriber Access
Unit 4	Integrated service digital network (ISDN): ISDN overview, ISDN interfaces and functions, user network interface, ISDN protocol architecture, ISDN physical layer: basic user– network interface, primary rate user- network interface, ISDN data link layer: LPAD protocol, terminal adaptation, bearer channel data link control, ISDN network layer: basic call control, control of supplementary services.Broadband ISDN (B - ISDN) Architecture, Protocols. Digital subscriber loop (DSL): ADSL, HDSL, VDSL, Fiber in loop, wireless local loop (WLL) Signaling System Number 7 (SS7): SS7, architecture signaling date link level, signaling link level, network level, signaling connection control part.
Unit 5	Introduction to IP Telephony and Related Protocols
	Overview of TCP/IP protocol, Resource reservation protocol (RSVP), multiprotocol label switching, real time protocol (RTP), session initiation protocol (SIP), H.323 standard, media gateway control protocol.
	Voice Over Packet Networks
Unit 6	Voice over ATM, ATM cell format, ATM protocol stack, ATM adaptation layer, IP over ATM, frame relay over ATM
Text/Reference B	ooks:
1.	"Digital Telephony" by John C Bellamy, Wiley series in telecommunication and signal processing
2.	"Digital Telephony and Network Integration" by Bernard E Keiser and Eugene Strange
3.	"Digital Telephony" by Malhar Lakdawala

PEC-EC-313	Digit	al System Design wi	th Verilog						
Teaching scheme	:		Examination scheme:						
Lecture		3 hrs /week	Theory						
Tutorial		hrs/week	In Semester Evaluation : 20 Marks						
Practical		hrs/week	Mid Semester Examination : 30 Marks						
Credit		3	End Semester Examination : 50 Marks						
Course Objectives:									
1.	1. Introduction to Digital Design.								
2.	Design of Combinational Circuits using Verilog HDL.								
3.	Design of	Sequential Circuits using	ng Verilog HDL.						
4.	Design of	Datapath using Verilog	; HDL.						
5.	Design of	Control path using Ver	ilog HDL.						
Course Outcome	s: On succes	ssful completion of this	course, students will be able to						
1.	Understand	ling Digital Design trer	nds and software design aspects.						
2.	Understand	ling Combinational and	l Sequential design aspects.						
3.	Implementation of Combinational and Sequential Circuits using Verilog HDL.								
4.	Understand	ling Datapath and Cont	rol Path design aspects.						
5.	Implement	ation of Datapath and C	Control Path using Verilog HDL.						

PO/PSO	PO	РО	PSO	PSO	PSO										
↓ CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	1	1	-	-	-	1	1	-	-	1	2	1
CO2	2	1	1	1	1	-	-	-	1	1	-	-	1	2	1
CO3	2	2	3	2	3	-	-	-	2	1	-	-	2	2	1
CO4	2	1	1	1	1	-	-	_	1	1	_	-	1	2	1
CO5	2	2	3	2	3	-	-	-	2	1	-	-	2	2	1
CO (total)	10	7	9	7	9	-	-	-	7	5	-	-	7	10	5
CO(avg)	2	1	2	1	2	-	-	-	1	1	-	-	1	2	1

Syllabus	
	Introduction
Unit 1	Introduction to digital design, analog Vs. digital, digital devices, electronic aspects of digital design, software aspects of digital design, programmable logic devices, ASICs, PCBs, digital design levels, PLDs, PLAs, Basic components and architecture of FPGA.
	Combinational Component Design
Unit 2	Adders: Full adders, Ripple carry adders, carry look ahead adders, pipelined adders, Two's complement binary numbers, Subtractor, ALU, decoder, Encoder, multipliers, comparator, Barrel shifters, multiplier design, Verilog implementation of combinational circuits.
	Sequential Circuit Design
Unit 3	Finite state machine (FSM) models, state diagram, analysis and synthesis of sequential circuits, controller design using FSMs, verilog implementation of sequential circuits, Shift registers, Counters: up/down, register files, SRAM, RTL design: Determining clock frequency, memory components, FIFOs,
	Data Path Design
Unit 4	Designing dedicated data path, general datapath design, timing issue, Verilog implementation of datapath.
	Control Unit design
Unit 5	Constructing the control unit, ASM charts and state action tables, Verilog implementation of control unit. Examples of manual design of dedicated microprocessors.
	Verilog HDL and Writing Test Benches:
Unit 6	Introduction to Verilog HDL, Gate Level Modeling, Data Flow Modeling, Behavioral Modeling, Procedural Constructs and Assignments, Event scheduling in Verilog, delay time control.
Text/Reference B	ooks:
1.	J. F. Wakerly, Digital design- Principles and Practices, Pearson India, Third edition.
2.	J. Bhasker, Verilog Primer, Pearson Education Asia, Third edition.
3.	M. Morris Mano, Digital Logic and Computer Design, PHI.
4.	Frank Vahid, Digital Design, Wiley Student Edition
5.	Samir Palnitkar, Verilog HDL, 2nd Edition, Pearson Education, 2009.
6.	M.D. Ercegovac, Digital Arithmetic, Elsevier.
7.	A. Anandnaga, Switching Theory and Logic design, PHI

PEC-EC-314	Physi	ology for Engineers								
Teaching scheme	:		Examination scheme:							
Lecture		3 hrs /week	Theory							
Tutorial		hrs/week	In Semester Evaluation : 20 Marks							
Practical		hrs/week	Mid Semester Examination : 30 Marks							
Credit		3	End Semester Examination : 50 Marks							
Course Objective	es:									
1.	To learn bas	To learn basic aspects of human physiology.								
2.	To develop an engineering approach towards understanding of biological function.									
3.	Understand the integration and control of the different physiological systems and their roles in maintaining homeostasis.									
4.			hysiological problems in biochemistry, smooth, cardiac, and l as the cardiovascular, respiratory, neural, auditory, visual							
Course Outcome	s: On success	sful completion of this	course, students will be able to							
1.	Describe or	ganization of cell and t	issues.							
2.	Understand	fundamental cell phys	iology for living organisms.							
3.	Analyze structure of connective tissues, skeletal muscle, bones and joints.									
4.	Recognize a	and describe the micros	scopic structure of various body systems.							
5.	Understand	Understand function and interaction of human anatomy and physiology.								

PO/PSO ➡	РО	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	1	1	-	-	-	-	-	-	1	1	1	1
CO2	2	1	1	1	1	-	-	-	-	-	-	1	1	1	1
CO3	2	2	3	2	3	_	_	_	-	-	_	1	1	1	1
CO4	2	1	1	1	1	-	-	-	-	-	-	2	1	1	1
CO5	2	2	3	2	3	-	-	-	-	-	-	3	1	1	1
CO (total)	10	7	9	7	9	-	-	-	-	-	-	8	5	5	5
CO(avg)	2	1	2	1	2	-	-	-	-	-	-	2	1	1	1

Syllabus	
Unit 1	Introduction: Introduction to the human body, physiology of human cell & tissues: Definition of anatomy and physiology, Terms related to anatomy and physiology, Anatomical planes and positions, Structural Organization, The internal environment and homeostasis, Structure And Function of Cell & Cell organelles, Elementary tissues of the body: epithelial, muscular, connective and nervous.
Unit 2	Body Fluid (Blood): Composition of Blood, Functions of Blood, Cellular Content of Blood: their properties and functions, Blood Groups, Hemoglobin and its estimation.
Unit 3	Respiratory System: Structure and function of various Organs of respiratory system, Mechanism of respiration, Muscles of respiration, Control of respiration Physiological variables affect in respiration, Physical principle of gas exchange, pulmonary volumes and capacities.
Unit 4	Cardiovascular System: External features and structure of heart, Blood vessels, Physiology and properties of cardiac muscle, Cardiac cycle, Cardiac output, Heart rate, Heart Sound, and Introduction to ECG, Blood pressure and blood pressure control.
Unit 5	Nervous System: Neurons, Synapse and neurotransmitters, Central and Peripheral nervous system, various parts of nervous system; Brain: Parts and functions; Spinal cord, CSF, Ventricles of the brain, Autonomic nervous system, Reflex action.
Unit 6	Skeletal and muscular System: Bone: Types, Functions Structure and Development of bone; Axial Skeleton: Skull, Cranial Cavity, Vertebral Column, Thoracic Cage Joints: Types of joints, Main synovial joints of the limbs Muscular System: Classification of muscles, Anatomy and Physiology of skeletal muscle, Muscle of body, Physiology of muscle contraction, Structure and physiology of smooth muscle, cardiac muscle, difference of cardiac muscle, smooth and cardiac muscle, Anatomy and Physiology of neuromuscular junction
Unit 7	Special Senses:Eye: Anatomy of Eye & Physiology of Vision, Ear: Structure of Ear & Physiology ofHearing, Nose: Sense of Smell, Tongue: Sense of Taste, Skin: Structure & Functions of skin.
Unit 8	Digestive System: Various organs of digestive system, movement of gastrointestinal tract, mastication, deglutination, physiological activities in mouth, pharynx, esophagus, stomach, pancreas, liver, gall bladder, small and large Intestine, Digestion and absorption.
Unit 9	Excretory System: Anatomy of Urinary System, Physiology of urine formation, physiology of micturition, Concentration and Dilution of urine, Composition of Urine. Skeletal and muscular.
Text/Reference B	ooks:
1.	Anatomy and Physiology in Health and Illness by Ross and Wilson
2.	Human Anatomy and Physiology by Dr. Padma Sanghani
3.	Text book of Medical Physiology by Guyton and Hall
4.	Human Physiology and Anatomy by Fox Staurt Ira
5.	Human Anatomy (Volume 1,2,3) by B.D.Chaurasia

HMC392	Indus	trial Management f	or Engineers							
Teaching scheme			Examination scheme:							
Lecture		2 hrs /week	Theory							
Tutorial		hrs/week	In Semester Evaluation : 20 Marks Mid Semester Examination : 30 Marks							
Practical		hrs/week	End Semester Examination : 50 Marks							
Credit		2								
Course Objective	es:									
1.	• To introduce and develop the concept of startup as an organization									
2.	To establish the understanding of operation of an organization and various roles of management									
3.		concept of various In Employees & State ins	dustrial laws like Factories Act, Corporate Act, Payment of urance Act, etc.							
4.	To understa aspect.	and the various roles of	of management in the financial, production and planning							
Course Outcome	s: On success	sful completion of this	course, students will be able to							
1.	Develop the	understanding of Indu	strial Laws							
2.	Understand the concept of startup as an organization									
3.	Understand	the operation of an org	anization and various roles of management.							
4.	Understand	Understand the various roles of management in the financial, production and planning aspect.								

PO/PSO ➡	РО	PO	PO	РО	РО	РО	PSO	PSO	PSO						
↓ CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	-	2	-	-	-	-	1	1	-	2	1	1
CO2	3	-	2	2	-	2	1	2	-	-	-	-	2	3	-
CO3	2	2	-	1	2	-	-	-	-	-	-	-	2	-	1
CO4	3	1	2	-	1	-	1	-	-	2	1	-	1	2	-
CO (total)	12	7	6	3	5	2	2	2	-	4	2	-	9	7	3
CO(avg)	2	1	1	1	1	1	1	1	-	1	1	-	2	1	1

Syllabus	
	Introduction to management
TT	Introduction to management, administration, organization, concept, definition, scope,
Unit 1	and importance of management. Understanding of Principles of Management
	Division of labor, authority, responsibility, discipline, unity of command, and
	direction/centralization.
	Role of management
Unit 2	Functions of Management – planning, organizing, staffing, directing, controlling,
	coordination, decision making, locus of control innovation, materials management,
	quality assurance.
	Laws for management
Unit 3	Indian Factories Act, Corporate Act, Payment of wages act, Employees & State
	insurance Act, Strike and Lockouts, Causes, prevention, and settlements.
	Startup – an organization
Unit 4	Concept of startup, various types and scopes of startup
	Types of Organization Proprietorship, partnership, and joint stock Company, private
	limited, public sector, cooperatives, their comparison.
	Financial Management
Unit 5	Financial Management Concepts, capital structure, fixed capital, working capital,
	depreciation, assignment & management of budget, budgetary control, rent, interest
	and profits distinction between profits and interest.
Text/Reference B	ooks:
1.	Buffa Kooutz and O'Donnel, Principles of Management.
2.	O. P. Khanna, Industrial Engineering and Management.
3.	P. T. Ghan, Introduction to Industrial Organization.
4.	Banga and Sharma, TIDM.

SEM-EC-315	S	Semin	ar							
Teaching scheme	:			Examination scheme:						
Lecture			hrs /week	Theory						
Tutorial			hrs/week	In Semester Evaluation : 20 Marks						
Practical			2 hrs/week	Mid Semester Examination : 30 Marks						
Credit			1	End Semester Examination : 50 Marks						
Course Objective	s:									
1.	Devel	op abil	ities to search informatio	n, Convey ideas through seminar.						
2.	Collec	t data,	information from variou	resources.						
3.	Devel	op plar	ning of seminar activitie	to communicate the problems and solutions.						
4.	Devel	op skil	to prepare reports, prese	itation skills						
Course Outcomes	s: On su	uccessi	ful completion of this cou	urse, students will be able to						
1.		_	owledge in the Electron collaborative study.	ics and telecommunication field through independent						
2.		•	erstand and discuss curre nunications.	nt, real-world issues in the field of social and electronics						
3.	Impro	ve oral	communication, written	communication and presentation skills.						
4.	-		tive avenues of expressi es of ethics.	on, solve problems, and make consequential decisions						

PO/PSO	PO	PSO	PSO	PSO											
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	1	1	3	1	1	1	1	3	1	2	2	2
CO2	3	3	1	3	1	3	1	1	3	1	1	1	2	2	2
CO3	1	3	1	1	1	1	3	1	1	2	1	1	2	2	2
CO4	3	3	1	1	3	1	3	3	2	1	2	1	2	2	2
CO (total)	10	12	6	6	6	8	8	6	7	5	7	4	8	8	8
CO(avg)	3	3	2	2	2	2	2	2	2	1	2	1	2	2	2

Syllabus	
	It should be based on latest technical topics in Electronics and Telecommunication
	Engineering and related fields.

Semester VI

PCC-EC-316	Linea	ar Integrated Circu	ircuits						
Teaching scheme	:		Examination scheme:						
Lecture		3 hrs/week	Theory						
Tutorial		hrs/week	In Semester Evaluation : 20 Marks						
Practical		2 hrs/week	Mid Semester Examination : 30 Marks						
Credit		4	End Semester Examination : 50 Marks						
Course Objective	s:								
1.	To study fu	indamentals of OPAM	Р.						
2.	Study linear application	-	d their use in design of different circuits for various						
3.	To study an	nd design different volt	age regulator circuits.						
4.	To study an	nd design active filters							
5.	To study an	nd design oscillators							
Course Outcomes	: On success	ful completion of this	course, students will be able to						
1.		asic principle of op-an figurations.	np, construction, characteristics, parameter, limitations, and						
2.	Understand	the need and use of line	near and non linear op-amp circuits and their applications.						
3.	Work out t	he practical and design	implementation of different voltage regulators.						
4.	Design diff	erent audio power amp	ers.						
5.	Work out o	n design implementati	of different waveform circuits and specialized ICs.						

Course Articulation Matrix: Mapping of Course outcome and Program outcome

PO/PSO ➡	РО	РО	PO	РО	PO	PSO	PSO	PSO							
↓ CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	I	2	-	-	-	-	1	1	-	2	1	1
CO2	3	-	2	2	-	2	1	2	-	-	-	-	2	3	-
CO3	2	2	-	1	2	-	-	-	-	-	-	-	2	-	1
CO4	3	1	2	-	1	-	1	-	-	2	1	-	1	2	-
CO5	2	3	1	-	-	-	-	-	-	1	-	-	2	1	1
CO (total)	12	7	6	3	5	2	2	2	-	4	2	-	9	7	3
CO(avg)	2	1	1	1	1	1	1	1	-	1	1	-	2	1	1

SGGSIE&T, Nanded Revised T. Y. B. Tech Curriculum Academic year 2020-21 36 | 6 4

Syllabus										
	Operational Amplifier									
Unit 1	OpAmp (741), specifications, packaging, characteristics, ac and dc parameters and their measurements, noise and frequency compensation.									
	Linear OpAmp Circuits									
Unit 2	Inverting and non-inverting amplifiers, summing amplifier, differential amplifier, instrumentation amplifier and its applications, voltage to current converters and current to voltage converters, low voltage ac and dc voltmeter.									
	Nonlinear OpAmp Circuits									
Unit 3	Differentiator, integrator, comparator and its characteristics, Schmitt trigger, window detector, peak detector, precision rectifier, log and antilog amplifier.									
	Voltage Regulators									
Unit 4	Design of series voltage regulator using discrete components, protection circuits and pre- regulator, design of fixed voltage regulators (IC 78xx and 79xx), adjustable regulators (LM 317, 337), precision voltage regulators (IC 723), design of switching regulators (IC 78s40).									
	Active Filters									
Unit 5	Introduction, active filters, first order and second order low pass, high pass band pass, band reject and all pass filters.									
	Waveform Generators									
Unit 6	Square wave, triangular wave and sawtooth wave generator, phase shift and Wein bridge oscillators and its design, function Generator using ICL 8038.									
	Specialized ICs and Their Applications									
Unit 7	Design of IC 555 and its applications, PLL IC 565 and its applications, design of voltmeter using 7106/07, monolithic power amplifiers LM 380 and TBA 810									
Text/Reference B	ooks:									
1.	Ramakant Gaikwad, OPAMPS and Linear Integrated Circuits, PHI/Pearson Education.									
2.	S.N. Talbar and T.R. Sontakke, Electronic Circuit Design, SadhuSudha Prakashan, Nanded									
3.	K.R. Botkar, Integrated Circuits, Khanna Publishers, Delhi.									

PCC-EC-317	Digita	al Communication									
Teaching scheme	:		Examination scheme:								
Lecture		3 hrs /week	Theory								
Tutorial		hrs/week	In Semester Evaluation : 20 Marks Mid Semester Examination : 30 Marks								
Practical		2 hrs/week	End Semester Examination : 50 Marks								
Credit		4									
Course Objective	es:										
I. Knowledge of signal representation in graphical manner and to develop the different dig modulation techniques.											
2.	Knowledge	Knowledge about mathematical background for Information and Coding Theory.									
3.	Analyze the	e linear and convolution b	block codes.								
4.	To understa	and the concept of spread	spectrum communication system.								
5.		•	tional skills and foundations needed in areas like MIMO h will be taught in further courses.								
Course Outcome	s: On succes	sful completion of this co	purse, students will be able to								
1.	Understand	the principles of digital	communications systems.								
2.	Characteriz	e communication signal a	and system.								
3.	Explain imp	portance and use of chann	nel coding in digital communication.								
4.	Work out th	e design implementation	of different types of encoding and decoding techniques.								
5.	Understand	the working principle of	multi-user systems.								

PO/PSO	РО	PO	PO	PO	РО	PSO	PSO	PSO							
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	1	0	1	0	1	1	0	0	1	0	2	2	2	2
CO2	2	2	0	2	0	1	0	0	0	1	0	2	2	2	2
CO3	1	1	0	2	0	1	1	0	1	1	0	2	2	2	2
CO4	1	2	3	3	0	1	0	0	1	1	0	1	2	2	2
CO5	1	2	0	2	0	1	1	0	0	1	0	1	2	2	2
CO (total)	8	7	3	10	0	5	3	0	2	5	0	8	10	10	10
CO(avg)	2	1	1	2	0	1	1	0	1	1	0	2	2	2	2

Syllabus	
Unit 1	Signal Space Analysis: Geometric representation of signal, Conversion of the continuous
	AWGN channel into a vector channel. Maximum likelihood Decoding. Correlation receiver.
	Probability of error.
	Passband Digital Transmission: Passband Transmission model. Coherent phase-shift
Unit 2	keying. Hybrid amplitude/phase modulation schemes. Coherent frequency shift-keying.
	Detection of signal with unknown phase.
	Introduction to Information Theory: Mathematical models for information sources, a
Unit 3	logarithmic measure of information, Lossless coding for information sources, Lossy data
	compression, Channel models and channel capacity.
	Linear Block and Convolutional Channel Codes: Basic Definition, General properties of
Unit 4	linear block codes, Some specific linear block codes, Cyclic codes, BCH codes, Reed-
	Solomon codes. The structure of convolution codes, Decoding of convolution codes
	Spread Spectrum Techniques: Models of spread spectrum digital communication system,
Unit 5	direct sequence spread spectrum signals, frequency-hopped spread spectrum signals, other
	types of spread spectrum signals.
	Multiuser Communication: Introduction to multiple access techniques, capacity of multiple
Unit 6	access methods, Multiuser detection in CDMA systems, Multiuser MIMO Systems for
	broadcast channels, Random access methods.
Unit 7	Advanced Communication Systems: 5G, Cognitive Radio Networks, Dynamic Spectrum
	Access, Cooperative Communication.
Text/Reference B	ooks:
1.	J. G. Proakis, Digital Communication, Fourth Edition, McGraw Hill
2.	Simon Haykin, Digital Communication, John Wiley & Sons Pvt. Ltd.
3.	B. P. Lathi, Modern Analog and Digital Communication Systems, Prism Sounders.
4.	Haykin S., "Communications Systems", 4th Ed., John Wiley and Sons, 2001.

PCC-EC-318	Dig	jital Signal Processin	ng								
Teaching scheme	:		Examination scheme:								
Lecture		3 hrs /week	Theory								
Tutorial		hrs/week	In Semester Evaluation : 20 Marks								
Practical		hrs/week	Mid Semester Examination : 30 Marks								
Credit		3	End Semester Examination : 50 Marks								
Course Objective	s:										
1.	1. Coverage of Characterization and classification of signals, signal processing operations.										
2.	Knowledge of Discrete time Fourier transform, Discrete Fourier Transform, Discrete Fourier Transform properties, Computation of the DFT of real sequences										
3.		ge of Z-transform, R 1 properties.	OC of the rational Z-transform, Inverse Z-transform, Z-								
4.	-	of digital filters, All p functions, Complementa	bass Transfer function, Minimum phase and maximum phase ary transfer functions.								
5.		Block diagram represents, FIR and IIR filter des	ntation, equivalent structures, Basic FIR structures, Basic IIR								
Course Outcomes	s: On succ	essful completion of th	is course, students will be able to								
1.	Represer	t signals mathematicall	y in continuous and discrete time and frequency domain.								
2.	Get the r	Get the response of an LSI system to different signals.									
3.	Design o	f different types of digi	tal filters for various applications								

PO/PSO	РО	РО	РО	PO	РО	PSO	PSO	PSO							
↓ CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	3	2	3	3	2	2	2	2	2	2	3	3	2	2
CO2	2	3	2	3	3	2	2	2	2	2	2	3	3	2	2
CO3	2	3	2	3	3	2	2	2	2	2	2	3	3	2	2
CO4	2	3	3	3	3	2	2	2	2	2	2	3	3	2	2
CO (total)	8	12	9	12	12	8	8	8	8	8	8	12	12	8	8
CO(avg)	2	3	2	3	3	2	2	2	2	2	2	3	3	2	2

Syllabus	
Unit 1	Signals, Systems, and Signal Processing, Classification of Signals, The Concept of Frequency in Continuous-Time and Discrete-Time Signals, Analog-to-Digital and Digital-to-Analog Conversion.
Unit 2	Discrete-Time Signals, Discrete-Time Systems, Analysis of Discrete-Time Linear Time- Invariant systems, Discrete-Time Systems Described by Difference Equations, Implementation of Discrete-Time Systems, Correlation of Discrete-Time Signals
Unit 3	The z-Transform, Properties of the z-Transform, Rational z-Transforms, Inversion of the z- Transform, Analysis of Linear Time Invariant Systems in the z-Domain.
Unit 4	Frequency Analysis of Discrete-Time Signals: Fourier Series and Fourier Trabsform, Frequency Analysis of Discrete-Time Signals: The Discrete Time Fourier Series (DTFS), The Discrete-Time Fourier Transform (DTFT) and the Discrete Fourier Transform (DFT). Parseval's Theorem, Frequency-Domain and Time-Domain Signal Properties, Properties of the Fourier Transform for Discrete-Time Signals
Unit 5	Frequency Domain Sampling : The Discrete Fourier Transform, Properties of the DFT, Linear Filtering Methods Based on the DFT, Frequency Analysis of Signals Using the DFT, Efficient Computation of the DFT: FFT Algorithms : Decimation in frequency and Decimation in Time radix 2 algorithms.
Unit 6	Design of FIR frequency selective Filters (LP, HP, BP, BS filters), Window method, Frequency Sampling methods (Type I and Type – II methods), Design of IIR Filters From Analog Filters, Butterworth approximation, Bilinear transformation, Introduction to multirate signal processing, Applications of DSP.
Text/Reference B	ooks:
1.	S. K. Mitra, Digital signal processing- A computer based approach, Tata McGraw Hill, 2002
2.	A. V. Oppenheim, R, W, Schafer, Discrete time signal processing, PHI
3.	J. G. Proakis, D. G. Manolakis, Digital signal processing –Principles, algorithms and applications, PHI
4.	L.R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing, Prentice Hall, 1992.
5. 6.	J.R. Johnson, Introduction to Digital Signal Processing, Prentice Hall, 1992. D.J.DeFatta, J. G. Lucas and W.S.Hodgkiss, Digital Signal Processing, John Wiley&
	Sons, 1988.

PCC-EC-319	Emb	edded Systems								
Teaching scheme	:		Examination scheme:							
Lecture		3 hrs/week	Theory							
Tutorial		hrs/week	In Semester Evaluation : 20 Marks							
Practical		2 hrs/week	Mid Semester Examination : 30 Marks							
Credit		4	End Semester Examination : 50 Marks							
Course Objective	es:	•								
1.	Knowledge of design and development of an embedded system									
2.	Learn archi	Learn architecture of ARM and embedded programming								
3.	Learn inter	facing with external dev	ices and programming							
4.	Knowledge	of different wired and w	eless protocols							
5.	Understand	ling of RTOS and its use	e for engineering applications							
Course Outcome	s: On succes	sful completion of this c	course, students will be able to							
1.	Explain AF	RM based microcontrolle	er architecture							
2.	Write embe	edded C programs for A	RM based microcontroller							
3.	Identify bu	ilt-in peripherals and wr	ite programs for interfacing of I/O devices							
4.	Understand	the different wired and	wireless communication interfaces							
5.	Design real	world applications usin	g the concepts of RTOS.							

PO/PSO	РО	PO	РО	PSO	PSO	PSO									
↓ CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	2	1	1	-	-	-	-	-	-	-	-	-	-	-	-
CO2	1	2	1	I	I	I	I	-	-	-	I	-	-	-	-
CO3	2	1	2	-	2	-	-	-	-	-	-	-	-	-	-
CO4	1	2	1	-	1	-	-	-	-	-	-	-	-	-	-
CO5	1	1	3	-	1	-	-	-	-	-	-	-	-	-	-
CO (total)	7	7	8	-	4	-	-	-	-	-	-	-	-	-	-
CO(avg)	1	1	2	-	1	-	-	-	-	-	-	-	-	-	-

Syllabus	
	Introduction to Embedded System:
Unit 1	Embedded system definition, Examples, Design metrics, Processor Technologies, IC Technologies, Design Technologies, Custom Single Purpose Processor design: Basic architecture, FSM and FSMD with example, General purpose processor architecture, Classification-GPP, ASIP, DSP.
	Embedded Firmware Design and Development:
Unit 2	Super Loop based Approach, Embedded Operating System based Approach, Embedded Firmware development Languages-Assembly Level based development, High Level Language based Development, Integrated Development Environment, Editor, Assembler, Liker, Loader, Compiler, Cross compiler, Embedded C-Data types, Arithmetic and Logical operations, Brach and Loop operations, Array and Pointers, Character and string, Functions, Pre-processor and Macros, Coding ISRs, Recursive and Re-entrant functions.
	ARM Processor Architecture and Interfacing
Unit 3	ARM Features, detail Architecture, operating modes, LPC-2148 Architecture, GPIO and its interfacing with LED and Key switch with programming, Interrupt structure and its programming.
	LPC 2148 Interfacing:
Unit 4	On chip devices like-Timer/Counter, Watchdog Timer, PWM, ADC, DAC, Serial Interfacing, Interfacing of Keypad, Relays and Stepper Motor.
	Real Time Operating System:
Unit 5	Fundamentals of Real Time Operating System(RTOS concepts), Multitasking, Kernel structure, Task Management system, TCB, Scheduling, Inter-process communication, Introduction of MUCOS-II.
	Communication protocol:
Unit 6	LPC 2148 on chip wired communication standards like SPI, I2C, CAN, USB, Wireless communication standards: IrDA, Bluetooth(BLE), WiFi (IEEE802.11), Zigbee, RF modules, Embedded Application (Washing Machine, Automatic Vending Machine, Digital Camera, Automotive Embedded Systems, Robotics, etc.) development using Raspberry Pi.
Text/Reference Bo	ooks:
1.	Frank Vahid, Embedded System, Wiley India, 2002
2.	Shibu K. V, Introduction to Embedded System, TMH, 2017
3.	Rajkamal, Embedded Systems, TMH, 2008
4.	Sloss, Symes, Wright, ARM System Developers Guide, Elsevier Morgan Kaufman, 2005
5.	LPC2148 User Manuals and data sheets

Program Elective - II

PEC-EC320	Mach	ine Learning								
Teaching scheme	:		Examination scheme:							
Lecture		3 hrs /week	Theory							
Tutorial		hrs/week	In Semester Evaluation : 20 Marks							
Practical		2 hrs/week	Mid Semester Examination : 30 Marks							
Credit		4	End Semester Examination : 50 Marks							
Course Objective	s:									
1.	To study ba	sic concepts in Machine Le	arning.							
2.	To provide knowledge of models, methods and tools used to solve regression, classification, feature selection and density estimation problems.									
3.	To understand Machine Learning theories, such as Bayes classifier, linear discriminant analysis.									
4.	To explore	knowledge of recognition, o	decision making and statistical learning problems.							
5.	To provide practical pro	-	alyzing and applying Machine Learning techniques in							
Course Outcomes	s: On success	sful completion of this cour	se, students will be able to							
1.	Describe co classificatio	-	ing and its system, learning and adaptation for the							
2.		· · ·	a and Maximum-likelihood parameter estimation and ilistic models such as Gaussian Model.							
3.	Perform data clustering in an unsupervised manner by means of various algorithms, such as parzen window density estimate									
4.	Understand applications	*	ion using K-means and K-nearest neighbour and its							

PO/PSO	PO	PO	PO	PO	PO	РО	PO	РО	PO	PO	PO	РО	PSO	PSO	PSO
↓ CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	-	-	-	-	-	-	-	-	-	-	-	2	2	2
CO2	3	2	2	1	2	-	-	-	-	-	-	-	2	2	2
CO3	3	2	2	1	2	-	-	-	-	-	-	-	2	2	2
CO4	3	-	-	1	2	-	-	-	-	-	-	-	2	2	2
CO (total)	12	4	4	3	6	-	-	-	-	-	-	-	8	8	8
CO(avg)	3	2	2	1	2	-	-	-	-	-	-	-	2	2	2

Syllabus	
Unit 1	Introduction Machine perception, pattern recognition example, pattern recognition systems, the design cycle, learning and adaptation.
Unit 2	Bayesian Decision Theory Introduction, continuous features – two categories classifications, minimum error-rate classification- zero–one loss function, classifiers, discriminant functions, and decision surfaces.
Unit 3	Normal Density Univariate and multivariate density, discriminant functions for the normal densitydifferent cases, Bayes decision theory – discrete features, compound Bayesian decision theory and context.
Unit 4	Un-supervised Learning and Clustering Introduction, mixture densities and identifiability, maximum likelihood estimates, application to normal mixtures, K-means clustering. Date description and clustering – similarity measures, criteria function for clustering.
Unit 5	Parameter Estimation Introduction, maximum likelihood estimation, Bayesian estimation, Bayesian parameter estimation–Gaussian case, Introduction, Discrete–time markov process, extensions to hidden Markov models, three basic problems for HMMs
Unit 6	Dimensionality reduction: Principal component analysis, non-linear component analysis; Low dimensional representations and multi dimensional scaling.
Text/Reference B	ooks:
1.	Pattern classifications, Richard O. Duda, Peter E. Hart, David G. Stroke. Wiley Pub, Second Edition.
2.	Fundamentals of speech Recognition, Lawerence Rabiner, Biing, Hwang Juang Pearson education.
3.	Pattern Recognition and Image Analysis – Earl Gose, Richard John baugh, Steve Jost PHI 2004
4.	T. M. Ross, Fuzzy logic, Mc-Graw Hill Inc.

PEC-EC-321	Comp	outer Security									
Teaching scheme	:		Examination scheme:								
Lecture		3 hrs /week	Theory								
Tutorial		hrs/week	In Semester Evaluation : 20 Marks								
Practical		hrs/week	Mid Semester Examination : 30 Marks								
Credit		3	End Semester Examination : 50 Marks								
Course Objective	es:										
1.	1. To develop a basic understanding of cryptography, how it has evolved, and some k encryption techniques used today.										
2.	To gain the	To gain the knowledge about Network Security Devices (Firewall, IDS, etc).									
3.	To understa	nd and analyze netwo	rk traffic and protocols.								
4.	To understa	nd security requireme	nts of database systems								
5.	To develop policies.	understanding of see	curity policies and protocols for implementation of these								
Course Outcome	s: On success	sful completion of this	course, students will be able to								
1.	Understand	necessity of computin	ng security.								
2.	Describe the	e various encryption a	nd description terminology.								
3.	Identify major types of threats and attack to computer security and develop the strategy to protect computer organization from treats and attacks.										
4.	Understand	Understand how security policies, standards and practices are developed.									
5.	Understand	security model in pro-	gram, network and data base.								

PO/PSO➡ ↓ CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	2	3	2	3	2	2	2	2	2	2	2	3	2	2	2
CO2	2	3	2	3	3	2	2	2	2	2	2	3	2	2	2
CO3	2	3	2	3	3	2	2	2	2	2	2	3	3	2	2
CO4	2	3	6	2	2	2	2	2	2	2	2	3	2	2	2
CO5	2	3	3	2	2	2	2	2	2	2	2	3	2	2	2
CO (total)	10	15	12	13	12	10	10	10	10	10	10	15	11	10	10
CO(avg)	2	3	2	3	2	2	2	2	2	2	2	3	2	2	2

Syllabus	
	Elementary Cryptography
Unit 1	Terminology and Background, Substitution Ciphers, Transpositions, Making Good Encryption Algorithms, Data Encryption Standard, AES Encryption Algorithm, Public Key Encryption, Cryptographic Hash Functions, Key Exchange, Digital Signatures, Certificates.
	Program Security
Unit 2	Secure programs, Non-malicious Program Errors, Viruses, Targeted Malicious code, Controls against Program Threat, Control of Access to General Objects, User Authentication, Good Coding Practices, and Open Web Application Security Project Top 10 Flaws, Common Weakness Enumeration Top 25 Most Dangerous Software Errors.
	Security In Networks
Unit 3	Threats in networks, Encryption, Virtual Private Networks, PKI, SSH, SSL, IPSec, Content Integrity, Access Controls, Wireless Security, Honeypots, Traffic Flow Security, Firewalls, Intrusion Detection Systems, Secure e-mail.
	Security In Databases
Unit 4	Security requirements of database systems, Reliability and Integrity in databases, Two Phase Update, Redundancy/Internal Consistency, Recovery, Concurrency/Consistency, Monitors, Sensitive Data, Types of disclosures, Inference.
	Security Models And Standards
Unit 5	Secure SDLC, Secure Application Testing, Security architecture models, Trusted Computing Base, Bell-LaPadula Confidentiality Model, Biba Integrity Model, Graham-Denning Access Control Model, Harrison-Ruzzo-Ulman Model, Secure Frameworks, COSO, CobiT, Compliances, PCI DSS, Security Standards - ISO 27000 family of standards, NIST.
Text/Reference B	ooks:
1.	Charles P. Pfleeger, Shari Lawrence Pfleeger, "Security in Computing", Fourth Edition, Pearson Education, 2007.
2.	Matt Bishop, "Introduction to Computer Security", Addison-Wesley, 2004.
3.	Michael Whitman, Herbert J. Mattord, "Management of Information Security", Third Edition, Course Technology, 2010.
4.	William Stallings, "Cryptography and Network Security: Principles and Practices", Fifth Edition, Prentice Hall, 2010.
5.	Michael Howard, David LeBlanc, John Viega, "24 Deadly Sins of Software Security: Programming Flaws and How to Fix Them", First Edition, Mc Graw Hill Osborne Media, 2009.
6.	Matt Bishop, "Computer Security: Art and Science", First Edition, Addison-Wesley, 2002.
7.	https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
8.	http://cwe.mitre.org/top25/index.html
9.	William Stallings, "Cryptography and Network Security: Principles and Practices", Fifth Edition, Prentice Hall, 2010.

PEC-EC-322	Digita	l VLSI Design								
Teaching scheme): :		Examination scheme:							
Lecture		3 hrs /week	Theory							
Tutorial		hrs/week	In Semester Evaluation : 20 Marks							
Practical		2 hrs/week	Mid Semester Examination : 30 Marks							
Credit		4	End Semester Examination : 50 Marks							
Course Objective	es:									
1.	Understandi	ing CMOS digital integrate	d circuits.							
2.	To find prop	pagation delay, noise margi	ns, and power dissipation in the digital VLSI circuits.							
3.	Design of co	Design of combinational and sequential circuits using various logic styles.								
4.	Designing S	RAM and DRAM in VLSI	circuits.							
5.	To introduce on-chips.	e architecture and design co	ncepts underlying modern complex VLSIs and system-							
Course Outcome	s: On success	sful completion of this cour	se, students will be able to							
1.	Understandi performance	•	ctor technology, and how it impacts scaling and							
2.	To analyze	the performance and charac	teristics of CMOS inverter.							
3.	•	ferent performance issues vs. speed etc).	and the inherent trade-offs involved in system design							
4.	Implement of	digital logic designs of vari	ous types using VLSI circuits.							
5.	Design and constraints	simulate VLSI design pr	roject having a set of objective criteria and design							

PO/PSO	РО	РО	PO	PO	PO	PO	РО	PO	PO	PO	РО	PO	PSO	PSO	PSO
↓ CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	2	1	2	1	-	-	1	1	-	-	1	1	-
CO2	3	3	2	1	2	1	-	-	2	1	-	-	2	2	-
CO3	3	3	2	1	2	1	-	-	2	1	-	-	2	2	-
CO4	3	3	2	1	2	1	-	-	2	1	-	-	2	2	-
CO5	3	3	2	1	2	1	-	-	2	1	-	-	1	3	-
CO (total)	15	15	10	5	10	5	-	-	9	5	-	-	8	10	-
CO(avg)	3	3	2	1	2	1	-	-	2	1	-	-	1	2	-

Syllabus	
	Introduction
Unit 1	Issues in digital IC design; Quality metrics of a digital design. CMOS IC manufacturing processes; Design rules; Packaging ICs.
	The manufacturing process and Devices:
Unit 2	The diode; The MOS(FET) transistor; Process variations. Interconnect parameters; Electrical wire models; SPICE wire models.
	The CMOS inverter:
Unit 3	The static CMOS inverter; Evaluating robustness of CMOS inverter; Dynamic performance of CMOS inverter; Power, energy and energy delay; Technology scaling and its impact on the inverter metrics.
Unit 4	Designing Combinational logic gates in CMOS:
	Static CMOS design; Dynamic CMOS design; Perspectives.
	Designing sequential logic circuits:
Unit 5	Static latches and registers; Dynamic latches and registers; Alternative register styles; Pipelining - an approach to optimize sequential circuits; Non-bistable sequential circuits; Perspectives-choosing a clocking strategy.
Unit 6	Implementation strategies for digital ICs: From custom to semicustom and structured array design approaches; Custom circuit design; Cell-based design methodology; Array-based implementation approaches.
Unit 7	Datapath in digital processor architectures; The adder; The multiplier; The shifter; Other arithmetic operators; Power and speed trade-off in data path structures; Perspectives-design as trade-off. SRAM; DRAM; Associated circuits.
Text/Reference B	ooks:
1.	Digital integrated circuits: a design perspective, Jan M. Rabaey, Anantha Chandrakasan, Borivoje Nikolic, PHI
2.	Inroduction to VLSI circuits and systems, John P. Uyemura, Wliey
3.	CMOS VLSI Design, Weste and Harris, Addison Wesley.
4.	Modern VLSI Design - System-on-chip Design, Wayne Wolf, Prentice Hall India/Pearson Education
5.	CMOS Digital Integrated Circuits, Analysis andDesign, Sung-Mo Kang andYusuf Lablebici, Tata McGraw-Hill Edition
	1

PEC-EC-323	Robo	tics							
Teaching scheme	:		Examination scheme:						
Lecture		3 hrs/week	Theory						
Tutorial		hrs/week	In Semester Evaluation : 20 Marks						
Practical		2 hrs/week	Mid Semester Examination : 30 Marks						
Credit		4	End Semester Examination : 50 Marks						
Course Objective	es:	1							
1.	To learn ex	citing fields of Unman	ned Aerial Robotics and quadrotors						
2.	To understa	nd basics of control st	rategies and selection of components.						
3.	To understa	nd the concept of kine	ematics of quadrotors						
4.	To derive the	ne dynamic equations of	of motion for quadrotors						
5.	Develop pla	anar and 3-D quadrotor	rs						
6.	To enable q	uadrotors to perform r	nore agile maneuvers and to operate.						
Course Outcome	s: On succes	sful completion of this	course, students will be able to						
1.	Introduce to	the exciting fields of	Unmanned Aerial Robotics(UARs) and quadrotors						
2.	Learn about basics of control strategies and realize how careful component selection and design affects the vehicles' performance								
3.	Develop lin	ear controllers, planar	and 3-D models of Quadrotors						
4.	Know how	to enable Quadrotors t	to perform more agile maneuvers and operate.						

PO/PSO ➡	РО	PO	РО	PO	PO	PSO	PSO	PSO							
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	2	2	-	-	-	-	-	-	-	2	2	2
CO2	3	2	2	2	2	-	-	-	-	-	-	-	3	3	3
CO3	3	3	1	2	3	-	-	-	-	-	-	-	3	3	2
CO4	3	2	2	2	2	-	-	-	-	-	-	-	2	2	3
CO (total)	12	10	8	8	9	-	-	-	-	-	-	-	10	10	10
CO (avg)	3	3	2	2	3	-	-	-	-	-	-	-	3	3	3

Syllabus	
Unit 1	Introduction to Robotics
	Introduction - brief history, types, classification and usage, Science and Technology of robots, Some useful websites, textbooks and research journals.
Unit 2	Aerial Robotics
	Unmanned Aerial Vehicles, Quadrotors, Key Components of Autonomous Flight, State Estimation, Applications, Meet the TAs, Basic Mechanics, Dynamics and 1-D Linear Control, Design Considerations, Agility and Manoeuvrability, Component Selection, Effects of Size, Supplementary Material: Introduction, Supplementary Material: Dynamical Systems,
	Supplementary Material: Rates of Convergence
Unit 3	Geometry and Mechanics
	Transformations, Rotations, Euler Angles, Axis/Angle Representations for Rotations, Angular Velocity, Supplementary Material: Rigid-Body Displacements, Formulation, Newton-Euler Equations, Principal Axes and Principal Moments of Inertia, Quadrotor Equations of Motion.
Unit 4	Planning and Control
	2-D Quadrotor Control, 3-D Quadrotor Control, Time, Motion, and Trajectories, Motion Planning for Quadrotors,
	Supplementary Material: Minimum Velocity Trajectories from the Euler-Lagrange Equations, Solving for Coefficients of Minimum Jerk Trajectories,
	Minimum Velocity Trajectories, Linearization of Quadrotor Equations of Motion.
Unit 5	Advanced Topics
	Nonlinear Control, Control of Multiple Robots
Text/Reference I	Books:
1.	Fu, K., Gonzalez, R. and Lee, C. S. G., Robotics: Control, Sensing, Vision and Intelligence, McGraw - Hill, 1987.
2.	Ghosal, A., Robotics: Fundamental Concepts and Analysis, Oxford University Press, 2nd reprint, 2008.
3.	"Anatomy of Automation" – Amber G.H & P.S. Amber, PrenticeHall.
4.	J.J. Craig, Robotics, Addison-Wesley, 1986.
5.	This course is available on <u>https://www.coursera.org/</u>

РЕС-ЕС-324	Satel	ite Communication	l							
Teaching scheme			Examination scheme:							
Lecture		3 hrs/week	Theory							
Tutorial		hrs/week	In Semester Evaluation : 20 Marks							
Practical		2 hrs/week	Mid Semester Examination : 30 Marks							
Credit		4	End Semester Examination : 50 Marks							
Course Objective	5:	1								
1.	To be conv	ersant with orbital aspe	ects of satellite communication.							
2.	To be able to design satellite link 3.									
3.	To be knowing about digital satellite links.									
4.	To be famil	iar with multi-access s	schemes.							
5.	To be famil	iar with earth station to	echnology.							
Course Outcomes	: On succes	sful completion of this	course, students will be able to							
1.	Understand	the principles of satel	lite communications system.							
2.	To understa	and different satellite o	rbits.							
3.	To understand the construction of satellite systems (Space Segment)									
4.	To understa	and the communication	n link between satellite and ground station							
5.	To understa	and the satellite Naviga	ation systems							

PO/PSO ⇒	РО	РО	РО	РО	РО	PO	PO	РО	PO	PO	PO	РО	PSO	PSO	PSO
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	2	0	0	2	2	0	0	1	0	2	2	2	2
CO2	3	3	3	2	0	1	0	0	0	1	0	2	2	2	2
CO3	2	2	2	2	1	1	0	0	0	1	0	1	2	2	2
CO4	3	3	3	2	1	1	1	0	1	1	0	1	2	2	2
CO5	1	1	0	1	2	1	1	0	1	1	0	1	2	2	2
CO (total)	11	10	10	7	4	6	4	0	2	5	0	7	10	10	10
CO(avg)	3	2	2	1	1	1	1	0	1	1	0	1	2	2	2

Syllabus											
	Basic Principles										
Unit 1	General features, frequency allocation for satellite services, properties of satellite communication systems.										
	Satellite Orbits										
Unit 2	Introduction, Kepler's laws, orbital dynamics, orbital characteristics, satellite spacing and orbital capacity, angle of elevation, eclipses, launching and positioning, satellite drift and station keeping.										
	Satellite Construction (Space Segment)										
Unit 3	Introduction; altitude and orbit control system; telemetry, tracking and command; power systems, communication subsystems, antenna subsystem, equipment reliability and space qualification.										
	Satellite Links										
Unit 4	Introduction, general link design equation, system noise temperature, uplink design, downlink design, complete link design, effects of rain.										
	Earth Station Introduction, earth station subsystem, different types of earth stations.										
	The Space Segment Access and Utilization										
Unit 5	Introduction, space segment access methods, TDMA, FDMA, CDMA, SDMA, assignment methods.										
	Satellite Navigation										
Unit 6	Radio and Satellite Navigation, GPS Position Location Principles, GPS Receivers and Codes, Satellite Signal Acquisition, GPS Navigation Messages, GPS Signal Levels, Timing Accuracy, GPS Receiver Operation, Differential GPS, Introduction to Indian Regional Navigation Satellite System (IRNSS)-NAVIC.										
Text/Reference B	Books:										
1.	Timothy Pratt, Charles W. Bostian, Satellite Communications, John Wiley & Sons.										
2.	Dennis Roddy, Satellite Communications, 3rd Ed., Mc. Graw-Hill International Ed. 2001.										

PEC-EC-325	Power	r Electronics								
Teaching scheme	•		Examination scheme:							
Lecture		3 hrs /week	Theory							
Tutorial		hrs/week	 In Semester Evaluation : 20 Marks Mid Semester Examination : 30 Marks 							
Practical		2 hrs/week	End Semester Examination : 50 Marks							
Credit		4								
Course Objective	es:									
1.		e students to the basic , their practical application	theory of power semiconductor devices and passive as in power electronics							
2.		ze students to the principl circuits and their application	e of operation, design and synthesis of different power ons.							
3.	To provide	strong foundation for furth	er study of power electronic circuits and systems.							
Course Outcome	s: On success	sful completion of this cou	ourse, students will be able to							
1.	Design & in	plement a triggering / gate drive circuit for a power converters								
2.	Design and	analyze different line com	nmutated converter, inverters circuits.							
3.	Understand	the fundamental principle	s and applications of power electronics circuits.							
4.	Solve proble	ems and design switching	regulators according to specifications.							
5.	Design a sin	ngle phase AC voltage con	troller i.e. light dimmer / fan regulator							
6.	To understa	nd the operation of Dual c	onverters, Cyclo converters and Multilevel inverters.							
7.	Understand	the operation of Dual con-	verters, Cyclo converters and Multilevel inverters.							
8.	Design a ste	ep down chopper								

PO/PSO	РО	PO	PO	PO	PO	РО	PO	РО	PO	РО	PO	РО	PSO	PSO	PSO
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1	1	-	-	2	2	-	1	2	1	-	2	1
CO2	2	2	3	2	1	2	2	-	1	2	1	-	2	1	2
CO3	2	3	2	-	-	1	-	-	-	2	1	-	1	-	1
CO4	2	2	3	2	1	2	-	2	1	-	2	1	1	2	2
CO5	2	3	2	1	2	-	-	1	2	-	2	1	2	-	-
CO6	2	2	2	-	2	1	-	-	1	-	-	-	1	1	2
CO7	1	2	2	-	-	-	-	1	-	-	-	-	1	-	-
CO8	3	2	2	2	-	-	2	-	-	2	1	2	2	-	2
CO (total)	17	18	17	8	6	6	6	6	5	7	9	5	10	6	10
CO(avg)	2	2	2	1	1	1	1	1	1	1	1	1	1	1	1

SGGSIE&T, Nanded

Syllabus										
	Power Semiconductor Devices									
Unit 1	Power diodes, power transistor, power MOSFET and IGBT-construction, operation,									
	steady state and switching characteristics.									
	Thyristor Families and Triggering Devices									
Unit 2	SCR, TRIAC, GTO, LASCR, UJT, PUT and DIAC - construction, steady state and									
	switching characteristics, performance parameters, SCR protection circuits.									
	Triggering and Commutation of SCR									
Unit 3	R and RC triggering, UJT triggering circuits, different commutation techniques -									
	circuits and principles of operation.									
	Controlled Converters									
Unit 4	1phase and 3phase fully and half controlled converters, their harmonic and power									
	factor analysis, dual converters, effect of load and source inductance, power factor									
	improvement techniques.									
	AC Voltage Controllers									
Unit 5	Principles of on/off control and phase control, 1phase ac voltage controllers with R and									
	RL loads, cyclo-converters, reduction of output harmonics in cyclo-converters.									
	DC Choppers									
Unit 6	Principles of operation of step-down and step-up choppers, 2-Quadrant and 4-									
	Quadrant choppers, voltage and current commutated choppers, use of source filter.									
Unit 7	Inverters									
	Parallel inverters, series inverters, 3phase inverters.									
Text/Reference B										
1.	M.H. Rashid, Power Electronics, PHI.									
2.	P.S. Bimbra, Power Electronics, Khanna Publishers.									
3.	M. Ramamoorthy, An Introduction to Thyristor and Their Applications, Affiliated East									
	West Press.									
4.	P.C. Sen, Power Electronics, Tata McGraw Hill.									
5.	General Electric, SCR Manual, Prentice Hall.									
6.	Edward Hughes, Electrical Technology, ELBS/Longman.									

PEC-EC-326	Consu	imer Electronics							
Teaching scheme	:		Examination scheme:						
Lecture		3 hrs /week	Theory						
Tutorial		hrs/week	In Semester Evaluation : 20 Marks Mid Semester Examination : 30 Marks						
Practical		2 hrs/week	End Semester Examination : 50 Marks						
Credit		4							
Course Objective	es:		1						
1.	Basic charae	cteristics of sound signals							
2.	Knowledge	of audio amplifiers, micro	ophones and speakers.						
3.	Knowledge	of public address system.							
4.	Television (TV) fundamentals and TV	⁷ transmitter & receiver						
5.	To understa	nd working principle of v	arious home appliances.						
Course Outcome	s: On success	sful completion of this co	urse, students will be able to						
1.	Troubleshoo	ot different types of micro	phones and speakers.						
2.	Maintain au	dio systems.							
3.	Analyze the	composite signal used in	TV signal transmission.						
4.	Troubleshoo	ot color TV receivers.							
5.	Maintain va	rious consumer electronic	es appliances.						

PO/PSO	PO	PSO	PSO	PSO											
LCO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	1	3	1	1	2	3	1	1	1	1	1	2	2	2
CO2	3	1	3	2	1	2	2	1	1	1	1	1	2	2	2
CO3	3	1	3	2	1	2	2	1	1	1	1	1	2	2	2
CO4	3	1	3	2	1	2	2	1	1	1	1	1	2	2	2
CO5	3	1	3	1	1	2	2	1	1	1	1	1	2	2	2
CO (total)	15	5	15	8	5	10	10	5	5	5	5	5	10	10	10
CO(avg)	3	1	3	2	1	2	2	1	1	1	1	1	2	2	2

Syllabus	
	Audio fundamentals:
	Basic characteristics of sound signal: level and loudness, pitch, frequency response, fidelity,
	sensitivity and selectivity etc.
	Audio amplifiers: mono, stereo.
Unit 1	Microphone: working principle and characteristics, Types: carbon, condenser, crystal,
	electrets and tie clip etc.
	Speakers: working principle and characteristics, Types: electrostatic, dynamic, permanent
	magnet etc., woofers, tweeter and mid range, wireless,
	Troubleshooting procedure.
	Audio systems:
	Block diagram and operation of CD player, types of CD player
	Components used for CD mechanism: CD pick-up assembly, gear system, drive motors, CD
	lens
Unit 2	Block diagram of Hi Fi amplifier and its working
	Public address (PA) System: block diagram and operation, speaker impedance matching and
	characteristics
	Home theater system, troubleshooting procedure of audio systems, block diagram and
	working of MP3.
	Television fundamentals and transmitter:
	Concept: Aspect ratio, image continuity, interlaces scanning. Scanning periods-horizontal and
	vertical, vertical and horizontal resolution.
	Vestigial sideband transmission, bandwidth for color signal, characteristics of color signal,
	compatibility.
Unit 3	Colour theory, grassman's law, additive and substractive color mixing, composite video
	signal-pedestal height, blanking pulse, color burst, horizontal sync pulse details, vertical sync
	pulse details, equalizing pulses.
	CCIR-B standards for color signal transmission and reception, positive and negative
	modulation, merits and demerits of negative modulation
	Block diagram of color TV transmitter, Troubleshooting procedure of color TV transmitter.
	Television Receivers:
	Block diagram and operation of color TV receiver, Operation of PAL-D decoder,
	HDTV: Development of HDTV, NHK MUSE system and NHK broadcast
Unit 4	LCD/LED Technology: Principle and working of LCD and LED TV
	Direct to Home Receiver (DTH): Concept, receiver block diagram, indoor and outdoor point
	Block diagram and working of OLED
	Troubleshooting procedure of Color TV Receiver systems.
	Consumer Electronic Appliances:
	Photocopier block diagram and working
	Microwave oven: types, single chip controllers, block diagram, types and wiring and safety
Unit 5	instructions, electrical specifications
	Washing machines: block diagram, types: automatic and semiautomatic, electrical
	specifications
	Digital camera and cam coder: pick up devices, picture processing, and picture storage
	electrical specification.
Text/Reference B	ooks:
1.	Bali S.P. "Consumer Electronics", Pearson Education India, Delhi 2007
2.	Gupta R.G. "Audio video systems principles, maintenance and troubleshooting", McGraw
	Hill, New Delhi, India 2010
3.	Gulati R. R, "Modern Television Practice: Transmission, Reception and Applications",
5.	New Age International, New Delhi, India 2015
4.	Dhake A.M., "Television and Video Engineering", McGraw Hill, New Delhi, India 2006
4.	Draw Thirt, Television and video Engineering , wieeraw thin, wew Denni, india 2000

PEC-EC-327	Syste	m Software and Op	erating Systems					
Teaching scheme	•		Examination scheme:					
Lecture		3 hrs/week	Theory					
Tutorial		hrs/week	In Semester Evaluation : 20 Marks					
Practical		2 hrs/week	Mid Semester Examination : 30 Marks End Semester Examination : 50 Marks					
			End Semester Examination : 50 Marks					
Credit		4						
Course Objective	es:							
1.	Learn tools	for software developm	ent and software programming.					
2.	Study of fu	ndamentals of operating	g systems and function.					
3.	Learn mem	ory management and IO	O organization.					
4.	Learn basic	s of file systems, protec	on and distributed operating systems.					
Course Outcome	s: On succes	sful completion of this	course, students will be able to					
1.	Understand	ing of the basic concept	ts for system software development and programming tools.					
2.	Comprehen	ds the fundamentals of	operating systems, real time operating systems.					
3.	•	on of various functions ocess communication.	of operating systems such as process, scheduling, deadlocks					
4.	Distinguish	between memory man	agement techniques, I/O organization and programming.					
5.	Description systems.	of file systems, file p	protection and security and basics of distributed operating					

PO/PSO ➡	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO						
↓ CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	3	2	1	-	-	-	-	-	-	-	3	3	1
CO2	3	3	2	3	2	-	-	-	-	-	-	-	2	2	2
CO3	3	2	2	2	2	-	-	-	-	-	-	-	3	3	2
CO4	2	3	3	2	2	-	-	-	-	-	-	-	2	2	2
CO5	3	1	2	2	2	-	-	-	-	-	-	-	2	2	2
CO (total)	14	11	12	11	9								12	12	9
CO(avg)	3	2	3	2	2	_	-	-	-	-	-	-	2	2	2

Syllabus	
	Language Processors and Data Structures
Unit 1	Introduction, Language processing activities, Fundamentals of language processing and
	specifications, Language processor development tools, Search data structures, Allocation
	data structures, Scanning and Parsing.
	Assemblers and Macroprocessors
	Assemblers: Elements of assembly language programming, Simple assembly scheme, Pass
Unit 2	structure of assemblers, Design of two pass assembler, Single pass assembler for PC
	Macroprocessor: Macro definition and call, Macro expansion, Nested macro calls,
	Advanced macro facilities, Design of macroprocessor.
	Compilers, Interpreters and Linkers
	Compilers and Interpreters: Aspects of compilation, Memory allocation Compilation of
Unit 3	expressions and control structures, Code optimization, Interpreters.
	Linkers: Relocation and linking concept Design of a linker, Self-relocating programs,
	Linker for MS DOS, Linking for overlays. Loaders
	Software Tools
	Software tools for program development, Editors, Debug monitors, Programming
Unit 4	environments, User interfaces
	Evolution of OS Functions
	OS functions and their evolution, Batch processing systems, Multiprogramming systems,
	time sharing systems, real time operating systems, OS structure
	Processes, Scheduling, and Deadlocks
	Processes: Process definition, Process control, Interacting processes, Implementation of
	interacting processes, Threads
Unit 5	Scheduling: Scheduling policies, Job scheduling, Process scheduling, Process management
	in UNIX, Scheduling in multiprocessor OS
	Deadlock: Definitions, Resource status modeling, Handling deadlocks, Deadlock detection
	and resolution, Deadlock avoidance, Mixed approach to deadlock handling.
	Process Synchronization and Interprocess Communication
TT A (<i>f</i>	Process Synchronization: Implementing control synchronization, Critical sections, Classical
Unit 6	process synchronization problems, Evolution of language features for process
	synchronization, Semaphores, Critical reasons, Conditional critical reasons, Monitors
	Interprocess Communication: Interprocess messages, Implementation issues, Mail boxes,
	Interprocess messages in Unix.
	Memory Management
TT :4 7	Memory allocation preliminaries, Contiguous and Noncontiguous memory allocations,
Unit 7	Virtual memory using paging and segmentation.
	I/O Organization and I/O Programming
	I/O organization, I/O devices, Physical IOCS (PIOCS), Fundamental file organization,
Text/Reference B	Advanced I/O programming, Logical IOCS, File processing in Unix
	Dhamdhere D. M., System Programming and Operating Systems, TMH Pub.
<u> </u>	
2.	William Stallings, Operating system: Internals and design principles, Pearson education.
3.	Silberschatz and Galvin, Operating system concepts, Addison Wesley.

PEC-EC-328		Electronic Design Au	itomation Tools								
Teaching scher	me:		Examination scheme:								
Lecture		3 hrs /week	Theory								
Tutorial		hrs/week	In Semester Evaluation : 20 Marks Mid Semester Examination : 30 Marks								
Practical		2 hrs/week	End Semester Examination : 50 Marks								
Credit		4									
Course Object	ives:										
1.	To make the	e students exposed to From	nt-end and Back-end VLSI CAD tools.								
2.	Introduction	Introduction to SPICE, modelling, and different types of analyses for simulation.									
3.	To make stu	dents aware and learn EI	DA Tools.								
4.	An overview	v of the features of practic	al CAD tools for simulation, synthesis and verification.								
Course Outcor	nes: On succe	essful completion of this of	course, students will be able to								
1.	Implement of	lesign problems in of ED	A tool environment.								
2.	Develop ED	A tools usage skills in de	signing analog, digital, and mixed signal VLSI circuits.								
3.	Implement f	Implement functional design and verify using an industry standard EDA tools.									
4.	Execute the	special features of VLSI	front-end and back-end CAD tools.								
5.	Implement s	small VLSI design projec	t using EDA tools.								

		1						1					1		1
PO/PSO➡	PO	PSO	PSO	PSO											
↓ CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	3	2	3	-	-	-	2	1	-	-	1	2	1
CO2	2	2	3	1	3	-	-	-	1	1	-	-	2	2	1
CO3	2	2	3	2	3	-	-	-	2	1	-	-	2	2	1
CO4	2	2	3	1	3	-	-	-	1	1	-	-	2	2	1
CO5	2	2	3	2	3	-	-	-	2	1	-	-	2	2	1
CO6	10	10	15	8	15	-	-	-	8	5	-	-	9	10	5
CO (total)	2	2	3	2	3	-	-	-	2	1	-	-	2	2	1
CO(avg)	2	2	3	2	3	-	-	-	2	1	-	-	1	2	1

Syllabus	
	Introduction to EDA:
Unit 1	The need for EDA, Hardware description languages, The design process, Semi- custom design tools, Design entry, Design verification, Design layout, Full custom design tools, Design entry, Design layout, Design verification, Low and high level
	tools.
Unit 2	EDA Tools Family: VLSI Design Automation tools, An overview of the features of practical CAD tools, SPICE, FPGA Technology & Tools (Modelsim, Leonardo spectrum, Xilinx ISE, Quartus II), ASIC Technology & Tools (Pyxis, Cadence, Mentor, Synopsys and Microwind).
	SPICE Concepts:
Unit 3	The role of circuit simulators, A brief history of SPICE, Circuit components, Coding a circuit for simulation, Simulating a circuit, Types of analysis (DC analysis, AC analysis, Transient analysis), Obtaining results, DC convergence problems, Transient analysis problems, Representing semiconductor devices, Coding semiconductor devices, The diode model, The bipolar transistor model, The junction
	field effect transistor model, The metal oxide semiconductor field effect transistor
	model.
	Fault Simulation and Test Pattern Generation: The Need for Testing, Role of the Fault Simulator, Fault Simulator Operation, Fault
Unit 4	Simulation in the Design Process, Basic Testing Concepts (The SA0 and SA1 Fault Model, Controllability and Observability, Fault Categories, Fault Simulation), Test pattern Generation, Fault Simulation of Sequential Circuits, Behavioral Fault Simulation.
	FPGA based Synthesis Tools:
Unit 5	Design flow in EDA tools for FPGA based design and ASIC based Design, Placement and routing, delay optimization, Interfacing Matlab Simulink with Xilinx ISE - DSP Application using Xilinx System Generator.
Unit 6	ASIC Design Tools:
	Design Flow in ASIC Design Tools, Cadence/Mentor Tools introduction for analysis, VLSI Layout, Design Rules, Stick Diagram, Example Layout of analog, digital and mixed signal circuits using EDA Tools.
Text/Reference Bo	
1.	Ming-Bo Lin, Digital System Designs and Practices using Verilog HDL and FPGAs, Wiley, 2012.
2.	Samir Palnitkar, Verilog HDL, Pearson Education, 2nd Edition, 2004.
<u> </u>	M.H.Rashid, Spice for Circuits and Electronics using Pspice, PHI 1995.
<u> </u>	M.J.S.Smith, Application Specific Integrated Circuits, Pearson Education, 2008.
5.	J.Bhaskar, A VHDL Primer, Prentice Hall, 1998.
6.	J.Bhaskar, A Verilog Primer, Prentice Hall, 2005.

PEC-EC-329	Electi	ronic Materials and De	evices							
Teaching sche	me:		Examination scheme:							
Lecture		3 hrs /week	Theory							
Tutorial		hrs/week	In Semester Evaluation : 20 Marks							
Practical		2 hrs/week	Mid Semester Examination : 30 Marks							
Credit		4	End Semester Examination : 50 Marks							
Course Object	ives:	I								
1.	-	an understanding of the n iconductor industry.	naterials, devices, and processing techniques used in the							
2.			hind semiconductor materials, types of semiconductors, ilicon in the electronics industry.							
3.	To familiarize the basics of devices with emphasis on their electronic characteristics.									
4.	To familia	rize with Optical devices	ke LEDs, lasers, solar cells, will also be explained							
5.		ng processes in the silicon based semiconductor industry, on to final IC (integrated circuit) development, will be								
6.		the industry challenges the challenges.	during miniaturization and the role of materials in							
Course Outcon	nes: On succe	essful completion of this c	course, students will be able to							
1.	-	After completion of course students will understand materials, devices, and processing techniques used in the current semiconductor industry.								
2.	Get the knowledge of the basic physics behind semiconductor materials									
3.	Students will be familiarized with the basics of devices									
4.		ble to understand the cutor industry, the industry	urrent manufacturing processes in the silicon based challenges							

PO/PSO	РО	РО	РО	РО	РО	PO	PO	РО	PO	PO	РО	PO	PSO	PSO	PSO
↓ CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	2	1	-	-	-	-	-	-	-	2	3	1
CO2	3	3	3	3	2	-	-	-	-	-	-	-	2	2	2
CO3	3	2	2	2	2	-	-	-	-	-	-	-	3	3	2
CO4	2	3	2	2	2	-	-	-	-	-	-	-	3	2	2
CO (total)	11	11	10	9	7								10	10	7
CO(avg)	3	2	3	2	2	-	-	-	-	-	-	-	2	2	2

Syllabus	
Unit 1	Introduction to chemical bonding and development of band gap. 1 2. Introduction and types of semiconductors. Explanation of density of states, Fermi energy, and band occupancy. 2 3. Problem set on bonding, density of states, and Fermi statistics.
Unit 2	Intrinsic semiconductors, carrier concentration, mobility, temperature dependence. Problem set on intrinsic semiconductors . Extrinsic semiconductors. Dopant types and materials. Conductivity, Fermi energy position, temperature dependence. Problem set on extrinsic semiconductors.
Unit 3	Metal-semiconductor junctions. Schottky vs. Ohmic junctions. Band gap diagrams. I-V characteristics. Problem set on metal-semiconductor junctions p-n junctions. Equilibrium and under bias (forward and reverse).Band diagrams. I-V characteristics. Junction breakdown. Hetero junctions. Problem set on pn junctions.
Unit 4	Transistors-BJT,JFET,MOSFET. Transistor action. Basics of BJT and JFET. Channel formation in MOSFET. I-V behavior. Depletion and inversion layer calculation. Problem set on transistors.
Unit 5	Optoelectronic materials. Introduction. LEDs, LASERs, photodetectors, solar cells. Problem set on optical properties. Problem set on optoelectronic devices.
Unit 6	Introduction to semiconductor manufacturing. History, overview of process flow, manufacturing goals. Scaling. 1 18. Wafer manufacturing. Si ingot preparation. Poly to single crystal conversion. Czochralski vs. float zone method.
Unit 7	IC device manufacturing overview. Thermal oxidation. Doping. Lithography. Etching and growth. Metallization and growth, Process and device evaluation. Yield monitoring and control, Clean room design. Contamination control, Devices and IC formation. IC circuit logic and packaging.
Text/Reference B	ooks:
1.	Principles of Electronic Materials and Devices, S.O. Kasap, 3rd edition, McGraw-Hill Education (India) Pvt. Ltd., 2007
2.	Semiconductor devices: Physics and Technology, S.M. Sze, 2nd edition, Wiley, 2008.
3.	VLSI technology,S.M.Sze, 2nd edition, McGraw-Hill Education (India) Pvt. Ltd., 2003.
4.	Solid State Electronic Devices, B.G. Streetman and S. Banerjee, 6th edition, PHI Learning, 2009
5.	Introduction to solid state physics, C.Kittel, 8th edition, Wiley, 2012.
6.	Microchip Fabrication, Peter van Zant, 5th edition, McGraw-Hill, 2004.
7.	Fundamentals of semiconductor manufacturing and process control, G.S. May and C.J.Spanos, Wiley-IEEE press, 2006.

PRJ-EC-330	Mini	Project							
Teaching scheme	:		Examination scheme:						
Lecture		hrs /week	Theory						
Tutorial		hrs/week	In Semester Evaluation : 20 Marks						
Practical		4 hrs/week	Mid Semester Examination : 30 Marks						
Credit		2	End Semester Examination : 50 Marks						
Course Objective	es:								
1.	To identify	and define problems i	n the area of Electronics and Telecommunication						
2.	Plan and ex	vith team.							
3.	Prepare a technical report based on the Mini project & Present technical seminar based on the Mini Project work carried out.								
Course Outcome	s: On succes	ssful completion of this	s course, students will be able to						
1.	1. Demonstrate the ability to locate and apply technical information from multiple sources.								
2.	Acquire practical knowledge within the chosen area of technology for project development.								
3.	Acquire practical knowledge within the chosen area of technology for project development.								
4.	Identify, analyze, formulate and handle hardware and software projects with a comprehensiv and systematic approach in the field of electronics and telecommunication.								
5.	Contribute bounds.	as an individual or in	n a team in development of technical projects within time						
6.	Develop effective communication skills for presentation of project related activities								

PO/PSO ⇒	РО	РО	РО	РО	PO	PO	PO	РО	PO	PO	РО	РО	PSO	PSO	PSO
↓ CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	3	3	3	2	3	2	3	3	2	3	3	3	2	3
CO2	2	3	3	3	3	3	2	2	3	3	3	3	3	2	3
CO3	2	3	3	3	3	3	3	2	3	2	3	3	3	2	3
CO4	2	3	3	3	3	2	2	2	3	3	3	3	3	2	3
CO5	2	2	2	3	3	3	3	1	3	3	3	3	2	2	2
CO (total)	10	14	14	15	14	14	12	10	15	13	15	15	14	20	20
CO(avg)	5	3	3	3	3	3	2	2	3	3	3	3	3	2	2

Syllabus

A student or a group of students should carry out a mini-project related to the field of electronics and Telecommunication engineering. It may be a hardware or a software project.