Revised T.Y. B. Tech. (Instrumentation Engineering) Curriculum Academic Year 2020-21

SGGS INSTITUTE OF ENGINEERING & TECHNOLOGY, VISHNUPURI, NANDED

(An Autonomous Institute of Government of Maharashtra)

T.Y. B.Tech. (Instrumentation Engineering) Curriculum Structure: CBCS, (Effective from Academic Year 2020-21)

	Sem	ester V					
Course	Course Title	Lectures	Tutorials	Practical	Credits		
Code		(L)	(T)	(P)	Th.	Pr.	
PCC-IN301	Feedback Control Systems	3	-	2	3	1	
PCC-IN302	Industrial Instrumentation	3	-	2	3	1	
PCC-IN303	Digital Signal Processing	3	-	2	3	1	
PCC-IN304	Microprocessor and Microcontroller	3	1	2	4	1	
PCC-IN305	Industrial Data Communications	3	-	-	3	-	
PCC-IN306	Unit Operations and Instrumentation	3	-	2	3	1	
	Total	18	01	10	24		
	Sem	ester VI					
Course	Course Title	Lectures	Tutorials	Practical	Credits		
Code		(L)	(T)	(P)	Th.	Pr.	
PCC-IN307	Process Control	3	-	2	3	1	
PCC-IN308	Control System Components	3	-	2	3	1	
PCC-IN309	Distributed Control System	3	-	2	3	1	
PCC-IN310	Power Electronics	3	-	2	3	1	
PEC-IN3**	Elective – I	3	-	-	3	-	
SEM-IN319	Seminar	-	-	2	-	1	
AUD-IN320	Indian Ancient Science	2	-	-	Auc	lit	
	Total	17	00	10	20)	

L – No. of Lecture Hours/week, T – No. of Tutorial Hours/week, P – No. of Practical Hours/week

Elective – I	
PEC-IN311	Power Plant Instrumentation
PEC-IN312	Digital System Design
PEC-IN313	Optical Instrumentation
PEC-IN314	Automotive Instrumentation
PEC-IN315	Mechatronics
PEC-IN316	Material Science
PEC-IN317	Microelectronics
PEC-IN318	Data Structure and Algorithms

CONTENTS

Sr. No.	Course Code	Course Title	Page No.						
	Semester-V								
1.	PCC-IN301	Feedback Control Systems	4						
2.	PCC-IN302	Industrial Instrumentation	6						
3.	PCC-IN303	Digital Signal Processing	9						
4.	PCC-IN304	Microprocessor and Microcontroller	11						
5.	PCC-IN305	Industrial Data Communication	13						
6.	PCC-IN306	Unit Operations and Instrumentation	15						
		Semester-VI							
7.	PCC-IN307	Process Control	17						
8.	PCC-IN308	Control System Components	19						
9.	PCC-IN309	Distributed Control System	22						
10.	PCC-IN310	Power Electronics	24						
11.	PEC-IN311	Elective – I Power Plant Instrumentation	26						
12.	PEC-IN312	Elective – I Digital System Design	27						
13.	PEC-IN313	Elective – I Optical Instrumentation	29						
14.	PEC-IN314	Elective – I Automotive Instrumentation	31						
15.	PEC-IN315	Elective – I Mechatronics	32						
16.	PEC-IN316	Elective – I Material Science	34						
17.	PEC-IN317	Elective – I Microelectronics	36						
18.	PEC-IN318	Elective – I Data Structures and Algorithms	37						
19.	SEM-IN319	Seminar	39						
20.	AUD-IN320	Indian Ancient Science	40						
21.		Annexure-I	41						

Semester-V

PCC-IN301 Feedback Control Systems							
Teaching	scheme:		Examination scheme:				
Lectures	3	hrs/week	Theory				
Tutorials	0	hrs/week	In Semester Evaluation : 20 Marks				
Practical	2	hrs/week	Mid Semester Examination : 30 marks				
Credits	4		End Semester Examination : 50 marks				
Course ob	jectives:						
1.	Introduction to	o concepts of mo	odeling of physical systems.				
2.	Introduction to	o time domain a	nd frequency domain modeling.				
3.	Analyze the sy	stem response a	and stability in time domain and frequency domain.				
Course ou	Course outcomes: On successful completion of this course students will be able to,						
1.	Exhibit the ca	pability to repr	resent the mathematical model of physical systems using linear				
	differential eq	uations; Laplace	e transform and use block diagram algebra, Mason's gain formula				
	to simplify con	nplicated control	bl systems.				
2.	To determine	time response of	of first, second and higher order systems to standard test signals				
	and to speci	fy control sys	tem performance in terms of time and frequency domain				
	specifications.						
3.	Construct Hur	witz determinar	nt, Routh array, root-locus, polar plot, Bode plot and Nyquist plot				
	for single varia	able feedback co	ontrol systems and investigate system stability.				
4.	Realize lead, lag and lag lead compensators using electrical, electronic and mechanical						
	components.						
5.	Validate the concepts of time domain, frequency domain and stability analysis using MATLAB.						
6.	Gain some practical experience in control engineering which might become a future research						
	point for them	. (Some is not	specific and measurable)				

PO/PSO →					DOF				DOO	DO10	DO11	DO12			000	
↓ CO	PUI	PUZ	PU3	PU4	PU5	PUO	PU/	PUð	PU9	P010	PUII	PUIZ	P301	P302	P303	P304
PCC-IN301.1	3	2	-	2	-	-	-	-	1	1	-	-	3	3	1	1
PCC-IN301.2	3	2	2	3	1	-	-	-	1	1	-	-	3	3	1	1
PCC-IN301.3	2	2	2	3	1	-	-	-	1	1	-	-	2	2	1	1
PCC-IN301.4	1	1	2	-	-	-	-	-	1	1	-	-	1	1	3	1
PCC-IN301.5	1	2	-	-	3	-	-	-	2	2	-	1	1	3	2	2
PCC-IN301.6	1	2	2	2	3	-	-	-	2	2	-	3	1	3	2	2
PCC-IN301	2	2	1	2	1	-	-	-	1	1	-	1	2	3	2	1

Syllabus:	
Unit 1	Introduction to control systems (04 Hours)
	Definition, history, elements of control systems, examples of control systems, open-
	loop (non feedback) and closed loop (feedback) control systems, effect of feedback
	on overall gain, parameter variations, external disturbances or noise and control
	over system dynamics, regenerative feedback, linear versus nonlinear control
	systems, time- invariant versus time- varying systems, SISO and MIMO systems.
Unit 2	Mathematical modeling of dynamic systems (10 Hours)
	Introduction, canonical form of feedback, control systems, transfers function and

	impulse response. differential equations and transfer functions of physical systems
	such as mechanical, electrical, electromechanical, thermal, pneumatic and liquid-
	level systems, analogous systems, force-voltage, force-current and torque- current
	analogies, loading effects in interconnected systems, systems
	with transportation lags, linearization of nonlinear mathematical models, block
	diagram representation of control system, rules and reduction techniques, signal
	flow graph: elements, definition, properties, masons gain formula, application of gain
	formula to block diagrams.
Unit 3	Time- domain analysis of control systems (08 Hours)
	Standard test signals, transient response, steady state error and error constants,
	dynamic error series, time response of first and second order systems and transient
	response specifications, effect of adding poles and zeros to transfer functions,
	dominant poles of transfer function, basic control actions and response of control
	systems, effects of integral and derivative control action on system performance,
	higher order systems.
Unit 4	Stability of linear control systems (04 Hours)
	Concept of stability, BIBO stability: condition, zero input and asymptotic stability,
	Hurwitz stability criterion, Routh-Hurwitz criterion in detail, relative stability
	analysis. Effect of adding poles and zeros to transfer functions on stability.
Unit 5	The Root–Locus technique (04 Hours)
	Introduction, basic properties of the root loci, general rules for constructing root loci,
	Root- Locus analysis of control systems.
Unit 6	Frequency domain analysis (12 Hours)
	Frequency response of closed loop systems, frequency domain specifications of the
	prototype second order system, correlation between time and frequency response,
	effect of adding a pole and a zero to the forward path transfer function, polar plots,
	Bode plots, phase and gain margin, stability analysis with Bode plot, Nyquist stability
	criterion: mathematical preliminaries, stability and relative stability analysis.
Unit 7	Compensators (03 Hours)
	Introduction, different types of compensators, Realization of lead, lag and lag lead
	compensators (Electrical, Electronic and Mechanical type), their transfer functions
	and frequency responses.
Text/Refe	erence Books:
1.	K. Ogata, "Modern Control Engineering", Fourth Edition Pearson education India, 2002.
2.	B. C. Kuo, "Automatic control systems", Seventh Edition, Prentice –Hall of India, 2000.
3.	Norman S. Nise, "Control systems Engineering", Third Edition, John Wiley and Sons. Inc,
	Singapore, 2001.
4.	R. C. Dorf and R. H. Bishop, "Modern Control systems", Eighth Edition, Addison Wesley,
	1999. I. I. Nagrath and M. Ganal, "Control systems Engineering". Third Edition, New again
5.	International Publishers India 2001
Term Wo	rk.
It will cons	sist of at least eight experiments/assignments/programs from the following list:
1.	Determination of transfer function of an armature controlled d. c. motor.
2.	Determination of transfer functions of D. C. generator.
3.	Effect of feedback on D. C. generator.
4.	Transient response of second order system.
5.	Study of D. C. positional servo system.

6.	Study of A. C. servo voltage stabilizer.
7.	Study the performance of an open and closed loop control system using electronic
	amplifiers using OPAMPs.
8.	Study the performance of a second order system (Use any OPAMP based electronic
	system such as an active second order Butterworth filter).
9.	Study the performance of any first order and second order system.
Experime	nts based on software (programs)
1.	Introduction to MATLAB, MATLAB's simulink and control systems toolbox (with
	some examples) or any other control system related software package.
2.	Compare and plot the unit-step responses of the unity-feedback closed loop systems
	with the given forward path transfer function. Assume zero initial conditions. Use
	any computer simulation program.
3.	Study of effect of damping factor on system performance by obtaining unit step
	response and unit impulse response for a prototype standard second order system.
	Consider five different values for x = 0.1, 0.3, 0.5, 0.7 and 1.0. Also study the effect of
	varying undammed natural frequency by taking three different values. Comment on
	the simulations obtained.
4.	Write a program that will compute the step response characteristics of a second
	order system i.e. percent overshoot, rise time, peak time and settling time. Generalize
	it for accepting different values of undammed natural frequency and
	damping factor.
5.	Study and plot the unit step responses of addition of a pole and a zero to the forward
	path transfer function for a unity feedback system. Plot the responses for four
	different values of poles and zeros. Comment on the simulations obtained.
6.	Study and plot the unit step responses of addition of a pole and a zero to the closed
	loop transfer function. Plot the responses for four different values of poles and zeros.
	Comment on the simulations obtained.
7.	Program for compensator design using Bode plot.
8.	Program for compensator design using Root Locus analysis.
9.	Plot and comment on various properties of any three systems (problems) using
	Routh-Hurwitz criterion
	Root locus technique
	• Bode plots
	• Nyquist plots
	Use any software package.

PCC-IN302 Industrial Instrumentation							
Teaching scheme:				Examination scheme:			
Lectures		3	hrs/week	Theory			
Tutorials		0	hrs/week	In Semester Evaluation : 20 Marks			
Practical		2	hrs/week	Mid Semester Examination : 30 marks			
Credits		4		End Semester Examination : 50 marks			
Course objectives:							
1.	1. To get an adequate knowledge about various techniques used for various parameters measurement in industries and select the proper transducer.						

2.	To provide exposure to various state of art process parameters measuring transducers and their selection procedures.						
3.	To understand, analyze and design various measurement schemes that meet the desired specifications and requirements of real time processes.						
Course ou	itcomes:						
1.	To recall the knowledge of temperature transducers like, thermocouples, thermistors,						
	RTDs, pyrometry and other temperature measuring techniques.						
2.	To understand the construction and working principle of various type of						
	transducers/sensor to measure physical quantities.						
3.	To apply the adequate knowledge of pressure and strain transducers.						
4.	To analyze, formulate and select suitable sensor/transducer for the given industrial						
	applications.						
5.	To demonstrate working knowledge of safety practices used in the measurement and						
	control of industrial processes.						
6.	To develop skills to trouble shoot the problems with measurement and control of						
	industrial processes.						

$PO/PSO \rightarrow$ ↓ CO	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3	PSO4
PCC-IN302.1	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PCC-IN302.2	-	-	2	-	-	-	-	-	-	-	-	-	-	-	-	-
PCC-IN302.3	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PCC-IN302.4	-	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PCC-IN302.5	-	-	-	-	-	-	-	2	-	-	-	-	-	-	-	-
PCC-IN302.6	-	-	-	2	-	-	-	-	-	-	-	3	-	-	-	-
PCC-IN302	1	1	1	1	-	-	-	1	-	-	-	1	-	-	-	-

Syllabus:	
Unit 1	Temperature sensor selection and applications
	Design of temperature instrumentation system using RTD, thermocouple, thermistor, selection criteria, self heating effects in resistive temperature transducers, power- dissipation constant and its calculations, thermocouple with thermowell assembly, time-constant calculation, protection-tubes, types, materials, design considerations for thermowell, types, manufacturing process of T/C, RTD, thermistor, testing of RTD as per the standard. Radiation measurement: radiation thermometers, introduction, definition of terms, general form of radiation measurement system, radiation thermometer types, photo electric radiation thermometers, signal conditioning for radiation thermometers, remote reading thermometers. Sensor calibrators and simulators.
Unit 2	Pressure measurement
	Basics, mechanical type instruments, electromechanical type, low pressure measurement, related accessories, pressure measuring standards, selection and application. Transmitter definition, classification, pneumatic transmitter-force balance type, torque balance type, two wire and four wire transmitters, I/P and P/I converters. Design of pressure instrumentation using diaphragm, bourdon tubes and bellows.
Unit 3	Flow measurement

	Design of flow instrumentation using orifice, rotameter, venturimeter, different flow coefficient like Cd Cc, and Cv and their calculation. Types of orifice designs, Types of pressure taps to measure Dp, design of orifice used in tank outflow and pipe-flow measurements, different design considerations in orifice, venturimeter and rotameter design. Anemometers: Hot wire/hot film anemometer, laser doppler anemometer (LDA), electromagnetic flow meter, turbine and other rotary element flow meters, werters
	flow meters. Measurement of mass flow rate: radiation, angular momentum, impeller, turbine, constant torque hysteresis clutch, twin turbine coriolis, gyroscopic and heat
	regulators, flow switches, flow meter calibration concepts, flow meter selection and application.
Unit 4	Level measurement
	Introduction, float level devices, displacer level detectors, rotating paddle switches, diaphragm and differential pressure detectors, resistance, capacitance and RF probes, radiation, conductivity, field effect, thermal, ultrasonic, microwave, radar and vibrating type level sensors. Level sensor selection and application.
Unit 5	Strain measurement
	Strain gauge and design of piezo-electric crystal, analysis of piezo-electric crystal for its use in dynamic measurement, time-constant of crystal assembly along with cable and amplifier, calculation of crystal capacitance. Applications of strain gauge in various inductries
Unit 6	Various industries.
Unito	Measurement of viscosity and Density
	using laboratory viscometers, industrial viscometers. Viscometer selection and application. Liquid density measurement, gas densitometers, its application and selection.
Unit 7	Electromagnetic compatibility
	Introduction, interference coupling mechanism, basics of circuit layout and grounding, concepts of interfaces, filtering and shielding. Safety: introduction, electrical hazards, hazardous areas and classification, nonhazardous areas, enclosures-NEMA types, fuses and circuit breakers. Protection methods: purging, explosion proofing and intrinsic safety.
Text Book	S:
1.	Nakra Chowdhari, "Instrumentation", Prentice Hall of India, New Delhi.
2.	Considine D. M., "Process Instrumentation, and Control Handbook", McGraw Hill International.
3.	Doeblin E. O. and D. Mannik, "Measurement Systems" Fifth Edition, Application and Design, McGraw Hill International Edition, 2006.
4.	Bentley J. P., "Principles of Measurement Systems" Third Edition, Pearson Education, New Delhi, 2000.
5.	Sawhney A. K. and Puneet Sawhney "A Course in Mechanical Measurements and Instrumentation" Dhanpat Rai and Co. (P) Ltd., New Delhi, 1998.
Reference	e Books:
1.	Liptak B. G., "Instrument Engineers Handbook, Process Measurement Volume I and Process Control Volume II" Chilton Book Company, 2001
2.	Warren Boxleitner, IEEE press: Electrostatic Discharge and Electronic Equipment.
3.	Walter C Bosshart , "Printed Circuit Boards", CEDT Series, Tata McGraw Hill.
4.	S. Soclop, "Applications of Analog Integrated Circuit", Prentice Hall of India.

Term Wo	rk:					
The term v	work shall consist of a record of at least eight experiments/designs and drawings					
based on t	based on the syllabus given above. Some of the experiments may be from the following list.					
1.	Case study: One lab instrument/field instrument and its detailed engineering					
	drawings, circuit diagrams on a drawing sheet.					
2.	Design of a mini project like design of instrument/electronic device/					
	transducer/instrumentation component/system, its procedure starting from					
	preparation of specifications, designing, testing, and erection. Drawings dimensional					
	sketches, circuit diagram, details of different component on drawing sheet, testing its					
	specifications, determining practical static and dynamic characteristics.					

PCC-IN3	03 Digital Signal Proce	essing						
Teaching	scheme:	Examination scheme:						
Lectures	3 hrs/week	Theory						
Tutorials	0 hrs/week	In Semester Evaluation : 20 Marks						
Practical	2 hrs/week	Mid Semester Examination : 30 marks						
Credits	4	End Semester Examination : 50 marks						
Course ob	ojectives:							
1.	To provide better understanding of discrete-time signals with representation in tim							
	and frequency domain.							
2.	To provide knowledge for analysis and design of linear and time-invariant (LTI)							
	systems using mathematical tools like Fourier Transform and z-transform.							
3.	To provide knowledge for	efficient realization of digital systems (FIR and IIRfilters)						
	using hardware and softwa	are.						
Course Ou	<mark>itcomes: On successful cor</mark>	npletion of this course students will be able to						
1.	Understand benefits and l	imitations of processing signals digitally and properties of						
	discrete-time LTI systems.							
2.	Represent and analyze th	e discrete-time signals and LTI systems in the frequency						
	domain using Discrete-Ti	me Fourier Transform (DTFT), z-transform and Discrete						
	Fourier transform (DFT) to	pols.						
3.	Implement DFT efficiently	using Fast Fourier Transform (FFT) algorithms and use in						
	practical applications.							
4.	Design an FIR or IIR filter f	or the specifications given in frequency domain.						
5.	Realize digital system who	se coefficients are known using hardware or software.						
6.	Propose and design a digital system for simple real application.							

$PO/PSO \rightarrow$ ↓ CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3	PSO4
PCC-IN303.1	3	1	-	-	-	-	-	-	-	-	-	-	2	1	2	-
PCC-IN303.2	3	2	-	2		-	-	-	-	-	-	-	2	1	1	-
PCC-IN303.3	2	2	1	-	2	-	-	-	-	-	-	-	2	1	1	-
PCC-IN303.4	3	3	3	-	1	-	-	-	-	-	1	-	2	1	-	-
PCC-IN303.5	2	2	2	-	1	-	-	-	-	-	-	-	2	1	-	-
PCC-IN303.6	2	3	3	1	2	-	-	-	-	-	-	1	2	1	1	-
PCC-IN303	3	3	2	1	1	-	-	-	-	-	-	1	3	1	1	-

Syllabus:	
Unit 1	Introduction
	Discrete-time signals and systems, time-domain characterization of discrete-time LTI systems, sampling theorem, benefits and limitations of processing signal digitally. Correlation of signals. The Z-transform: inverse Z-transform and Z-transform properties for one-sided and two-sided z-transforms. Discrete-Time Fourier Transform (DTFT) and its properties.
Unit 2	LTI Discrete-Time Systems in Transform Domain
	The frequency response, the transfer function, types of transfer functions, Allpass transfer function, minimum-phase and maximum-phase transfer functions, inverse systems.
Unit 3	Discrete Fourier Transform
	Discrete Fourier Transform (DFT) and its properties. Computation of DFT (FFT algorithms), Decimation-In-Time (DIT), Decimation-In-Frequency (DIF) and radix-n algorithms of FFT.
Unit 4	Digital filter structures
	Digital filter structures: block diagram representation, equivalent structures ,basic FIR structures, basic IIR structures, All pass filters, IIR tapped cascaded lattice structures, FIR cascaded lattice structures.
Unit 5	Digital filter design
	approximations. Frequency Transformations: low-pass to low-pass, low-pass to high-pass, low-pass to band-pass and low-pass to band-stop transformations. Analog to Digital Transformations: Impulse Invariant Technique and Bilinear Transformation Technique. FIR Filter Design: windowing technique, frequency sampling technique, and computer aided design.
Unit 6	Digital Signal Processor
	Harvard architecture and modified Harvard architecture. Introduction to fixed-point and floating-point DSP processors, architectural features, computational units, bus architecture and memory architecture, data addressing, address generation unit, pipelining, on-chip peripherals.
Text/Refe	rence Books:
1.	A. V. Oppenheim, R. W. Schafer, "Discrete-Time Signal Processing", Prentice-Hall of India, 2001
2.	J. G. Proakis, D. G. Manolakis, "Digital Signal Processing – Principles, Algorithms and Applications", Prentice Hall of India, 2002.
3.	S. K. Mitra, "Digital signal processing- A computer based approach", Tata McGraw Hill, 2002.
4.	E. C. Ifeachor, B. W. Jarvis, "Digital Signal Processing- A Practical Approach", Second Edition, Pearson Education, New Delhi, 2002.
5.	Johnny R Johnson, "Introduction to Digital Signal Processing", Prentice-Hall of India, 2011
6.	Sen M Kuo and Bob H. Lee, "Real-Time Digital Signal Processing: Implementation Applications and Experiments with the TMS 320C55X" John Wiley and Sons, New York
Term Woi	·k:
Term work syllabus. S	k shall consist of at least six to eight assignment/tutorials/practical based on above ome of the experiments may be from the following list. Students are supposed to write

the progra	the programs (at least eight) on general-purpose computer using any development environment							
(C/C++/M	atlab) or on any DSP processor and development environment.							
1.	Digital signal generation.							
2.	Simple operations on signals.							
3.	Linear and Circular Convolutions.							
4.	Discrete time Fourier transform (DTFT) and its properties.							
5.	Discrete Fourier Transform (DFT) – Direct computation, DIT algorithm, DIF							
	algorithm.							
6.	Linear and Circular Convolutions using DFT.							
7.	FIR filters design and software realization using (i) Rectangular Window (ii)							
	Generalized Hamming Window (iii) Bartlet Window and (iv) Kaiser Window.							
8.	Frequency Sampling Design of FIR Filter.							
9.	IIR filter design and software realization using Butterworth Filter Approximation							
	with (i) Impulse Invariance Method and (ii) Bilinear Transformation Method.							
10.	IIR filter design and software realization using Chebyshev Approximation with (i)							
	Impulse Invariance Method and (ii) Bilinear Transformation Method.							

PCC-IN3	04 M	licropr	ocessor and	Microcontroller				
Teaching	Teaching scheme:			Examination scheme:				
Lectures		3	hrs/week	Theory				
Tutorials		1	hrs/week	In Semester Evaluation : 20 Marks				
Practical		2	hrs/week	Mid Semester Examination : 30 marks				
Credits	edits 5 End Semester Examination : 50 marks							
Course ob	jectiv	/es:						
1.	To te	each the s	students to fami	iliarize with microprocessor and microcontroller				
	architecture and functioning.							
2.	To tr	rain the s	tudents to prog	ram the microprocessor and microcontrollers for any				
	appl	ication.						
Course Ou	tcom	es: On su	ccessful comp	letion of this course students will be able to				
1.	To d	escribe b	asics of 8085, 8	051 and its instruction set.				
2.	To u	nderstan	d historical dev	velopment of microcontrollers and to know different 8, 16, 32				
	bit n	nicrocont	rollers.					
3.	To solve assembly language programs based on the instruction set of 8085 and 8051.							
4.	To g	et insight	t of 8051 based	hardware system and so to study ADC, keyboard etc.				
5.	To e	To execute assembly language programs based on the instruction set of 8051						
6.	To develop 8085, 8051 based instrumentation system.							

$PO/PSO \rightarrow$ ↓ CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3	PSO4
PCC-IN304.1	3	1	-	-	-	-	-	-	-	-	-	2	3	1	1	-
PCC-IN304.2	3	1	-	-	-	-	-	-	-	-	-	1	2	1	-	2
PCC-IN304.3	2	2	3	2	3	-	-	-	-	-	-	-	3	2	-	2
PCC-IN304.4	2	2	3	2	3	-	-	-	-	-	-	-	3	2	2	3
PCC-IN304.5	1	3	3	3	2	-	-	-	3	1	2	3	2	3	3	1
PCC-IN304.6	1	3	3	3	2	3	3	-	3	2	3	2	3	3	3	1
PCC-IN304	3	3	3	2	2	3	3	-	1	1	1	1	3	3	2	2

Syllabus:	
Unit 1	Introduction to 8085
	Architecture and operation, pin out diagram. Assembly language programming for 8085 microprocessor, instruction classification, instruction set study in details, addressing modes, writing assembly language programs, stacks subroutines, instruction set timing diagrams, a minimum configuration for 8085, interrupt structure of 8085, internal interrupt circuit, hardware and software interrupts.
Unit 2	Interfacing memories to 8085
	Interfacing memories EPROM and RAM with 8085 with exhaustive and partial decoding techniques.
Unit 3	Peripheral devices used in 8085 systems
	Following structure programmable peripheral devices are to be studied in details as regards block diagram, software for their interfacing with 8085: 8255, 8253, 8279, ADC.
Unit 4	Introduction to microcontrollers and Programming 8051
	8051 Architecture, pin out diagram, 8051 oscillator and clock, Program counter and Data pointer, A and B CPU registers, flags and PSW, internal memory, stack and stack pointer, SFRS, internal ROM, I/P and O/P ports. Assembly language programming for 8051 microcontroller, instruction classification, instruction set Arithmetic and Logical operations, jump and call instructions etc., writing assembly language programming based on instruction set, stacks and subroutines.
Unit 5	Timers in 8051 and Serial data transmission
	Interrupts of 8051, counters and timers, timer modes, timer/counter programming. Introduction to serial data transmission methods.
Unit 6	Interfacing peripherals to 8051 and Design of 8051 based systems
	8051 microcontroller interfacing with: keyboard and display, A/D and D/A chips. Design of dedicated systems using 8051 for temperature indication OR/AND control, flow indication, OR/AND control, stepper motor control, embedded control systems, Smart transmitters.
Text/ Refe	erence Books:
1.	K. L. Short, "Microprocessor and programming logic", Second Edition, Prentice- Hall India Pvt. Ltd
2.	R. S. Gaonkar, "Microprocessor Architecture, Programming and application with 8085/8085A", Fourth Edition, Willey Eastern Ltd.
3.	B. Ram, "Fundamentals of microprocessor and Microcomputer", Dhanpat Rai and Sons, Eighth Edition, New Delhi.
4.	Ayala K. J., "8051 Microcontroller: Architecture, Programming and applications" Second Edition, Penram international.
5.	Muhammad Ali Mazidi, Janice G. Mazidi and Rolin D. McKinlay, "The Microcontroller and Embedded Systems", Second Edition, Pearson, 2012.
Reference	Books:
1.	B. Ram, "Advanced Microprocessor and Interfacing" Tata McGraw-Hill Publishing Company Ltd., First Edition, New Delhi.
2.	Ajit Pal, "Microprocessor Principles and Applications", Tata Mc-Graw Hill, First Edition New Delhi.
3.	U. V. Kulkarni and T. R. Sontakke, "The 8085A Basics: Programming and Interfacing", Sadusudha Prakashan, First Edition, Nanded.

4.	Intel Mcs, "8085 users manual", Intel Corporation.						
5.	Myke Predko, "Programming and customizing the 8051 Microcontroller", Tata						
	McGraw-Hill, First Edition, New Delhi.						
6.	N.G. Palan, "8031 Microcontroller – Architecture, Programming and Hardware						
	Design", Technova publishing House.						
Term Wor	'k:						
It will cons	sist of a record of at least eight of the following experiments based on the Prescribed						
syllabus.							
1.	Study of Dyralog 8085 kit.						
2.	Writing simple programs based on 8085 Instruction set.						
3.	Write a program to find largest number from a series of numbers.						
4.	Write a program to transfer a block of data.						
5.	Write a program for arranging numbers in ascending / descending order.						
6.	To study interfacing of 8255 with LEDs, 7-Segment display.						
7.	To study interfacing of 8255 with Keyboard, ADC.						
8.	To study 8051 Simulator.						
9.	To write simple programs using 8051 simulator like-						
	a. Finding largest/smallest number.						
	b. arranging numbers in ascending / descending order.						
	c. Arithmetic of 16-bit numbers.						
10.	Interfacing of stepper motor with microcontroller.						
11.	Mini project based on 8051.						

PCC-IN305 Industrial Data Communication									
Teaching	schen	ne:		Examination scheme:					
Lectures 3 hrs/week			hrs/week	Theory					
Tutorials		0	hrs/week	In Semester Evaluation : 20 Marks					
Practical		0	hrs/week	Mid Semester Examination : 30 marks					
Credits		3		End Semester Examination : 50 marks					
Course ob	jectiv	/es:							
1	То р	rovide i	nsight about ne	tworks, topologies, and the key concepts used in					
1.	instr	instrumentation industries.							
2	To g	To gain comprehensive knowledge about the layered communication architectures							
۷.	(OSI and TCP/IP) and its functionalities.								
3.	To understand the principles, key protocols, design issues, and significance of each								
	layers in ISO and TCP/IP.								
4	To know the basic concepts of network security and its various security issues related								
4.	with each layer.								
Course Ou	itcom	les: On s	successful com	pletion of this course students will be able to					
1	To remember and describe how the physical, data link, and network layers operate in								
1.	a typical data communication system.								
	To understand the setting of a network environment with all the necessary data								
2.	com	municat	ion component	s, procedure, conflicting issues and resolution techniques					
	that	make it	functional.						
2	To a	pply the	operation and	technique of various communication protocols such as					
5.	mult	tiple acc	ess protocols, T	CP, UDP, FTP, etc.					
	•								

4.	To analyze the services and features of the various layers of data networks.
5.	To evaluate communication protocols for route calculations and be able to perform such calculations of data transmission.
6.	To create the suitable transmission route for different internetworking devices.

$PO/PSO \rightarrow$ ↓ CO	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3	PSO4
PCC-IN305.1	3	-	-	-	-	-	-	-	-	-	-	2	3	3	2	2
PCC-IN305.2	3	-	-	-	-	-	-	-	1	-	-	2	3	2	2	2
PCC-IN305.3	3	1	2	2	1	-	-	-	1	-	-	2	3	2	2	1
PCC-IN305.4	3	1	-	2	-	-	-	-	1	-	-	1	3	1	1	1
PCC-IN305.5	3	-	1	2	2	-	-	-	1	1	-	2	3	1	3	1
PCC-IN305.6	3	-	3	2	3	-	-	-	-	-	-	2	3	1	3	1
PCC-IN305	3	1	1	1	1	-	-	-	-	-	-	2	3	2	3	2

Syllabus:	
Unit 1	Communication Concepts
	Serial and parallel transmission, data organization: signals, digital standard signals,
	data organization: communication codes, data organization: error coding, data
	organization: Protocol concepts.
Unit 2	Communication Modes and Serial communication standards
	ISO OSI model, mail analogy, OSI model, IEEE 802 models, Basic concepts, TIA/EIA
-	standards, interface signal functions, PC serial Communications
Unit 3	Local Area Networks
	Layer 1 the physical layer, topologies, transmission media, 802 and industrial LANs,
	wireless LANs 802.11, Hub, Bridge, Ethernet Switch, Router, IEEE 802.3/Ethernet: A
	Layer1 and 2 Standard 10BASE5, 10BASE2, 10BASE-T, 10 GbE-10 Gigabit Ethernet
	Over Fiber, 10 GbE-10 Gigabit Ethernet Over Copper.
Unit 4	Industrial networks and field buses
	Industrial network requirements, HART, ControlNet, EtherNet/IP,
	PROFIBUS/PROFINET, Foundation Fieldbus, Ethernet-TCP/IP, Modbus RTU Protocol,
	IEC 61850.
Unit 5	Wide Area Networks
	Wireline transmission, carrier concepts, wireline modems, modem types, WAN digital
U	lines, cable modems, WANs for mobile and the hinterlands.
Unit 6	Internetworking
	Layer 2: internetworking equipment, Layer 3 devices, Routing topologies, managed
Unit 7	switches, gateways.
Unit /	Cydersecurity
	overview, security vulnerabilities, methods of attack, risk analysis, IACS
	bardening internet and VDN countermoscures, network management and cocurity
	IEC /ANSI/ISA-62443 cybersecurity standards ISA secure certification program
Reference	Books:
1.	Lawrence M. Thompson and Tim Shaw, "Industrial Data Communications", ISA Fifth Edition.

2.	A. S. Tanennbaum, "Computer Networks", Fourth Edition, Prentice Hall of India, New Delhi,
	2002.
3.	W. Stallings, "Data and Computer communication, Sixth Edition, Pearson Education, New
	Delhi, 2001.
4.	Comer, "Computer Networks and Internets", Second Edition, Pearson Education, 2001.
5.	Behrouz A. Forouzen, "Data Communication and Networking" Fourth Edition, McGraw Hill
	Publications, 2007.

PCC-IN3	06 Unit (Operati	ons and Ins	trumentation				
Teaching	scheme:			Examination scheme:				
Lectures		3	hrs/week	Theory				
Tutorials		0	hrs/week	In Semester Evaluation : 20 Marks				
Practical		2	hrs/week	Mid Semester Examination : 30 marks				
Credits		4		End Semester Examination : 50 marks				
Course ol	ojectives:							
1.	To study t	he conce	pt of unit and	Unit Operations.				
2.	To study t	he const	ructions of dif	ferent equipments used for unit operation.				
3.	To observ	e the pri	nciple of opera	ations of different units.				
4.	To know t	he appli	cations of unit	operations.				
5.	To unders	stand the	different man	ufacturing processes in different industries.				
Course O	utcome: Or	n successi	ful completion	of this course students will be able to,				
1.	Understar	nd the co	ncept of unit a	nd unit operation.				
2.	Recognize	e the basi	c operations o	f different chemical processes.				
3.	Know the constructions/mechanisms of different equipments used for unit operation.							
4.	Use the knowledge of constructions and working of different equipments in studying							
	the operations of different mass transfer and heat transfer operations.							
5.	Select the	process	equipment for	particular unit operation.				
6.	Compare	different	mass transfer	and energy transfer operations.				

$PO/PSO \rightarrow$	DO1				DOE	DOG		DUO		DO10	DO11	DO12	DCO1			
↓ CO	FUI	FU2	103	r04	r03	FUU	F07	r Uo	F09	F010	FUII	FUIZ	1301	F 302	1303	r 304
PCC-IN306.1	3	3	2	-	2	2	-	-	-	2	2	2	3	3	3	1
PCC-IN306.2	3	3	2	2	2	2	-	-	-	2	2	2	3	3	3	1
PCC-IN306.3	3	2	2	2	2	2	-	-	-	2	2	2	3	3	3	1
PCC-IN306.4	3	1	2	1	1	-	-	1	1	1	2	2	3	1	2	1
PCC-IN306.5	3	3	2	2	2	-	-	-	2	2	3	2	3	3	2	1
PCC-IN306.6	3	3	2	2	2	-	-	-	2	2	2	2	3	2	2	1
PCC-IN306	3	3	3	2	2	1	-	1	1	2	3	3	3	3	3	1

Syllabus:	
Unit 1	Introduction
	Unit operation and unit process concept: block diagram of chemical process, classification of unit operation, material and energy balance, batch and continuous process, endothermic and exothermic reaction, reversible and irreversible process.

Unit 2	Evaporation and Distillation
	Liquid characteristics, types of evaporators, principle and operation of single and
	multiple effect evaporators equipment setup, Flash Distillation, Batch Distillation,
	Continuous Distillation, operational features, construction and working only.
Unit 3	Drying, Filtering ans Mechanical Operations
	Principle of drying, classification of dryers, temperature patterns in dryers, types of
	drying equipments, selection of drying equipment, Mechanism of filtration, types of
	filters.
	Mechanical Operations:
	Size reduction, Different crushers and grinders, working principle. Mixing , Types
	of mixers, construction and working.
Unit 4	Crystallization, Leaching and Extraction
	Construction, types, principle of working and operations of these equipments
Unit 5	Gas absorption, Adsorption, Humidification and dehumidification
	Construction, types, principle of working and operations of these equipments
Unit 6	Introduction to process industries
	Study of manufacturing process of cement plant, paper and pulp industries,
	petrochemical refinery industries, fertilizer industries, iron and steel industries,
	pharmaceutical industries, sugar industries etc. only study of flow diagram.
Text/Refere	nce Books:
1.	McCabe, W.L., Smith, J. C., and Harriot, P., "Unit Operations in Chemical Engineering", McGraw- Hill Seventh Edition, 2004.
2.	George T. Austin: "Shreve's Chemical Process Industries ", McGraw-Hill
	International Editions, Chemical Engineering Series, 1985
3.	M. G. Rao and Misting, "Outline of Chemical Technology", Second Edition, East west, 1973.
4.	Perry, "Chemical Engineer's Handbook", McGraw Hill, 1984.
Term Work:	
It will consis	t of a record of at least eight of the following experiments based on the prescribed
syllabus, assi	gnments and report on industrial visit.
1.	Study of evaporator and its operation.
2.	Study of distillation equipment and its operation.
3.	Study of Crystallizer and its operation.
4.	Study of liquid extractor and its operation.
5.	Study of dryer and its operation.
6.	Identify applications of all above equipments.
7.	Study of humidifier and dehumidifier.
8.	Study of heat exchanger and its working.
9.	Study of continuous stirred tank reactor(CSTR) and its working.
10.	Study of process flow diagram of any one industry.

Semester-VI

PCC-IN3	07 Pr	ocess (Control				
Teaching	schem	ne:		Examination scheme:			
Lectures		3	hrs/week	Theory			
Tutorials		0	hrs/week	In Semester Evaluation : 20 Marks			
Practical		2	hrs/week	Mid Semester Examination : 30 marks			
Credits		4		End Semester Examination : 50 marks			
Course ob	jectiv	es:					
1.	To st	udy diffe	rent strategies	of process control.			
2.	To ui	nderstan	d the modeling	g of dynamic processes and to develop the fundamental			
	and e	empirical	models.				
3.	To an	nalyze an	d design advan	ced control systems.			
4.	To kr	now the c	lesign of PID co	ntroller and it's tuning.			
5.	To st	udy digit	al implementat	ions of these controllers.			
Course Ou	itcome	es: On su	iccessful comp	letion of this course students will be able to			
1.	To d	evelop f	undamental an	d empirical models for dynamic processes and apply			
	contr	ol syster	ns in processes				
2.	То а	analyze	different stra	ategies of process control and understand their			
	imple	ementati	on for analog co	ontrol and digital control.			
3.	To an	nalyze an	d design advan	ce control systems viz. cascade, selective and split range			
	control; feed forward and ratio control; adaptive and inferential control systems.						
4.	To design and tune PID controllers						
5.	To design digital control systems using digital PID controllers and other controllers.						
6.	To se	et up ca	reer options, p	otential job functions, contemporary and professional			
	issue	s.	_				

$PO/PSO \rightarrow$ ↓ CO	P01	PO2	PO3	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3	PSO4
PCC-IN307.1	3	3	3	3	2	-	-	-	-	2	-	2	3	3	2	2
PCC-IN307.2	3	1	1	1	-	1	-	-	-	1	-	2	3	3	2	2
PCC-IN307.3	3	1	3	2	3	1	-	-	1	-	-	2	3	3	2	2
PCC-IN307.4	2	2	3	2	3	I	-	-	1	1	-	2	3	2	1	1
PCC-IN307.5	3	1	2	2	1	1	-	-	-	2	-	2	3	2	2	2
PCC-IN307.6	2	1	1	1	1	1	-	-	-	2	-	2	2	2	2	2
PCC-IN307	3	2	3	2	2	1	-	-	I	1	-	3	3	3	2	2

Syllabus:	
Unit 1	Introduction to chemical process control and its Modeling
	Incentives for chemical process control, design aspects and hardware for a process
	control system, introduction to ISA symbols: P & I D for process control.
	Development of a mathematical model, necessity, state variables and state
	equations, additional equations, additional elements of the mathematical models;
	dead time; modeling difficulties; the input-output model; degrees of freedom and
	process controllers; transfer function of a process with single/multiple outputs

Unit 2	Dynamic behavior of systems
	Dynamic behavior of first order, second order and higher order systems; dynamic
	systems with dead time/inverse response, computer simulation of process
	dynamics, linearization of nonlinear systems.
Unit 3	Controller modes
	Controller principles, process characteristics, control system parameters,
	discontinues controller modes, two-position, multi position, floating control mode,
	continues controller mode, P, I and D, composite control mode, P+I, P+D, P+I+D
	controller modes, analog and digital controllers.
Unit 4	Dynamic behavior of feedback controlled processes
	Input output models of feedback controllers, common measuring devices,
	transmission lines, final control element effect of on-off, proportional, integral,
	derivative and composite control actions on the response of a controlled process.
	Generation of control action: control action generation in electronic and pneumatic
	controllers.
Unit 5	Design of feedback controllers
	Outline of design problems; simple performance criteria, time integral
	performance content; selection of a feedback controller; controller tuning using
	Cohen-Coon method; Bode Stability criterion, gain and phase margins, Ziegler-
	Nichols tuning technique.
Unit 6	Analysis and design of advanced control systems and control systems for
	Foodback control systems with large dead time or inverse responses concerde
	recuback control systems with large dead time of inverse response; cascade,
	informatical control systems. Sunthesis of alternative control configurations for
	multiple input-multiple output processes interaction and decoupling of control
	loons: design of control systems for complete plants, some case studies
Text/Refere	nce Books
1.	G. Stephanopoulos, "Chemical Process Control: An Introduction to Theory and
	Practice", Prentice Hall of India, New Delhi, 2001.
2.	Curtis D. Johnson, "Process Instrumentation Technology", Fourth Edition, Prentice
	Hall of India, New Delhi, 1996.
3.	T. E. Marlin, "Process Control: Designing Processes and Control Systems for
	Dynamic Performance", McGraw Hill International Edition, 2000.
4.	Luyben W. L., "Simulation and Control for Chemical Engineering", Second Edition
	Mc Graw Hill 1989.
5.	E. Umez- Eronini, "System Dynamics and Control", Thomason Learning, 2002
Term Work:	
The term wo	rk shall consist of a record of at least eight experiments based on the syllabus given
above. Some	of the experiments may be from the following list.
1.	Design of an electronic ON-OFF controller and plot the characteristics of natural
	zone of controller.
2.	Design an electronic PID controller and study its response for step input.
3.	Design electronic temperature transmitter for transmitting temperature from
	500°C to 900°C to 4 to 20mA.
4.	Cascade control trainer (P, PI, PID, On / off) Study of Cascade Control trainer
	(Flow & Level control)
5.	Level control trainer

	a) Study of open loop response (Manual control)
	b) Study of on/off controller
	c) Study of proportional controller
	d) Study of proportional integral controller
	e) Study of proportional derivative controller
	f) Study of proportional integral derivative controller
	g) Tuning of controller (Open loop method)
	h) Tuning of controller (Closed loop method)
6.	Flow control trainer
	a) Study of open loop response (Manual control)
	b) Study of on/off controller
	c) Study of proportional controller
	d) Study of proportional integral controller
	e) Study of proportional derivative controller
	f) Study of proportional integral derivative controller
	g) Tuning of controller (Open loop method)
	h) Tuning of controller (Closed loop method)
7.	Flow measurement
	a) To Calculate coefficient of discharge of Venturi meter.
	b) To Calculate coefficient of discharge of Orifice meter.
	c) To Calculate coefficient of discharge of Pitot tube.
	d) To calibrate and find accuracy of Rotameter.
	e) To find accuracy of Water meter.
8.	Determine the time-constant of RTD for given step-input.
9.	To determine the mathematical model of the given process.
10.	To determine the constants of PID controllers by given method.
11.	Use of dead beat algorithm and other algorithms in the controller design.
12.	Use of optimum controller methods for tuning of PID controller.

PCC-IN3	PCC-IN308 Control System Components									
Teaching	scher	ne:		Examination scheme:						
Lectures		3	hrs/week	Theory						
Tutorials		0	hrs/week	In Semester Evaluation : 20 Marks						
Practical		2	hrs/week	Mid Semester Examination : 30 marks						
Credits	4 End Semester Examination : 50 marks									
Course Ob	jectiv	ves:								
1.	To enable the students to understand the fundamentals of various types of									
	com	ponents l	being used in c	ontrol systems.						
2.	To i	dentify, s	elect and desi	gn a suitable devices and components for use in process						
	indu	stries.								
Course ou	tcom	es:								
1.	To k	now the	mechanical, h	ydraulic, pneumatic and electrical components of control						
	the s	systems.								
2.	То	underst	and control	valve construction, valve terminologies, valve						
	actu	ators/acc	cessories and v	valve characteristics.						
3.	То а	pply the	knowledge of	mathematical modeling to prepare transfer function of AC						
	& D(C motors.								

4.	To classify various kinds of electrical motors and outline their applications in the field
	of control systems.
5.	To explain importance of different types of relays in control applications.
6.	To design and construct the mathematical model of control system components and
	execute the instrumentation requirements in process industries.

$PO/PSO \rightarrow$ ↓ CO	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3	PSO4
PCC-IN308.1	3	-	-	-	-	-	1	-	-	-	-	2	3	3	2	2
PCC-IN308.2	3	-	-	-	-	-	-	-	-	2	-	2	3	3	2	2
PCC-IN308.3	3	2	2	2	2	-	-	-	-	-	-	1	3	1	2	1
PCC-IN308.4	3	-	-	-	-	-	1	-	-	-	-	1	3	2	2	1
PCC-IN308.5	3	-	-	1	1	-	-	-	-	-	-	2	3	1	1	1
PCC-IN308.6	3	3	2	3	2	-	-	-	-	2	-	1	3	3	2	2
PCC-IN308	3	1	1	1	1	-	1	-	-	1	-	2	3	3	3	2

Syllabus:	
Unit 1	Motors
	Types, working principle, characteristic, and mathematical model of following:
	motors AC/DC motors, stepper, servo, synchronous generators and alternator.
Unit 2	Types, working principle, characteristics, and symbolic representation of
	following
	Switches: toggle, slide, DIP, rotary, thumbwheel, selector, limit, proximity,
	combinational switches, zero speed, belt sway, pull cord, Relays: Electromechanical,
	Solid state relays, relay packages, Contactors :Comparison between relay and
	contactor, contactor size and ratings, Timers : On delay, off delay and retentive.
Unit 3	Sequencing and interlocking for motors
	Concept of sequencing and Interlocking, Standard symbols used for Electrical Wiring
	Diagram, electrical wiring diagrams for starting, stopping, emergency shutdown,
	(Direct on line, star delta, soft starter) protection devices for motors: short circuit
	protection, over load protection, over/ under voltage protection, phase reversal
	Protection, high temperature and high current Protection, over speed, Reversing
	direction of rotation, braking, starting with variable speeds, Jogging/Inching. Motor
	control center: concept and wiring diagrams.
Unit 4	Pneumatic components
	Pneumatic power supply and its components: Pneumatic relay (Bleed and Non bleed,
	Reverse and direct), single acting and double acting cylinder, special cylinders:
	cushion, double rod, tandem, multiple position, rotary Filter Regulator Lubricator
	(FRL), pneumatic valves (direction controlled valves, flow control etc), special types
	of valves like relief valve, pressure reducing etc.
Unit 5	Hydraulic components
	Hydraulic supply, hydraulic pumps, actuator (cylinder and motor), hydraulic valves.
	Introduction, basic types of hydraulic transmission lines, servo motors, power supply,
	hydraulic circuits and transmission, applications like motor speed control,
	reciprocating, loading, unloading, sequencing of cylinders and direction control.
	Symbols used in hydraulic circuits.
Unit 6	Control valves

	Valve terminologies classification of valves Valve actuators and accessories detail
	study of valve characteristics. Study of valve construction by considering
	examples from hydraulic, pneumatic and electrical types. Introduction to valve
	selection and specifications. Selection of characteristics to suit the process, for gas,
	vapor and liquid. Valve sizing with mathematical treatment. Cavitations, effects and
	remedies of cavitations. Introduction to analog and digital fluidic devices.
Text Book	IS:
1.	M. D. Desai, "Control system components", PHI.
2.	S. R. Majumdhar, "Pneumatic Systems", Tata McGraw-Hill Publisher, 2009.
3.	B. L. Theraja, "A text book of Electrical Technology", S. Chand & Company Ltd.,
	Vol II First Edition 1959.
Reference	Books:
1.	Douglas M. Considine, "Process Instruments and Control Handbook", McGraw Hill.
2.	H. Meixner, E. Sauer, "Intro to Electro-Pneumatics", Festo didactic, First Edition 1989.
3.	J. P. Hasebrink, R. Kobler, "Fundamentals of Pneumatic Control Engineering", Festo
	Didactic: Esslinger(W Germany),1989.
4.	Petruzella, "Industrial Electronics", McGraw-Hill International First Edition, 1996.
5.	E. A . Parr, "Industrial control Handbook",volume 2, BSP Professional Books.
6.	Ernest O. Doebelin, "Measurement Systems – Application and Design", Fourth
	Edition, McGraw Hill.
7.	I. J. Nagrath, M. Gopal, "Control system Engineering", New Age International
	Publication Fourth Edition, 2006.(W.E)
8.	B. G. Liptak, "Process Measurement and Analysis", Fourth Edition, CRC Press,
0	Washington, 2003.
9.	McCraw Hill Now York 1959
10	Hans D. Baumann, "Control valvo primor", ISA: Fourth Povisod Edition (15 November
10.	2008)
11	Les Driskell "Control – Valves Selection and Sizing" ISA 1983
12	W G Andrew and H B Williams "Applied Instrumentation in the Process Industries"
	Gulf Publishing Company, 1982.
13.	C. D. Johnson, "Process Control Instrumentation Technology", Fourth Edition.
_	Prentice.
Term Wo	rk:
It will cons	sist of at least eight experiments/assignments/programs from the following list:
1.	Study of cut section views of different control system components.
2.	Study of stepper motor.
3.	Study of AC/ DC servo motors.
4.	Study of motor speed torque characteristics.
5.	Study of hydraulic control valves and accessories.
6.	Study of pneumatic control valves and accessories.
7.	Study of ON/OFF, linear and equal percentage valve characteristics.
8.	Study of logic fluidic devices.
9.	Study of flapper nozzle system.
10.	Study of different types of relays.

PCC-IN3	PCC-IN309 Distributed Control System									
Teaching	scher	ne:		Examination scheme:						
Lectures		3	hrs/week	Theory						
Tutorials			hrs/week	In Semester Evaluation : 20 Marks						
Practical		2	hrs/week	Mid Semester Examination : 30 marks						
Credits	Credits 4 End Semester Examination : 50 marks									
Course ob	jectiv	/es:								
1.	This course is designed to expose students to understand the process automation									
	cond	epts like	programmabl	e logic controller and distributed control system.						
Course Ou	itcom	ies: On s	uccessful com	pletion of this course students will be able to						
1.	To d	escribe t	he basics of PL	C and Ladder diagram programming language.						
2.	To e	xplain th	e basics of SCA	DA and different SCADA/HMI software available.						
3.	To a	pply the	knowledge of	basics of ladder diagram to solve various instrumentation						
	problems.									
4.	To design SCADA PLC based systems for process control application.									
5.	To explain the basics of Distributed Control System architecture and programming.									
6.	To analyze various programming languages used in industrial automation systems.									

$PO/PSO \rightarrow$ ↓ CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3	PSO4
PCC-IN309.1	3	-	-	-	1	-	-	-	-	-	-	1	3	3	2	-
PCC-IN309.2	3	1	-	1	1	1	1	-	-	-	-	1	3	3	2	-
PCC-IN309.3	1	3	2	2	3	-	-	-	-	-	-	2	3	3	3	2
PCC-IN309.4	1	2	3	1	3	I	I	-	-	-	1	2	3	3	3	2
PCC-IN309.5	3	2	3	2	3	1	1	-	-	-	-	2	3	3	3	1
PCC-IN309.6	1	2	1	-	2	-	-	-	-	-	-	1	2	2	2	-
PCC-IN309	3	2	2	1	3	I	I	-	-	-	-	2	3	3	3	1

Syllabus:	
Unit 1	Programmable Logic Controllers (PLC)
	Introduction, architecture, definition of discrete-state process control, discrete – state variables,
	process specifications, event sequence description
Unit 2	Industrial PLC- Allen Bradely and Ladder diagram
	Studies of Allen Bradely make Micrologix1200c and 1100 PLC. Background, ladder diagram
	elements, ladder diagram examples, programmable controllers: relay sequencer, programmable
	controllers, programmable controller operation, programming, advanced features, ladder
	diagrams.
Unit 3	Study of ABB, GE Fanuc and Siemens make PLC
	Introduction, programming.
Unit 4	Supervisory Control And Data Acquisition(SCADA)
	Introduction to supervisory control and data acquisition (SCADA) as applied to process control
	systems: Introduction to various SCADA packages, study of RSVIEW32 (AB make package)
	development of mimics using RSVIEW32 SCADA package, Study of iFix SCADA package
	WinCC
Unit 5	Distributed Control Systems (DCS)
	Introduction, difference between DCS and centralized computing system. Block diagram of

	DCS, data highways, multiplexers and remote sensing terminal units Study of various aspects
	of DCS like communication protocol, displays, cables etc., various system architectures of
	DCS.
	Yokogawa Centum VP: Architecture, study of FCS, programming using FBD, typical
	examples based on FBD programming, development of HMI's, process applications of Centum
	VP.
	Other DCS systems: Study of EPKS Honeywell DCS, Emerson's Delta V DCS, hardware and
	software basics of these DCS systems, introduction to Hybrid DCS.
Unit 6	Network protocols and Design consideration
	Introduction, study of various protocols like HART, Device net, Control net, Ethernet,
	Modbus, Profibus, Field Bus: Introduction, study of foundation field bus.
	Design of PLC/DCS system, design of marshalling cabinet, power consumption calculation,
	power distribution diagrams, functional design specification.
Text/Refe	erence Books:
1.	Gary Dunning, "Introduction to Programmable Logic Controllers" Second Edition,
	Thomson Delmar learning, 2002.
2.	C. D. Johnson, "Process Control Instrumentation Technology" Seventh Edition,
	Pearson Education, New Delhi 2003.
3.	B. G. Liptak, "Instrument Engineers Handbook" (Edition) Vol-II and III, Chilton book
	Company.
4.	Technical Manual – Yokogoawa, centum VP.
5.	Webb J. W. and Ronald A. Reis "Programmable Controllers: Principles and
	Applications", Prentice Hall of India Pvt. Ltd. Fifth Edition, 2005.
6.	John R. Hackworth and Frederick D. Hackworth "Programmable Logic Controllers", Jr.
	Third India Reprint 2005.
7.	Parr A., Newnes, "Programmable Controllers: An Engineer's Guide", Butterwoth-
	Heinmen Ltd. 1993.
8.	C. D. Johnson, "Microprocessor based Process Control", Prentice Hall International
	Edition.
9.	Manual of Hybrid DCS-AB Control Logix.
Term Wo	rk:
Term worl	k shall consist of at least six to eight assignment/tutorials/practical based on above
syllabus. S	ome of the experiments may be from the following list.
1.	Study of AB Micrologix 1200c and 1100 PLC.
2.	Development of simple ladder diagrams like AND/OR gate.
3.	Developments of ladder diagram for the controlling motor operation.
4.	Development of ladder diagram and simulation for the level control system.
5.	Development of ladder diagram for bottling plant.
6.	Study of software package RSVIEW32 (AB make) for SCADA.
7.	Development of mimic diagram for a particular process using SCADA software.
8.	Study of Hybrid controller control logix (AB MAKE).
9.	Development of programs for control of processes using Hybrid controller.
10.	Study of Yokogowa Centum VP.
11.	Development of FBD programs on Centum VP for ON/OFF control.
12.	Development of FBD programs on Centum VP for simple process control applications.

PCC-IN3	PCC-IN310 Power Electronics									
Teaching	scheme:		Examination scheme:							
Lectures	3	hrs/week	Theory							
Tutorials	0	hrs/week	In Semester Evaluation : 20 Marks							
Practical	2	hrs/week	Mid Semester Examination : 30 marks							
Credits	4		End Semester Examination : 50 marks							
Course ob	jectives:									
1.	Study differen	nt power electr	onic devices.							
2.	To extend sin	nple power elec	ctronic converters to realize rectifiers and inverters.							
3.	To develop and quantify common performance objectives for power electronic									
	circuits such as efficiency, power factor, etc.									
4.	To analyze and design DC/DC converter (chopper) circuits.									
5.	To analyze and evaluate the operation of cycloconverters and voltage controllers.									
6.	To outline op	perating princip	ples of application of power electronic circuits as motor							
	drives, UPS sy	ystems, etc.								
Course Ou	itcomes: On su	ccessful complete	etion of this course students will be able to							
1.	To understan	d the basic prin	nciple, characteristics and applications of power electronic							
	and switching devices.									
2.	Analytical study of different types of Power Converter systems.									
3.	Solve the numerical problems on semiconductor switches, rectifier, converter,									
	inverter, choppers and cycloconverter, circuits.									
4.	Simulate DC-DC converters.									
5.	Simulate and	Design DC-AC I	inverters.							
6.	Apply PWM t	echnique.								

$PO/PSO \rightarrow$ ↓ CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3	PSO4
PCC-IN310.1	3	2	2	1	1	-	-	-	-	-	-	-	3	3	3	2
PCC-IN310.2	3	1	2	2	-	1	-	-	-	-	-	-	3	2	2	1
PCC-IN310.3	3	1	2	-	-	-	-	-	-	-	-	-	3	2	1	1
PCC-IN310.4	3	2	3	1	1	-	-	-	-	-	-	-	3	2	2	1
PCC-IN310.5	3	2	3	1	1	-	-	1	-	-	-	-	3	1	1	1
PCC-IN310.6	3	1	1	1	I	-	-	1	I	-	-	-	3	2	3	2
PCC-IN310	3	2	3	1	1	1	-	-	-	-	-	-	3	3	3	1

Syllabus:	
Unit 1	Power Semiconductor Devices (06 Hours)
	Modern power semiconductor devices and their characteristics, gate drive specifications, ratings, applications, turn ON and turn OFF methods, design of gate triggering circuits using IIIT and thereis protection circuits
Unit 2	Phase controlled rectifiers (06 Hours)
	Single phase rectifiers: Half wave, center tapped, bridge (half controlled and fully controlled) with R and RL load. Three phase rectifiers: half wave, bridge with R and RL load effect of source inductance, dual converters, power factor improvement methods.
Unit 3	DC chopper (08 Hours)

	Basic chopper, continuous and discontinuous current conduction, TRC, CLC
	methods, classification of choppers, step-up chopper, switching mode regulators.
Unit 4	AC voltage controller & cycloconverters (06 Hours)
	AC voltage controller: types of ac voltage controllers, single-phase and three phase
	ac voltage controllers with R and RL load, transformer tap changers, single phase
	to single phase cycloconverters, three phase to single phase cycloconverters, three
	phase to three phase cycloconverterswith circulating and non-circulating mode.
Unit 5	Inverters (08 Hours)
	Single phase inverters: series, parallel and bridge configurations with R load,
	PWM inverters. Three phase inverters: 120° and 180° conduction with R and load
	RL, voltage control and harmonics reduction.
Unit 6	Application in power electronics (06 Hours)
	UPS and SMPS, basic characteristics of DC motors, operating modes, DC motor
	control using different rectifiers, induction motor drives, performance
	characteristics, stator voltage control, rotor voltage control, frequency control,
	voltage and frequency control.
Text/Referen	ce Books:
1.	P. S. Bhimra "Power Electronics", , Khanna Publishers (2010).
2.	M.H. Rashid "Power Electronics, Circuits, Devices and Applications", Pearson
	Education Inc., 3rd Edition.
3.	M. D. Singh and K. B. Khanchandani, Power Electronics, Tata McGraw-Hill
	Publishing Company Limited, New Delhi (India), 1998.
4.	P.C. Sen, "Power Electronics", Tata McGraw-Hill Publications India
5.	Mohan, Undeland& Robins "Power Electronics, Converter Applications and
	Design", , John Wiley and sons (Asia) Pvt. Ltd
6.	"G. K. Dubey and Others Thyristorised Power Controller", Wiley Eastern Ltd
7.	B.K. Bose, "Modern Power Electronics and A.C. Drives", Prentice Hall of India Pvt.
	Ltd. Publication
8.	B.W.Williams, "Power Electronics", John Willey.
Term Work:	
It will consist	of a record of at least six to eight experiments based on the following list.
1.	UJT characteristics.
2.	SCR characteristics.
3.	Triac characteristics.
4.	Power control using SCR.
5.	Power control using Triac.
6.	Single phase half controlled Rectifiers.
7.	Single phase fully controlled Rectifiers.
8.	Single phase inverter using transistor/ MOSFET/SCR.
9.	Basic step-down chopper.
10.	Basic step-up chopper.
11.	Study of D.C. motor control using controlled rectifiers.
12.	Study of D.C. motor control using choppers.
13.	Study of A.C. motor control using inverter.

PEC-IN3	PEC-IN311 Elective-I Power Plant Instrumentation						
Teaching	Aching scheme: Examination scheme:						
Lectures		3	hrs/week	Theory			
Tutorials		0	hrs/week	In Semester Evaluation : 20 Marks			
Practical		0	hrs/week	Mid Semester Examination : 30 marks			
Credits		3		End Semester Examination : 50 marks			
Course Ob	jectiv	ves:					
1.	То с	reate aw	areness about	the various methods of power generation and its control			
	meth	nods in ir	nstrumentatior	n engineering.			
2.	To st	tudy the	role of Instrum	nentation in power plants.			
3.	To l	be famil	iar about the	important parameters that has to be monitored and			
	cont	rolled.					
4.	To ir	npart kn	owledge about	different types of controls and control loops.			
5.	To g	et detaile	ed knowledge a	about power plant management			
Course ou	tcom	es:					
1.	To r	emembe	r the innovativ	ve ideas to improve plant efficiency reduce leakages and			
	losse	es and u	se technologie	s for designing and developing pollutant free industrial			
	envi	ronment					
2.	То	understa	nd the oper	ation of traditional power plants and describe the			
	instr	uments	that makes up	their measurement and control systems.			
3.	To a	apply th	e knowledge	of mathematics for deriving mathematical models for			
	diffe	rent pro	cesses in the p	ower plant.			
4.	То а	nalyze tł	ie various inst	ruments used in power plant and make recommendations			
	for in	mproving	g the control p	rocesses.			
5.	To e	valuate t	he performanc	e of boilers and turbines.			
6.	To d	esign ins	trumentation s	systems for electricity generating plants.			

$PO/PSO \rightarrow$ ↓ CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3	PSO4
PEC-IN311.1	3	1	1	1	1	1	1	1	1	1	1	3	2	2	1	1
PEC-IN311.2	2	1	1	1	1	1	1	1	1	1	1	2	3	3	1	1
PEC-IN311.3	2	1	1	2	3	1	1	1	1	1	2	1	3	3	1	2
PEC-IN311.4	1	2	2	3	1	3	2	1	2	2	2	1	1	2	2	2
PEC-IN311.5	1	1	2	3	2	2	2	1	3	3	3	1	2	3	3	2
PEC-IN311.6	1	1	2	2	1	2	2	1	3	3	3	1	3	3	3	2
PEC-IN311	2	1	2	3	2	2	2	1	2	2	3	2	3	3	2	2

Syllabus:	
Unit 1	Overview of Power Generation
	Various types of power plants based on the methods of power generation example-
	thermal, nuclear, solar, wind, geothermal, magneto hydraulic, fuel cells, biomass;
	Introduction of process in power plant: Raw materials, different fuels, water feed,
	water steam cycle, gas air cycle, steam generators, different types of turbine, types of
	hydro turbines, steam turbines and gas turbines, power generating and distributing
	system, cooling towers; Importance of Instrumentation and control in power
	generation-P&I diagrams-P&I diagram of boiler-co-generation.

Unit 2	Measurements in Power Plants
	Importance of measurement and instrumentation in power plant, flow measurement,
	feed water, fuel, airflow, steam flow measurement and correction factor for
	temperature and pressure, temperature measurement, pressure measurement, level
	measurement, smoke, density measurement, radiation detection instrument.
Unit 3	Turbine Monitoring and Control
	Electrical parameters-Current, Voltage, Power, Energy, Frequency, Power factor etc-
	Nonelectrical parameters-Flow of feed water, fuel, air and steam with correction
	factor for temperature and pressure-Speed, vibration, shell temperature monitoring
	and control-Steam pressure control-Lubricant oil temperature control- cooling
	system.
Unit 4	Control Loops and Interlocks in Boiler
	Combustion control, air/fuel ratio, furnace draft and excess air control, drum level
	control or three element control, reheat steam temperature control, super
	heatercontrol, attemperator- deaerator control, Water recirculation and types of
	water cooling methods, Distributed Control System in power plant interlocks in boiler
	operation.
Unit 5	Auxiliaries in Power Plants
	Air system, ID, FD fans, make up water treatment plant, de-super heaters, air pre-
	heaters, soot blowers, different control valves and efficiency. Use of feed forward and
	cascade control. Instrumentation and control in reactors, their types, which are used
	in, process industries.
Unit 6	Power Plant Management
	Master control, boller efficiency, maintenance of measuring instruments, intrinsic and
	electrical safety, computer based control and data logging systems, distributed
Tout /Dafa	control systems (DCS) and its applications in power plants.
1 ext/ Refe	rence Books:
1.	Krisnnaswamy, K., and M. Ponnibala, Power Plant Instrumentation PHI Learning
2	PVI. LIU., 2013. Neg. D. K. "Device Plant Engineering" Tota McCrow Hill Education 2002
2.	Nag, F. K., FOWEI Flatt Eligiteering, Tata McGraw-fill Education, 2002.
3. 1	Domkindwar A S "Power plant Engineering" Dhannat Pai & Song India 2000
4.	Domkunuwar, A. S. Fower plant Engineering. Dhanpat Kaj & Sons, mula, 2000.
5.	Liptak, Bela G., and Béla G. Lipták, "Process measurement and analysis" Vol. 20. Boca
	Raton, FL: CRC press, 2003.
6.	Black & Veatch, "Power Plant Engineering" Chapman & Hall, 1996.
7.	Central Electricity Generating Board, "Modern Power Station Practice" Pergamon
	Press, 1971.
Term Wor	rk:
Eligibility	for attending examination on this course is as follows:
1.	Student should submit minimum 5 assignments out of 8 assignments given by course
	coordinator.

PEC-IN312 Elective-I Digital System Design							
Teaching schem	ne:		Examination scheme:				
Lectures	3	hrs/week	Theory				
Tutorials	0	hrs/week	In Semester Evaluation : 20 Marks				
Practical	0	hrs/week	Mid Semester Examination : 30 marks				

Credits		3	End Semester Examination : 50 marks						
Course ob	Course objectives:								
1.	To fa	To familiarize with the basic components that constitute digital systems.							
2.	To le	To learn basic techniques for the design of digital circuits and fundamental concepts							
	used	l in the design of digital	systems.						
3.	To u	nderstand the different	types of PLDs and design of digital circuits using PLDs.						
4.	To d	lesign and modeling of	combinational, sequential digital systems and Finite State						
	Mac	hines.							
5.	To u	nderstand the construc	ts and conventions of the Verilog / VHDL programming.						
Course ou	tcom	es:							
1.	To r	emember the basic know	wledge of combinational and sequential logic design.						
2.	To u	inderstand advanced fe	eatures of verilog HDL and apply them to design complex						
	real	time digital systems.							
3.	To e	execute program codes	for structural and behavioral modeling of combinational						
	and	sequential logic using V	Verilog HDL in any problem identification, formulation and						
	solu	tion.							
4.	To e	xamine various abstrac	tion levels of Verilog HDL in modeling digital hardware.						
5.	To e	valuate and design the	modeling of combinational, sequential digital systems and						
	Finit	te State Machines.							
6.	To	design and apply the	concept of test-benches to create testing behavioral						
	envi	ronments for simulation	n based verification.						

$PO/PSO \rightarrow$ ↓ CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3	PSO4
PEC -IN312.1	3	1	1	1	1	1	1	1	1	1	1	1	3	1	1	1
PEC -IN312.2	1	1	1	1	1	1	1	1	1	1	1	2	1	2	1	1
PEC -IN312.3	1	3	3	2	3	1	1	1	3	1	1	1	1	3	3	1
PEC -IN312.4	1	2	2	3	2	1	1	1	3	1	2	1	1	3	3	3
PEC -IN312.5	1	1	2	3	2	2	1	1	3	1	3	1	1	3	3	3
PEC -IN312.6	1	1	2	2	2	1	2	2	3	1	3	1	1	3	3	3
PEC-IN312	1	2	2	3	2	1	1	1	3	1	2	1	1	3	3	3

Syllabus:									
Unit 1	Introduction to Digital Systems								
	Evolution of digital systems, design process, design of digital hardware, computer								
	aided design tools.								
Unit 2	Combinational and Sequential Logic Design								
	Adders subtractors, ALU, decoder, encoder, multiplier, comparator, Barrel shifters, multiplier design and its VHDL implementation multi-operand addition, sequential multiplication with sign and magnitude, two's complement, partially combinational implementation, MAC, saturating multiplier, truncating multiplier, rectangular multiplier.								
Unit 3	Sequential Machines								
	Introduction to State Machines: The Need for State Machines, The State Machine, Basic								
	Concepts in State Machine Analysis. Finite State Machines: Standard model,								
	synchronous and asynchronous machines, Moore and Mealy machines.								

Unit 4	Programmable Logic Devices
	Combinational logic design using PLDs like ROM array, PLA, PAL, preliminary design
	concepts using CPLDs and FPGAs, Combinational PLD-Based State Machines
Unit 5	Hardware Description Languages
	Introduction to HDL, Combinational logic description: Structure, combinational
	behavior, test benches. Sequential logic description: registers, oscillators, controllers.
	Data path component description: full adders, carry – ripple adders, up counters.
Unit 6	Control Unit design
	Constructing the control unit, standalone controllers, ASM charts and state action
	tables, VHDL implementation of control unit. Examples of manual design of dedicated
	microprocessors.
Text/Ref	erence Books:
1.	Jain Rajendra Prasad "Modern Digital Electronics." Tata McGraw-Hill Education, 2003.
2.	Tocci, Ronald J., Neal S. Widmer, and Gregory L. Moss. "Digital Systems: Principles and
	Applications, Pearson Education Limited, 2018.
3.	Ciletti, Michael D., and M. Morris Mano. "Digital Design." Prentice-Hall, 2007.
4.	Vahid, Frank. "Digital design with RTL design, VHDL, and Verilog." John Wiley & Sons,
	2010.
5.	Vranesic, Zvonko G., and Stephen Brown. "Fundamentals of digital logic with VHDL
	design." McGraw Hill, 2000.
6.	Bhasker, Jayaram. "A VHDL Primer." Prentice-Hall, 1999.
7.	Roth CH, John K. Lizy, "Digital System Design using VHDL", Thomson. International
	Student Edition. 2008.

PEC-IN3	PEC-IN313 Elective-I Optical Instrumentation								
Teaching	g scheme: Examination scheme:								
Lectures		3	hrs/week	Theory					
Tutorials		0	hrs/week	In Semester Evaluation : 20 Marks					
Practical		0	hrs/week	Mid Semester Examination : 30 marks					
Credits		3		End Semester Examination : 50 marks					
Course Ob	jectiv	ves:							
1.	To u	To understand the working of optical fiber as a sensor.							
2.	To apply and usage of optical fiber to measure various physical parameters.								
3.	To study and identify applications of LASER in instrumentation & measurement.								
Course ou	tcom	es:							
1.	To k	now the	basic concept	s of optical fibers and to provide knowledge about optical					
	sour	ces and	optical detecto	rs.					
2.	To c	classify t	the optical so	urces and detectors and to discuss their principle and					
	unde	erstand t	he industrial a	pplications of optical fibers.					
3.	То а	pply LAS	SER and optical	fiber for various physical parameter measurements.					
4.	To analyze the optical sensor technology on various parameters of measurements.								
5.	To explain the basic elements of optical fiber transmission link, fiber modes								
	conf	iguration	ns and structur	es.					
6.	To fa	amiliar w	vith design con	siderations of fiber optic systems.					

Course Articulation Matrix: Mapping of Course outcome	e and Program outcome
---	-----------------------

PO/PSO →	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3	PSO4
↓ CO					100	100	- 0.								1000	
PEC -IN313.1	3	1	-	-	-	-	-	-	-	-	-	2	3	1	1	-
PEC -IN313.2	3	1	-	-	-	-	1	-	1	-	-	1	2	1	-	2
PEC -IN313.3	3	2	3	2	3	-	1	-	1	-	-	-	3	2	-	2
PEC -IN313.4	3	2	3	2	3	-	1	-	1	-	-	-	3	2	2	3
PEC -IN313.5	3	3	3	3	2	-	1	-	3	1	2	3	2	3	3	1
PEC -IN313.6	3	3	3	3	2	3	3	-	3	2	3	2	3	3	3	1
PEC-IN313	3	3	3	2	2	1	1	-	1	1	1	1	3	3	2	2

Syllabus:	
Unit 1	Introduction
	Light and elements of solid state physics nature of light, wave nature of light, light
	sources black body radiation, units of light Energy bands in solids, semiconductor
	types, works function, functions.
Unit 2	Display devices
	Luminescence, insertion luminescence and the light emitting diode, radiative
	recombination processes LED materials, commercial LED materials LED construction,
	response time of LEDs, LED drive circuitry plasma display liquid crystal displays.
Unit 3	Lasers
	Emission population inversion, optical feedback classes of laser, doped insulator
	lasers semiconductor lasers, gas lasers, liquid dye lasers, laser applications,
	measurement of distance holography.
Unit 4	Photodetectors
	Thermal detectors: thermoelectric detectors, the bolometer, pneumatic detector,
	pyroelectric detector photo devices photoemissive devices vacuum photo diodes
	photo multipliers, noise in photo multipliers, image intensifier photo conductive
	detection photo transistor etc.
Unit 5	Optical fibers
	Classification of optical fiber, principle of light transmission through a fiber,
	fabrication of optical fibers, material consideration loss and band width limiting
	mechanism, preform fabrication technique, fiber drawing, fiber optic communication
	system introduction to fiber optic sensors: temperature pressure, level etc.
Unit 6	Opto electronic power devices and Opto isolators
	Solar cells and their application, different types of opto isolators and their
	configuration applications.
Reference	Books:
1.	Pallab Bhattacharya, "Semiconductor Optoelctronic Devices", Second Edtion, Pearson
	Education, New Delhi, 2002.
2.	J. Wilson J.F.B.Hawkes, "Opto Electronics – An Introduction", Prentice Hall of India
	New Delhi, 1996.
3.	Deboo Burrous, "Integrated circuits and semiconductor devices: theory and
	application", McGraw Hill Second Edition.
4.	J. M. Senior, "Optical fiber communications Principals and Practice", Prentice Hall of
	India, Second Edition, 1996.
5.	H. Zanger and C. Zanger, "Fiber optics – communication and other application",

	McGraw Publication.
6.	Gerd Keiser, "Optical Fiber Communication".

PEC-IN3	14 El	ective	I Automotiv	ve Instrumentation					
Teaching	schen	ne:		Examination scheme:					
Lectures		3	hrs/week	Theory					
Tutorials		0 hrs/week In Semester Evaluation : 20 Marks							
Practical		0	hrs/week	Mid Semester Examination : 30 marks					
Credits		3		End Semester Examination : 50 marks					
Course ob	jectiv	ves:							
1.	To u	nderstar	nd the concept	s of automotive electronics and its evolution and trends.					
2.	To u	indersta	nd, design and	l model various automotive control systems using Model					
	base	d develo	pment technic	ue.					
3.	To d	lescribe	various comm	unication systems, wired and wireless protocols used in					
	vehi	cle netw	orking.						
4.	To u	nderstar	nd safety stand	ards, advances in towards autonomous vehicles.					
5.	To u	nderstar	nd vehicle on b	oard and off board diagnostics.					
Course ou	tcom	es:							
1.	To a	cquire k	nowledge of va	rious automotive standards and Protocols.					
2.	To u	nderstar	nd the basic kn	owledge of sensor and measuring system.					
3.	Abili	ty to un	derstand electi	onic control unit.					
4.	To analyze and understand the overview of automotive components, subsystems,								
	design cycles, communication protocols and safety systems employed in today's								
	auto	motive i	ndustry						
5.	To se	elect the	basic modelin	g and control scheme for automotive systems.					
6.	Desi	gn asneo	rts of measurer	nent and control strategies in automotive application					

$PO/PSO \rightarrow \downarrow CO$	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3	PSO4
PEC -IN314.1	3	2	3	1	3	2	2	3	2	3	1	3	3	3	1	3
PEC -IN314.2	3	2	1	1	2	1	-	-	-	-	-	2	3	2	1	-
PEC -IN314.3	3	2	2	1	2	-	-	-	-	-	-	3	3	3	2	-
PEC -IN314.4	3	3	3	3	2	-	2	-	2	2	3	3	3	2	3	2
PEC -IN314.5	3	3	3	3	3	-	-	-	2	2	3	3	3	3	3	2
PEC -IN314.6	3	3	3	3	3	-	-	1	3	3	3	3	3	3	3	3
PEC-IN314	3	3	3	3	3	1	1	1	2	2	2	3	3	3	3	2

Syllabus:	
Unit 1	Introduction of automobile system
	Current trends in automobiles with emphasis on increasing role of electronics and
	software, overview of generic automotive control ECU functioning, overview of
	typical automotive subsystems and components, AUTOSAR.
Unit 2	Engine management systems
	Basic sensor arrangement, types of sensors such as oxygen sensors, crank angle
	position sensors, fuel metering/ vehicle speed sensors, flow sensor, temperature, air
	mass flow sensors, throttle position sensor, solenoids etc., algorithms for engine

	control including open loop and closed loop control system, electronic ignition, EGR for exhaust emission control.
Unit 3	Vehicle power train and motion control
	Electronic transmission control, adaptive power steering, adaptive cruise control, safety and comfort systems, anti-lock braking, traction control and electronic stability, active suspension control.
Unit 4	Active and passive safety system
	Body electronics including lighting control, remote keyless entry, immobilizers etc., electronic instrument clusters and dashboard electronics, aspects of hardware design for automotive including electro-magnetic interference suppression, electromagnetic compatibility etc., (ABS) antilock braking system, (ESP) electronic stability program, air bags.
Unit 5	Automotive standards and protocols
	Automotive standards like CAN protocol, Lin protocol, flex ray, OBD-II, CAN FD, automotive Ethernet etc. automotive standards like MISRA functional safety
	standards (ISO 26262).
Unit 6	System design and energy management
	BMS (battery management system), FCM (fuel control module), principles of system design, assembly process of automotives and instrumentation systems.
Text Book	KS:
1.	William B. Ribbens, "Understanding Automotive Electronics", Sixth Edition, 2003.
Reference	Books:
1.	Young A.P., Griffiths, "Automotive Electrical Equipment", ELBS & New Press, 1999.
2.	Tom Weather Jr. & Cland c. Ilunter, "Automotive computers and control system",
2	Prenuce film file, New Jersey.
э.	1995.
4.	Bechhold,"Understanding Automotive Electronic", SAE, 1998.
5.	Robert Boshe, "Automotive Hand Book", Bentely Publishers, Fifth Edition, Germany, 2005.

PEC-IN3	EC-IN315 Elective-I Mechatronics									
Teaching	schen	ne:		Examination scheme:						
Lectures		3	hrs/week	Theory						
Tutorials		0	hrs/week	In Semester Evaluation : 20 Marks						
Practical		0	hrs/week	Mid Semester Examination : 30 marks						
Credits	Credits 3 End Semester Examination : 50 marks									
Course ob	jectiv	/es:								
1.	The	aim of	the module is	s to introduce the basic elements of mechatronics and						
	illus	trate wit	h case study m	aterial.						
Course ou	tcom	es:								
1.	То	recalling	the basic t	echniques, skills and modern tools in mechatronics						
	engi	neering t	technology.							
2.	To understand customer requirements and effectively integrate multiple mechanical									
	and electrical systems.									
3.	То а	pply con	cepts of circui	t analysis, analog and digital electronics, automation and						

	controls, motors, power systems, instrumentation and computers to aid in the design,
	characterization, analysis and troubleshooting of mechatronics systems.
4.	To analyze advanced principles of statics, dynamics, fluid mechanics, and strength of
	materials, engineering standards and manufacturing processes to aid in the design.
5.	To calculate the interfacing parameters required to connect digital and analogue
	sensors to computers.
6.	To design a system component or process to meet desired needs within realistic
	constraints, such as economic, environmental and/or social.

PO/PSO → ↓ CO	P01	PO2	PO3	PO4	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3	PSO4
PEC -IN315.1	3	3	3	3	3	3	3	2	3	1	1	3	3	3	3	1
PEC -IN315.2	3	3	3	2	3	3	2	3	2	2	2	3	3	3	2	2
PEC -IN315.3	3	3	3	2	3	3	2	1	2	1	2	3	3	2	2	1
PEC -IN315.4	3	3	3	3	3	3	2	-	2	2	3	3	3	3	2	2
PEC -IN315.5	3	3	3	2	3	3	2	-	2	1	2	3	3	3	2	1
PEC -IN315.6	3	3	3	3	3	3	2	-	3	2	3	3	3	3	3	2
PEC-IN315	3	3	3	3	3	3	3	1	3	2	3	3	3	3	3	2

Syllabus:	
Unit 1	Introduction
	Meachatronics, measurement system, overview of mechatronics, mechatronics design approach, system interfacing, instrumentation and control systems, microprocessor- based controllers.
	Various transducers used for measurement of displacement, position, velocity, force, pressure, temperature, signal conditioning, data presentation and data logging system, introduction to various actuators, comparison of various actuators, selection of actuators.
	Temperature switches, pressure switches, flow switches, level switches, electrically operated switches, magnetic switches, solid state switches and solenoids.
Unit 2	Systems models review
	Mathematical models, mechanical system building blocks, electrical system building blocks, fluid system building blocks, thermal system building blocks, rotational translational systems, electromechanical systems, hydraulic mechanical systems, system transfer function, dynamic response of systems, frequency response.
Unit 3	Study of advance process control blocks
	Statistical process control, model predictive control, fuzzy logic based control, neural- network based control. Higher level operations: control & instrumentation for process optimization, applications of the above techniques to the some standard units/processes.
Unit 4	Fault finding
	Fault detection techniques, watchdog timer, parity and error coding checks, common
	hardware faults, microprocessor systems, emulation and simulation, PLC systems.
Unit 5	Robotics
	Introduction to robots, classification of robots, and anatomy of robots, degree of freedom, robot joints and robot coordinates various applications of robots.

Unit 6	Mechatronics systems									
	Case study-1: Design of electrically controlled robot arm for sorting application									
	Cast Study-2: Design of a robotic walking machine									
	Case study-3: Design of control scheme for automatic bottle filling plant									
	Case study-4: Design of control scheme for automatic baggage handling system.									
	Case study-5: Design of control scheme home automation									
Text Book	IS:									
1.	Mittal R. K. and Nagrath I. J. , "Robotics and Control", TMH Pub., New Delhi, 2003.									
2.	M. D. Singh, J. G. Joshi, Mechatronics, PHI.									
Reference	e Books:									
1.	W. Bolton, "Mechatronis: Electronic Control Systems in mechanical and electrical									
	engineering", Third Edition, Pearson education (Singapore) Ltd., 2005.									
2.	Tsunco Yoshikawa, "Foundations of Robotics, Analysis and Control", prentice Hall of									
	India, 2001.									
3.	David Alciatore and Histand, "Introduction to Mechatronics and measurment system",									
	ТМН.									
4.	Dan Necsulescu, "Mechatronics", Pearson Education, Asia.									
5.	Robert H. Bishop, "The Mechatronics Handbook", CRC Press, with ISA-The									
	Instrumentation, Systems, Automation Society, 2002.									
6.	B.G. Liptak 'Handbook of Instrumentation- Process Control'.									
7.	Atkeson C. G. & Hollerbach J. M., "Model based control of a Robot manipulator", MIT									
	Press, Mass., 1988.									

PEC-IN3	16 El	ective-	I Material S	Science							
Teaching	schen	ne:		Examination scheme:							
Lectures		3	hrs/week	Theory							
Tutorials		0	hrs/week	In Semester Evaluation : 20 Marks							
Practical		0	hrs/week	Mid Semester Examination : 30 marks							
Credits		3		End Semester Examination : 50 marks							
Course ob	jectiv	es:									
1.	To kr	now the	fundamental s	science and engineering principles relevant to materials.							
2.	To understand the relationship between nano /microstructure, characterization										
	prop	erties ar	d processing	and design of materials.							
3.	To develop an understanding of the basic principles of material science and apply										
	those	e princip	les to enginee	ering applications.							
Course ou	tcom	es:									
1.	To de	efine ele	ctrical, magne	tic and optical properties of materials.							
2.	To id	entify, fo	ormulate, and	solve engineering problems.							
3.	To ap	oply core	e concepts in N	Materials Science to solve engineering problems.							
4.	To ex	kamine g	eneral math,	science and engineering skills to the solution of engineering							
	prob	lems.									
5.	To se	To select suitable materials for specific instrumentation devices.									
6.	To d	esign a	system, comp	oonent, or process to meet desired needs within realistic							
	const	traints s	such as econ	omic, environmental, social, political, ethical, health and							
	safet	y, manul	facturability, a	nd sustainability.							

$\begin{array}{c} PO/PSO \rightarrow \\ \downarrow CO \end{array}$	P01	PO2	PO3	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3	PSO4
PEC -IN316.1	3	3	3	3	3	3	3	2	3	1	1	3	3	3	3	1
PEC -IN316.2	3	3	3	2	3	3	2	3	2	2	2	3	3	3	2	2
PEC -IN316.3	3	3	3	2	3	3	2	1	2	1	2	3	3	2	2	1
PEC -IN316.4	3	3	3	3	3	3	2	-	2	2	3	3	3	3	2	2
PEC -IN316.5	3	3	3	2	3	3	2	-	2	1	2	3	3	3	2	1
PEC -IN316.6	3	3	3	3	3	3	2	-	3	2	3	3	3	3	3	2
PEC-IN316	3	3	3	3	3	3	3	1	3	2	3	3	3	3	3	2

Syllabus:	
Unit 1	Introduction to engineering materials
	Materials classification and engineering requirements of materials, factor affecting
	the selection of materials for engineering purposes, properties of engineering
	materials , testing of materials, tensile test, torsion and shear test, compression test,
	impact test, hardness test, fatigue test, S-N diagram, creep of materials, Erichsen test.
Unit 2	Materials and their applications
	Electrical and electronic component, materials for resistors, properties and
	applications, superconducting materials, transducers materials, semiconductors-
	commonly used type working applications. thermistors, piezoelectric, ferro electric
	and ferro ceramic materials, die electric materials and dielectric constant, capacitor
	insulating materials, properties of fibrous material, ceramic, mica glass, rubber,
	plastics, thermosetting and thermoplastic resins, insulating waxes, varnishes and
	coolants. Effects of carbon composition and applications.
Unit 3	Magnetic materials
	Soft material and hard magnetic materials, ferrites and Di para antiferro,
	ferromagnetism.
Unit 4	Thermocouple materials
	Soldering materials, fuse materials, contact materials, fluorescent and
	phosphorescent materials, processing of electronic materials, crystal growth,
	purification junction, IC fabrication processes of galvanizing and impregnatism.
Unit 5	Nanomaterials
	Introduction to nanotechnology, Nanowire and Nanotube, carbon nanotubes, single
	wall carbon nanotubes, Multiwall carbon nanotubes, fabrications, properties and
	applications.
Unit 6	Introduction to manufacturing processes
	Casting, cold working and hard working processes like rolling, forging, extrusion etc.,
	crystal structure of metals and alloys: FCC, BCC, HCP.
Text Book	KS:
1.	Alagappan W., Kumar N. T., "Electrical Engineering Materials", McGraw Hill 1998.
2.	Agrawal B. K., "Engineering Material", Mc-Graw Hill Publishing company, 2000.
3.	Raghavan V., "Materials Science and Engineering – A first course", Fifth Edition,
	Prentice Hall, New Delhi, 1998.
4.	Dr. V. D. Kodgire, "Material science and Metallurgy", Everest Publishing House,
	Twelveth Edition 2002.
Reference	Books:
1.	Raymond A. Higgins, "Material for Engineering Technician", Second Edition, ELBS,

	1998.
2.	R. M. Rose, L. A. Shepard, "The structure and Properties of Materials", Vol. IV, John
	Wulff, John Wiely and Son Inc.198.
3.	Smith W. F. and Hashemi J., "Foundations of Materials Science and Engineering",
	Fourth Edition, Mc Graw Hill, United States, 2005.
4.	VanVlack L. H., "Elements of material science and engineering," Pearson Education
	India.

PEC-IN3	17 Elective	-I Microeled	ctronics
Teaching	scheme:		Examination scheme:
Lectures	3	hrs/week	Theory
Tutorials	0	hrs/week	In Semester Evaluation : 20 Marks
Practical	0	hrs/week	Mid Semester Examination : 30 marks
Credits	3		End Semester Examination : 50 marks
Course Ob	jectives:		
1.	To make the	e students fan	niliar with the properties behaviour and applications and
	implementat	ion of microel	ectronic technology into integrated circuits.
2.	A sound know	wledge of the	fundamental scientific principles involved in the operation,
	design and fa	brication.	
3.	An ability to	use the tech	niques, skills and modern engineering tools necessary for
	engineering	practice.	
4.	Understand	the basic and	advanced circuit and system design techniques for digital
	and analog d	omain.	
Course ou	tcomes:		
1.	To know th	e semicondu	ctor concepts of drift, diffusion, donors and acceptors,
	majority and	l minority car	riers, excess carriers, low level injection, minority carrier
	lifetime.		
2.	To discuss t	he electronic	analysis of CMOS logic gates, delay analysis, analysis of
	complex logi	c gates, power	dissipation.
3.	To apply sir	nple large sig	gnal circuit models for metaloxide-semiconductor (MOS)
	capacitors de	evices which i	nclude charge storage elements and analyze the secondary
	effects of MO	SFET.	
4.	To analyze t	he basic struc	tures to create MOSFETs, cell concepts, physical design of
	logic gates, d	esign hierarch	nies.
5.	To evaluate	VLSI design	flow and transistor level CMOS logic design, discuss the
	physical stru	cture of IC lay	ers to create MOSFETs.
6.	To design an	d verify schen	natic and layout simulation of analog and digital CMOS VLSI
	circuits.		

$\begin{array}{c} PO/PSO \rightarrow \\ \downarrow CO \end{array}$	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3	PSO4
PEC -IN317.1	3	-	-	-	-	-	-	-	-	-	-	2	3	3	3	2
PEC -IN317.2	3	1	1	1	-	-	-	-	-	-	-	2	3	2	2	1
PEC -IN317.3	3	-	2	2	2	-	-	-	-	-	-	2	3	2	1	1
PEC -IN317.4	3	2	2	1	2	-	-	-	-	-	-	2	3	2	2	2
PEC -IN317.5	3	-	-	-	-	-	-	-	-	-	-	2	3	1	1	1

PEC -IN317.6	3	1	3	-	-	1	-	-	-	-	2	2	3	2	3	2
PEC -IN317	3	1	2	1	1	1	-	-	-	-	1	3	3	3	3	2

Syllabus:	
Unit 1	Technology of semiconductor devices
	Materials, crystal growth, film formation, lithography, etching and doping.
	conductivity, charge densities, E-K relation, fermi level, continuity equation, Hall effect
	and its applications.
Unit 2	pn junction and metal semiconductors
	The pn junction and metal semiconductor contact, basic structure of pn junction,
	metal semiconductor contact, doped pn junction.
Unit 3	Fundamentals
	Fundamentals of MOSFET, MOSFET action, MOS capacitor, MOSFET operations, small
	signal equivalent circuit, MOSFET scaling, non-ideal effects, threshold voltage
	modifications, additional electrical characteristics, CMOS circuits, Bi-CMOS circuits,
	CCDs.
Unit 4	Power devices, operation and characteristics
	Thyristor family, power diodes, power transistors, GTOs and IGBTs. Display devices,
	operation of LCDs, LED, HDTV, plasma displays.
Text Bool	XS:
1.	Donald Neamen, "An introduction to semiconductor devices", McGraw Hill
	International Edition, 2006.
2.	S. M. Sze, "Semiconductors Devices, Physics and Technology", Second Edition, Wiley,
	2002.
3.	A. S. Sedra & K. C. Smith, "Microelectronic Circuits" Sixth Edition, Oxford, 2010.
4.	B. G. Streetman, S. K. Banerjee, "Solid state Electronic devices", Sixth Edition, PHI,
	2010.
Reference	e Books:
1.	J. Millman and C. C. Halkias, "Electronic devices and Circuits", McGraw Hill, 1976.
2.	Adir Bar-Lev, "Semiconductors and Electronic Devices", Third Edition, Prentice Hall, 1993.
3.	L. Macdonald & A. C. Lowe, "Display Systems", Wiley, 2003.

PEC-IN318 Elect	tive-I Data Struc	ture and Algorithms

Teaching	schen	ne:		Examination scheme:				
Lectures		3	hrs/week	Theory				
Tutorials		0	hrs/week	In Semester Evaluation : 20 Marks				
Practical		0	hrs/week	Mid Semester Examination : 30 marks				
Credits		3		End Semester Examination : 50 marks				
Course ob	jectiv	/es:						
1.	To introduce various techniques for representation of the data in the real world and							
	expo	ose the st	udent to efficie	ent storage mechanisms of data for an easy access.				
2.	To i	nstill stro	ong problem s	solving techniques using data structures, algorithms, and				
	time	-complex	kity.					
Course ou	tcom	es:						
1.	To d	efine and	l analyze vario	ous data structures and abstract data types including lists,				
	stacl	ks, queue	s, trees, and gr	raphs.				

2.	To understand instrumentation & control engineering problems from a
	computational perspective.
3.	To execute vast set of sorting and searching algorithms useful for various engineering
	applications.
4.	To analyze and implement learned algorithm design techniques and data structures
	to solve problems.
5.	To select the appropriate data structure and algorithm design method for a specified
	application.
6.	To design and implement various basic and advanced data structures.

$PO/PSO \rightarrow \downarrow CO$	P01	P02	PO3	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3	PSO4
PEC-IN318.1	3	3	1	2	3	3	-	1	3	2	1	2	3	-	1	1
PEC -IN318.2	3	3	2	2	3	3	-	2	2	2	1	2	3	-	1	2
PEC -IN318.3	3	3	2	2	3	3	-	1	1	2	1	2	3	-	1	1
PEC -IN318.4	3	3	3	3	3	3	-	1	3	2	2	2	3	-	-	1
PEC -IN318.5	3	3	3	3	3	3	-	2	3	3	2	2	3	-	-	2
PEC -IN318.6	3	3	3	3	3	3	-	2	3	3	2	2	3	-	-	2
PEC-IN318	3	3	3	3	3	3	-	2	3	3	2	3	3	-	1	2

Syllabus:	
Unit 1	Introduction
	Need of data structures, hardware and software implementations of data structures,
	various existing data structures and their related operations, compile time memory
	allocation and dynamic (run time) memory allocation, garbage collection.
Unit 2	Linked list
	Linked array and pointer representations their advantages and disadvantages,
	creation traversal, insertion and deletion, sorting, concatenation, merging, searching,
	linkad (two way) link its advantages and disadvantages
Unit 2	finkeu (two way) fink, its auvantages and utsauvantages.
Unit 3	Stack
	Array representation, overflow and underflow, push and pop operations, recursion its
	advantages, converting a recursive procedure to a non-recursive procedure.
Unit 4	Queue
	Simple queue, addition to a queue, removal from a queue, de-queues, input restricted
	and output restricted de-queues, addition and removal w.r.t. de-queue.
Unit 5	Tree
	Basic definitions, representation in computer memory, creating a binary tree,
	traversal algorithms threading in a binary tree, heap tree, creation of heap tree,
	inserting a node in a neap tree, deleting the root of neap tree, neap sort algorithm,
	link list representation using binary tree, multi-way search tree, representation in
	computer memory and its advantages.
Unit 6	Graph
	Basic definitions, representation in computer memory, creation of a graph, traversal
	in a graph, depth first traversal and breadth first traversal, sorting, inserting an arc in
	a graph, deleting an arc from a graph, searching a node and an arc in a graph.

Unit 7	Searching algorithms and Table data structure					
	Sequential search, binary search, efficiency of searching algorithms, improving the					
	efficiency of sequential search by move to front, move forward, indexed sequential					
	search.					
	Hash function and hashing, selection of hash function, collision and collision resolving					
	methodologies, linear probing, quadratic probing, buckets, chaining, storing					
	(inserting) data in table, searching a data record in a table, deleting a data record					
	from a table, efficiency of search.					
Unit 8	Sorting algorithms					
	Bubble sort, quick sort, heap sort, insertion sort, selection sort, merge sort, efficiency					
	of sorting algorithms.					
Reference	Reference Books:					
1.	Cormen, Leiserson, and Rivest, "Introduction to Algorithms", Second Edition,					
	Mc Graw Hill, New York, New Delhi, 1990.					
2.	Ronald L. Rivest, Algorithms, "Data structures and Programs", Prentice Hall, New					
	Jersey, 1990.					
3.	Horowitz, Sahni, and Rajasekaran, "Fundamentals of Algorithms", Galgotia					
	Publications, New Delhi, 1999.					

SEM-IN319 Seminar				
Teaching scheme:			Examination scheme:	
Lectures	0	hrs/week		
Tutorials	0	hrs/week		
Practical	2	hrs/week		
Credits	1			
Syllabus:				
The seminar wi	ll consis	st of a report o	of about 25 typewritten pages based on Survey of latest	
developments in	i a speci	fic field of instr	umentation and control systems.	
			OR	
Investigation of	practica	l problems in tl	ne manufacturing and or testing of an instrument.	
OR				
Design modification of an existing equipment/instrument.				
AND				
Seminar on one of the following topics should be delivered (without report)				
Entrepreneurship				
Personality development				
Value education				
Life profiles of eminent personalities like Lokmanya Tilak, Swami Vivekanand, Arvind Ghosh, A.P.				
J. Abdul Kalam				
Stories of successful Entrepreneurs				
Stories of scientists/renowned persons				

AUD-IN320 Indian Ancient Science					
Teaching scheme:				Examination scheme:	
Lectures		2	hrs/week		
Tutorials		0	hrs/week		
Practical		0	hrs/week		
Credits		Audit (Course		
	-				
1.	Impo	ortance o	of attitude: bui	lding positive attitude, self esteem.	
2.	Cultural heritage of India: cultural tenets, values, peculiarities, family unit, o			a: cultural tenets, values, peculiarities, family unit, old	
scriptures.					
3.	Anci	ent scie	ence and tec	hnology: astronomy, physics, chemistry, mathematics,	
	ayur	∙veda, Ka	inad's atom the	eory, Aryabhatt, viman shastra surgery etc.	
4.	Vedi	ic mathe	matics.		
5.	Life	managei	nent technique	es as preached by Saints, western philosophers etc.	
6.	Moti	ivation:	How does it w	ork, stages from motivation to demotivation, motivational	
	stories.				
7.	Goal	setting	of life: Why go	als are important?, Why don't more people set goals, goals	
	mus	t be bala	nced.		
8.	Prob	olems be	fore the nation	and role of an individual.	
9.	Culture and different isms: Indian culture, communism, Socialism, capitalism.				
10.	Role	of medi	a and expectat	ions.	
11.	Theo	ory "i" M	anagement.		
12.	Science and spirituality: stress management.				
Reference	e Bool	ks:			
1.	India	a vision 2	2020 by Dr APJ	Abdul Kalam.	
2.	Ancient science and technology By Dr. Gopalkrishnan.				
3.	Theory of I management by Arindam Choudhary.				
4.	India: what it can teach us by Maxmuller.				
5.	Third way by Datopant Tengati.				
6.	Swa	mi Vive	kananda(2004), Collected Works (Commentary on Yogasutras, vol.),	
	Ram	akrishna	a Mission, Kolk	ata.	
7.	Gita-pravacane.				
8.	Upanishadaancaa Abhyaasa.				
9.	Gitaaii Cintanikaa.				
10.	A Constructive Survey of Upanishadic Philosophy.				
11.	Bhag	gvadgita	Saakshaatkaa	radarshana.	

Annexure-I

Sr.]]	Institute Course	Data: la af anna fram CMANAM /NDTEI						
No.	Course Code	Title of the Course	Details of course from SWAYAM/NPTEL						
	Semester-I								
1.	PCC-IN301	Feedback Control Systems	Control engineering Prof. Ramkrishna Pasumarthy, IIT Madras Control systems						
-			Prof. Shankar Raman, IIT Madras						
2.	PCC-IN302	Industrial Instrumentation	5 week course on Coursera: Sensors and Sensor Circuit Design Dr. James Zweighft and Dr. Jay Mendelson University of Colorado						
3.	PCC-IN303	Digital Signal Processing	Discrete-Time Signal Processing Prof. MrityunjayChakraborty, IIT Kharagpur						
4.	PCC-IN304	Microprocessor and Microcontroller	Microprocessor and Microcontroller Prof. Santanu Chattopadhyay, IIT Kharagpur						
5.	PCC-IN305	Industrial Data Communications	Data Communication Prof. Ajit Pal, IIT Kharagpur						
6.	PCC-IN306	Unit Operations and Instrumentation	Mass Transfer Operations-II Dr. Chandan Das, IIT Guwahati						
			Mechanical Unit Operation Prof Nanda Kishore, IIT Guwahati						
		Semester	·-II						
1.	PCC-IN307	Process Control	Industrial Automation and Control Prof. S. Mukhopadhyay, IIT Kharagpur						
2.	PCC-IN308	Control System Components	Industrial Safety Engineering Prof. Jhareswar Maiti, IIT Kharagpur						
3.	PCC-IN309	Distributed Control System	Industrial Automation and Control Prof. S. Mukhopadhyay, IIT Kharagpur Prof. S. Sen, IIT Kharagpur						
4.	PCC-IN310	Power Electronics	Power Electronics Prof. G. Bhuvaneshwari, IIT Delhi						
5.	PEC-IN311	Power Plant Instrumentation	Steam Power Engineering Prof. Vinayak N Kulkarni, IIT Guwahati						
6.	PEC-IN312	Digital System Design	Digital Circuits Prof. Santanu Chattopadhyay, IIT Kharagpur Digital Electronic Circuits Prof. Goutam Saha, IIT Kharagpur						
7.	PEC-IN313	Optical Instrumentation	Semiconductor Optoelectronics Prof. M. R. Shenoy, IIT Delhi						
			Fiber Optics Communication Technology Prof. Deepa Venkitesh, IIT Madras						

List of Equivalent Subjects from SWAYAM/NPTEL for Credit Transfer