Shri Guru Gobind Singhji Institute of Engineering and Technology Nanded

(An Autonomous Institute of Government of Maharashtra)

Vishnupuri, Nanded -431606 Website: www.sggs.ac.in

Academic Curriculum

M.Tech. (Artificial Intelligence)

Academic Year- 2020-21

Department of Electronics and Telecommunication Engineering

16/08/2020

Program Educational Objectives (PEOs)

- **PEO I:** To study the Visual Data analytics and Signal Processing and develop proficiency in computational methods for advanced modeling and simulation (preparation).
- **PEO II:** To study Machine Learning systems, Artificial Neural Network, Deep Learning concepts, knowledge-based systems, and to design Computer Vision systems (Core competence).
- **PEO III:** To study and understand the state of art in the recent areas of research in intelligent information retrieval, multimedia, natural language Processing, Bio image analytics, Robotics, Speech processing, Data Mining, GPU Architecture, and programming (Breadth).
- **PEO IV:** Provide academic environment aware of excellence, leadership, and ethical codes to students; and teach them lifelong learning skills including research component needed for successful professional career (Learning environment).

Program Outcomes (POs)

Engineering Graduates will be able to:

- **PO 1** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO 2 Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO 3 Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO 4 Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO 5 Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO 6** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO 7** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO 8** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

- **PO 9** Individual and teamwork: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings
- **PO 10 Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO 11 Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO 12** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes (PSOs)

- **PSO1.** Model and simulate knowledge-based systems to conduct experiments and analyze the performance using modern tools.
- **PSO2.** To meet realistic constraints like economic, social, environmental, ethical, health and safety of stakeholders by implementing Signal/Image Processing, Machine Learning, Neural Network and Deep learning algorithms and their realization using Computer Vision System knowledge.
- **PSO3.** Engage in society need based innovations and contribute to make in India by gaining awareness of IPRs, Finance, Economics and Entrepreneurship etc in the field of Artificial Intelligence.

PO/PSO	РО	РО	РО	РО	PO	PO	PO	РО	PO	PO	РО	PO	PSO1	PSO2	PSO3
PEO 🦵	1	2	3	4	5	6	7	8	9	10	11	12			
PEO I	\checkmark	\checkmark	\checkmark	\checkmark									\checkmark	\checkmark	
PEO II	\checkmark			\checkmark			\checkmark						\checkmark	\checkmark	
PEO III	\checkmark	\checkmark		\checkmark		\checkmark			\checkmark						\checkmark
PEO IV														\checkmark	\checkmark

Correlation Matrix (Correlation between the PEOs and the POs)

Note: The cells filled in with $\sqrt{}$ indicate the fulfillment /correlation of the concerned PEO with the PO.

Shri Guru Gobind Singhji Institute of Engineering and Technology, Nanded (An Autonomous Institute of Government of Maharashtra) M. Tech. (Artificial Intelligence) (Effective from Academic Year 2020-21)

Structure of Curriculum

		Semester- I				
Sr No	Course Type/ Code	Course Name	Tead Sche L	ching eme T	Р	Credits
1	Core 1 (PCC-AI-501)	Artificial Neural Network and Applications	L 3	1 0	P 2	4
2	Core 2 (PCC-AI-502)	Digital Image and Video Processing	3	0	2	4
3	Core 3 (PCC-AI-503)	Statistical Machine Learning	3	0	2	4
4	Programme Specific Elective-I (PEC-AI-504 to 512) Mandatory Credit (MCC-590)	Students can register for any one course offered by the Department from the list given below.504Advanced Digital Signal Processing505Intelligent Information Retrieval506Multimedia System Applications507Cyber Security508Speech Processing509Big Data Analytics510Embedded System Design511GPU Architecture and Programming512Data Structure and AlgorithmResearch Methodology and IPR	3	0	2	4
6	Mandatory Audit (MAC-591)	English for Research Paper Writing	2	0	0	-
		Total	16	0	8	14
		Semester- II				
Sr No	Course Type/ Code	Course Name	Teac Sche L	ching eme T	Р	Credits
1	Core 4 (PCC-AI-513)	Deep Learning	3	0	2	4
2	Core 5 (PCC-AI-514)	Natural Language Processing	3	0	2	4
3	Core 6 (PCC-AI-515)	Intelligent System	3	0	2	4
4	Program Specific Elective-II (PEC-AI-516 to 523)	Students can register for any one course offered by the Department from the list given below.516Data Warehousing and Data Mining517Computer Vision518Wavelets and Applications519Quantum Computing520IoT and Applications521Soft Computing and Applications522Bio Image Analytics	3	0	2	4
		523 Foundation of Cognitive Robotics				

Sr No	Course Type/ Code	Cour	se Name	Tea Sche	ching eme		Credits
				L	Т	Р	
5	Open Elective (OEC-801 to 806)		nts can register for any one course offered institute from the list given below. Business Analytics Industrial Safety Operation Research Cost Management of Engineering Project Composite Material Waste to Energy	3	0	0	3
6	Seminar/Mini Project (SEM-AI-524)		nar/Mini Project	0	0	4	2
7	Audit (AUD-901 to 908)		nts can register for any one course offered institute from the list given below. Project Management Disaster Management Sanskrit for Technical Knowledge Value Education Constitution of India Pedagogy Studies Stress Management by Yoga Personality Development through Life Enlightenment Skills	2	0	0	-
			Total	17	0	12	17
			Semester- III				
1	Dissertation (DIS-AI-601)	Disse	rtation Phase-I	0	0	28	14
			Semester- IV				
1	Dissertation (DIS-AI-602)	Disse	rtation Phase-II	0	0	28	14

Semester-I

PCC-AI-501	Artifi	cial Neural Networ	k and Applications				
Teaching scheme:			Examination scheme:				
Lecture		3 hrs /week	Theory				
Tutorial			In Semester Evaluation : 20 Marks				
Practical		2 hrs/week	Mid Semester Examination: 30 Marks				
Credit		4	End Semester Examination: 50 Marks				
Course Objective							
1.	To understand the fundamental theory and concepts of neural networks.						
2.	To provide knowledge of neural network modeling, several neural network paradigms, its						
	applications and recent trends.						
3.	To analyze	feed forward and feed	back neural networks.				
4.	To apply auto associative and recurrent neural networks for pattern storage and retrieval						
5.	5. To analyze self-organizing maps						
Course Outcome	s: On success	sful completion of this	course, students will be able to				
1.	Understand	ing the basic structures	of artificial neural network, their limitations, basic pattern				
	analysis tas	ks such as classification	n and clustering, learning and adaptation using the learning				
	rules, imple	ementation of learning	rule.				
2.	Describe th	e concepts of feed for	rward neural networks using single layer and multilayer				
	networks to	o solve classification	problem, and its implementation, single layer feedback				
	networks to	study the concept of r	nemory using neural networks.				
3.	Analyze an	d implement the appl	ications of neural networks in character recognition and				
	control syst	ems.					
4.	Understand	Auto associative neur	al networks, Pattern storage and retrieval, Hopfield model,				
	recurrent ne	eural networks					
5.	Analyze Ba	yesian neural network	s, Radial basis function networks				
6.	Understand	self-organizing maps	and recent trends in neural networks				

PO/PSO	РО	РО	PO	РО	PO	РО	PO	РО	PO	PO	PO	РО	PSO	PSO	PSO
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	1	1	1	2	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	2	3	2	-	-	-	-	-	-	-	3	3	2
CO4	2	2	3	2	2	-	-	-	-	-	-	-	3	3	2
CO5	3	3	2	3	2	I	I	-	-	-	I	-	3	2	2
CO6	3	2	2	2	2	-	-	-	-	-		-	2	3	3
CO	17	15	15	16	14	-	-	-	-	-	-	-	19	18	16
(total)															
CO(avg)	2	2	2	2	2	-	-	-	-	-	-	-	3	3	3

Syllabus	
Unit 1	Brain Style Computing: Origins and Issues, Biological neural networks, Neuron Abstraction, Neuron Signal Functions, Mathematical Preliminaries, Artificial Neurons, Neural Networks and Architectures Pattern analysis tasks: Classification, Clustering, mathematical models of neurons, Structures of neural networks, Learning principles.
Unit 2	Feed forward neural networks: Pattern classification using perceptron, Multilayer feedforward neural networks (MLFFNNs), Pattern classification and regression using MLFFNNs, Error backpropagation learning.
Unit 3	Fast learning methods: Conjugate gradient method. Autoassociative neural networks, Pattern storage and retrieval, Hopfield model, recurrent neural networks Bayesian neural networks, Radial basis function networks: Regularization theory, RBF networks for function approximation, RBF networks for pattern classification.
Unit 4	Self-organizing maps: Pattern clustering, Topological mapping, Kohonen's selforganizing map.
Unit 5	Recent Trends in neural networks: Introduction to deep neural network, convolutional neural network, RNN, LSTM, etc.
Text/Reference I	Books:
1.	Jacek Zurada, Introduction to Artificial Neural Networks, Jaico Publishing House, 1997.
2.	Satish Kumar, Neural Networks, A Classroom Approach, Tata McGraw-Hill, 2003
3.	S.Haykin, Neural Networks, A Comprehensive Foundation, Prentice Hall, 1998.
4.	C.M.Bishop, Pattern Recognition and Machine Learning, Springer, 2006.
5.	Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press, 2016

Sr. No.		Institute Course	Details of Course from SWAYAM/NPTEL				
INO.		1					
	Course Code	Title of the Course	Deep Learning - Part 1				
			By Prof. Sudarshan Iyengar, Prof. Padmavati				
1.	PCC-AI-501	Artificial Neural Network and	https://swayam.gov.in/nd1_noc20_cs50/preview				
		Applications					

PCC-AI-502	Digita	l Image and Video Proce	essing				
Teaching scheme			Examination scheme:				
Lecture		3 hrs /week	Theory				
Tutorial			In Semester Evaluation : 20 Marks				
Practical		2 hrs/week	Mid Semester Examination: 30 Marks				
Credit		4	End Semester Examination: 50 Marks				
Course Objective	5:						
1.	To understa processing	To understand the fundamentals and mathematical models in digital image and video processing					
2.	To apply ti	To apply time and frequency domain techniques for image enhancement					
3.	To analyze current technologies and issues in image and video processing						
4.	To evaluate	e and implement image	and video processing applications in practice.				
Course Outcome	s: On success	ful completion of this cou	rse, students will be able to				
1.	Understan	d theory and models in I	mage and Video Processing.				
2.	Interpret a	nd analyze 2D signals in	n frequency domain through image transforms.				
3.	Apply qua	ntitative models of ima	ge and video processing for various engineering				
	application	applications.					
4.	Develop in	novative design for prac	ctical applications of image and video processing				
	in various t	ïelds.					

PO/PSO	PO	PSO	PSO	PSO											
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	1	2	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	2	3	2	-	-	-	-	-	-	-	3	3	2
CO4	2	2	3	2	2	-	-	-	-	-	-	-	3	3	2
CO (total)	9	8	8	9	8	-	-	-	-	-	-	-	12	11	8
CO(avg)	2	2	2	2	2	-	-	-	-	-	-	-	3	3	2

Syllabus							
	Image Fundamentals:						
Unit 1	Image acquisition, Image Digitization, sampling and quantization, image resolution,						
	basic relationship between pixels, Image Formation Model, Geometrical transformation, Camera Modelling, Stereo vision, , Colour images, RGB, HSI and						
	other models, Different Imaging Modalities.						
	Two Dimensional Transforms:						
Unit 2	Discrete Fourier Transform, Discrete Cosine Transform, Walsh and Hadamard						
	Transform, Haar Transform, Discrete Wavelet Transform, and its Applications.						
	Image Enhancement						
	Spatial Domain: Point Processing: Digital Negative, contrast stretching,						
Unit 3	thresholding, gray level slicing, bit plane slicing, log transform and power law						
	transform, Histogram Equalization and Specification, Neighborhood Processing:						
	Averaging filters, order statistics filters, high pass filters and high boost filters,						
	Frequency domain filtering.						
.	Image Segmentation:						
Unit 4	Point, line and edge detection, edge linking using Hough transform and graph						
	theoretic approach, thresholding, and region-based segmentation Clustering						
	Algorithms.						
Unit 5	Morphological Image processing and Texture:						
Ont 5	Dilation, erosion, opening, closing, hit or miss transform, thinning and thickening,						
	and boundary extraction on binary images, Texture: statistical Texture description, Methods based on spatial frequencies, Occurrence matrices, Edge Frequency,						
	Law's texture Energy measures						
	Video Formation, Perception and Representation						
Unit 6	Digital Video Sampling, Video Frame classifications, I, P and B frames, Notation,						
	Digital Video formats, Digital video quality measure, Video Capture and display:						
	Principle of colour video camera, video camera, digital video, Sampling of video						
	Signals: Required sampling rates, sampling in two dimensions and three dimensions,						
	progressive virus interlaced scans, MPEG						
Unit 7	Two-Dimensional Motion Estimation						
	Optical Flow: 2-D motion Vs optical flow, optical flow equations, motion						
	representation, motion estimation criteria, optimization method, Block Matching						
	Algorithms: Exhaustive block matching algorithms, phase correlation method,						
Text/Reference B	Binary feature matching.						
Text/Reference D	UURS.						
1.	Gonzales and Woods, "Digital Image Processing", Pearson Education, India, Third						
	Edition.						
2.	Anil K.Jain, "Fundamentals of Image Processing", Prentice Hall of India, First						
	Edition, 1989.						
3.	Murat Tekalp, "Digital Video Processing", Pearson, 2010.						
4.	John W. Woods, "Multidimensional Signal, Image and Video Processing",						
5.	Academic Press 2012. J.R.Ohm, "Multimedia Communication Technology", Springer Publication.						
6.	A.I.Bovik, "Handbook on Image and Video Processing", Academic Press.						

Sr. No.		Institute Course	Details of Course from SWAYAM/NPTEL
	Course Code	Title of the Course	https://nptel.ac.in/courses/117/105/117105079/
1.	PCC-AI-502	Digital Image and Video Processing	

PCC-AI-503	PCC-AI-503 Statistical Machine Learning							
Teaching scheme:	·		Examination scheme:					
Lecture		3 hrs /week	Theory					
Tutorial			In Semester Evaluation : 20 Marks					
Practical		2 hrs/week	Mid Semester Examination: 30 Marks					
Credit		4	End Semester Examination: 50 Marks					
Course Objective	Course Objectives:							
1.	To understa	nd statistical methods in M	achine Learning.					
2.	To apply dif	To apply different supervised learning algorithms.						
3.	To apply and implement different unsupervised learning algorithms.							
4.	To evaluate different Ensemble techniques.							
5.	To understand different evaluation measures and cross validation in Machine Learning							
6.	To apply Theory of Generalization.							
7.	To analyze]	Recommendation System						
Course Outcome	: On success	ful completion of this cour	rse, students will be able to					
1.	Identify app	propriate statistical learning	g methods for the given problem involving real data.					
2.	Identify othe	er possible problems with r	nessy data, such as multicollinearity, understand their					
	consequence	es, and propose solutions.						
3.	Use trainin	g and testing data to ev	valuate performance of the chosen regression and					
	classificatio	on techniques and compare	them.					
4.			ind the optimal degree of flexibility -the best subset					
5	A	s or the optimal tuning para						
5.		diction power.	optimal balance between precision within training					
6.	6. Develop theory of generalization.							
7.	Develop rec	commendation system.						

PO/PSO ➡	РО	PO	PO	PO	РО	PO	PSO	PSO	PSO						
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	1	2	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	2	3	2	-	-	-	-	-	-	-	3	3	2
CO4	2	2	3	2	2	-	-	-	-	-	-	-	3	3	2
CO5	3	3	2	3	2	-	-	-	-	-	-	-	3	2	2
CO6	3	2	2	2	2	-	-	-	-	-		-	2	3	3
CO7	2	2	3	2	2	-	-		-	-	-	-	2	2	3
CO	17	15	15	16	14	-	-	-	-	-	-	-	19	18	16
(total)															
CO(avg)	2	2	2	2	2	-	-	-	-	-	-	-	3	3	2

Syllabus	
Unit 1	Basics and Introduction of Machine Learning Introduction to Machine Learning, Machine learning Cycle, Supervised Vs Unsupervised and Reinforced Learning, Linear Algebra, Tensor, High Dimensional Vector spaces, Review of Probability and Conditional Probability, Descriptive Statistics.
Unit 2	Supervised learning : Linear Regression, Multiple Variable Linear Regression, Gradient Descent, Classification Logistic Regression, Naive Bayes Classifiers, K-NN Classification, Support Vector Machines, Performance Measures, Cross validation.
Unit 3	Unsupervised learning : Clustering (K-means, Hierarchical), Dimensionality reduction-PCA.
Unit 4	Ensemble learning: Decision Trees, Bagging, Random Forest, Boosting
Unit 5	Theory of Generalization : In-sample and out-of-sample error, Bias and Variance analysis, Overfitting, Regularization, VC inequality, VC analysis,
Unit 6	Recommendation System: Introduction to recommendation systems, Popularity based model, Content Based Recommendation System
Text/Reference E	ooks:
1.	Christopher M. Bishop. Pattern Recognition and Machine Learning (Springer)
2.	David Barber, Bayesian Reasoning and Machine Learning (Cambridge University Press)
3.	Tom Mitchell. Machine Learning (McGraw Hill)
4.	Richard O. Duda, Peter E. Hart, David G. Stork. Pattern Classification (John Wiley & Sons)

Sr. No.		Institute Course	Details of Course from SWAYAM/NPTEL
	Course Code	Title of the Course	
1.	PCC-AI-503	Statistical Machine Learning	https://nptel.ac.in/courses/106/106/106106139/

PEC-AI-504	Adva	nced Digital Signal Pr	ocessing			
Teaching scheme:			Examination scheme:			
Lecture		3 hrs /week	Theory			
Tutorial			In Semester Evaluation : 20 Marks			
Practical		2 hrs/week	Mid Semester Examination: 30 Marks			
Credit		4	End Semester Examination: 50 Marks			
Course Objective						
1.	To design F	TR and IIR digital filters a	and its implementation.			
2.	To analyze	the fundamentals of multi	rate DSP systems.			
3.	To provide	understanding of the QM	Fs and digital filter banks.			
4.	To apply th	e principles and concepts	of linear prediction and power spectrum estimation			
Course Outcome	On succes	sful completion of this co	urse, students will be able to			
1.	To understa	and theory of different filt	ers and algorithms.			
2.	To understand theory of multirate DSP, solve numerical problems and write algorithms.					
3.	To understa	and theory of prediction a	nd solution of normal equations.			
4.	To know applications of DSP at block level.					

PO/PSO ➡	РО	PO	PSO	PSO	PSO										
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	1	2	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	2	3	2	-	-	-	-	-	-	-	3	3	2
CO4	2	2	3	2	2	-	-	-	-	-	-	-	3	3	2
CO (total)	9	8	8	9	8	-	-	-	-	-	-	-	12	11	8
CO(avg)	2	2	2	2	2	-	-	-	-	-	-	-	3	3	2

Syllabus	
Unit 1	Overview of DSP, characterization in time and frequency, FFT algorithms, digital filter design and structures: basic FIR/IIR filter design and structures, design techniques of linear phase FIR filters, IIR filters by impulse invariance, bilinear transformation, FIR/IIR cascaded lattice structures, and parallel all pass realization of IIR.
Unit 2	Half Band filters, pole-zero placement and filter design, digital resonators, periodic notch filters, FIR differentiators and Hilbert transformer, least square filtering.
Unit 3	Multi rate DSP, decimators and interpolators, sampling rate conversion, multistage decimator and interpolator, poly phase filters, QMF, digital filter banks, applications in subband coding.
Unit 4	Linear prediction and optimum linear filters, stationary random process, forward-backward linear prediction filters, solution of normal equations, AR lattice and ARMA lattice-ladder filters.
Unit 5	Estimation of spectra from finite-duration observations of signals, nonparametric methods for power spectrum estimation, parametric methods for power spectrum estimation, minimum- variance spectral estimation.
Unit 6	Application of DSP and multi rate DSP, application to radar, introduction to wavelets, application to image processing, design of phase shifters, DSP in speech processing and other applications.
Text/Reference I	Books:
1.	J.G. Proakis and D.G. Manolakis "Digital signal processing: Principles, Algorithm and Applications", 4th Edition, Prentice Hall, 2007.
2.	N. J. Fliege, "Multirate Digital Signal Processing: Multirate Systems -Filter Banks – Wavelets", 1 st Edition, John Wiley and Sons Ltd, 1999.
3.	Bruce W. Suter, "Multirate and Wavelet Signal Processing",1st Edition, Academic Press, 1997.
4.	M. H. Hayes, "Statistical Digital Signal Processing and Modeling", John Wiley and Sons Inc., 2002.
5.	D.G. Manolakis, V. K. Ingle and S. M. Kogon, "Statistical and Adaptive Signal Processing Processing", McGraw Hill, 2000

Sr.		Institute Course	Details of Course from SWAYAM/NPTEL
No.			
	Course Code	Title of the Course	
1.	PEC-AI-504	Advanced Digital Signal Processing	

PEC-A	I-505	Intelligent Information Retrie	val				
Teachi	ng scheme	:	Examination scheme:				
Lecture		3 hrs /week	Theory				
Tutoria			In Semester Evaluation : 20 Marks				
Practica	ıl	2 hrs/week	Mid Semester Examination: 30 Marks				
Credit		4	End Semester Examination: 50 Marks				
-	Objective						
1.		rstand the theoretical basis behin stic and Logical models),	d the standard models of IR (Boolean, Vector-space,				
2.	To under	stand the difficulty of representing a	nd retrieving documents, images, speech, etc.				
3.	To apply	run and test a standard IR system.					
4.	To under	stand the standard methods for Web	indexing and retrieval.				
5.	human-o		ral language processing, artificial intelligence, zation integrate with IR, and be familiar with				
6.	To analy	ze summarization.					
7.	To apply	Cross language information retrieva	1.				
Course	e Outcome	s: On successful completion of this	course, students will be able to				
1.	Know in	formation retrieval concepts.					
2.	Know te	xt indexing, storage and compressin	g				
3.	Know different retrieval models.						
4.	Analyze performance evaluation of retrieval system.						
5.	Analyze	an information problem and identify	appropriate retrieval process.				
6.	Evaluate	the emerging information retrieval p	practices in library services and on the Web.				

PO/PSO	РО	РО	PO	PO	РО	PO	PO	РО	PO	PO	РО	РО	PSO	PSO	PSO
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	1	2	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	2	3	2	-	-	-	-	-	-	-	3	3	2
CO4	2	2	3	2	2	-	-	-	-	-	-	-	3	3	2
CO5	2	3	2	3	2	-	-	-	-	-	-	-	3	2	2
CO6	2	2	2	2	2	-	-	-	-	-		-	2	3	3
CO	13	13	12	14	12	-	-	-	-	-	-	-	17	16	13
(total)															
CO(avg)	2	2	2	2	2	-	-	-	-	-	-	-	3	3	2

Syllabus	
	Introduction to Information Retrieval: The nature of unstructured and semi-structured
Unit 1	text. Inverted index and Boolean queries.
Unit 2	Text Indexing, Storage and Compression: Text encoding: tokenization, stemming, stop words, phrases, index optimization. Index compression: lexicon compression and postings, lists compression. Gap encoding, gamma codes, Zipf's Law. Index construction. Postings size estimation, merge sort, dynamic indexing, positional indexes, n-gram indexes, real-world issues.
Unit 3	Retrieval Models: Boolean, vector space, TFIDF, Okapi, probabilistic, language modeling, latent semantic indexing. Vector space scoring. The cosine measure. Efficiency considerations. Document length normalization. Relevance feedback and query expansion. Rocchio.
Unit 4	Performance Evaluation: Evaluating search engines. User happiness, precision, recall, F-measure. Creating test collections: kappa measure, interjudge agreement.
Unit 5	Text Categorization and Filtering: Introduction to text classification. Naive Bayes models. Spam filtering. Vector space classification using hyperplanes; centroids; k Nearest Neighbors. Support vector machine classifiers. Kernel functions. Boosting.
Unit 6	Text Clustering: Clustering versus classification. Partitioning methods. k-means clustering. Mixture of Gaussians model. Hierarchical agglomerative clustering. Clustering terms using documents.
Unit 7	Advanced Topics: Summarization, Topic detection and tracking, Personalization, Question answering, Cross language information retrieval.
Unit 8	Web Information Retrieval: Hypertext, web crawling, search engines, ranking, link analysis, PageRank, HITS, XML and Semantic web.
Text/Reference B	ooks:
1.	Manning, Raghavan and Schutze, Introduction to Information Retrieval, Cambridge University Press.
2.	Baeza-Yates and Ribeiro-Neto, Modern Information Retrieval, Addison-Wesley.
3.	Soumen Charabarti, Mining the Web, Morgan-Kaufmann.
4.	Survey by Ed Greengrass available in the Internet.

Sr. No.		Institute Course	Details of Course from SWAYAM/NPTEL
	Course Code	Title of the Course	
1.	PEC-AI-505	Intelligent Information Retrieval	

PEC-AI-506	Multi	media System Applicat	ions			
Teaching scheme	•		Examination scheme:			
Lecture		3 hrs /week	Theory			
Tutorial			In Semester Evaluation : 20 Marks			
Practical		2 hrs/week	Mid Semester Examination: 30 Marks			
Credit		4	End Semester Examination: 50 Marks			
Course Objective						
1.	Achieve a b	asic understanding of mult	imedia systems.			
2.	Understandi	ng Multimedia data type.				
3.	Understand	Understand multimedia information representation and relevant signal processing aspects.				
4.	Understanding multimedia networking and communications					
5.	Apply mult	imedia standards especially	y on the audio, image, and video compression.			
6.	Evaluate m	ore advanced or future mul	timedia systems.			
Course Outcome	s: On success	ful completion of this cour	rse, students will be able to			
1.	Understand	different types of multime	dia data and basics of image and video.			
2.	Understand	colour models of image an	nd video.			
3.	Analyze an	d design different compres	sion algorithms.			
4.	Analyze and	l implement different comp	pression standards for image.			
5.	Analyze and	Analyze and implement different compression standards for video.				
6.	Understand	Understand the transmission of multimedia data over communication networks.				
7.	Understand	multimedia databases.				

PO/PSO	РО	РО	PO	РО	РО	РО	PO	PO	PO	РО	РО	РО	PSO	PSO	PSO
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	1	2	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	2	3	2	-	-	-	-	-	-	-	3	3	2
CO4	2	2	3	2	2	-	-	-	-	-	-	-	3	3	2
CO5	3	3	2	3	2	-	-	-	-	-	-	-	3	2	2
CO6	3	2	2	2	2	-	-	-	-	-		-	2	3	3
CO7	2	2	3	2	2	-	-		-	-	-	-	2	2	3
CO	17	15	15	16	14	-	-	-	-	-	-	-	19	18	16
(total)															
CO(avg)	2	2	2	2	2	-	-	-	-	-	-	-	3	3	2

Syllabus	
Unit 1	Introduction to Multimedia What is Multimedia? Multimedia and Hypermedia, World Wide Web, Overview of Multimedia Software Tools, Fundamentals concepts of Audio, Image and Video Processing.
Unit 2	Data and Colour Representations Graphics Image Data Types, Popular File Formats, Color Science, Color Models in Images, Color Models in Video.
Unit 3	Multimedia Static Data Compression Methods: Lossless Compression Algorithms: Introduction, Basics of Information Theory, Run- Length Coding, Variable-Length Coding (VLC), Dictionary-Based Coding, Arithmetic Coding, Lossless Image Compression Lossy Compression Algorithms: Introduction, Distortion Measures, The Rate-Distortion Theory, Quantization, Transform Coding, Wavelet-Based Coding, Wavelet Packets, Embedded Zerotree of Wavelet Coefficients, Set Partitioning in Hierarchical Trees (SPIHT)
Unit 4	Multimedia Static Data Compression Standards The JPEG Standard, The JPEG2000 Standard, The JPEG-LS Standard, Bilevel Image Compression Standards.
Unit 5	Multimedia Dynamic Data Compression Methods and Standards Basic Video Compression Techniques: Introduction to Video Compression, Video Compression Based on Motion Compensation, H.261, H.263, MPEG Video Coding I - MPEG-1 and 2: Overview, MPEG-1, MPEG-2.
Unit 6	Multimedia Communication and Retrieval Computer and Multimedia Networks: Basics of Computer and Multimedia Networks, Multiplexing technologies, LAN and WAN, Access Networks, Common peripheral interfaces. Content-Based Retrieval in Digital Libraries: - How Should We Retrieve Images? C- BIRD - A Case Study, Synopsis of Current Image Search Systems.
Text/Reference B	
1.	Zi-Niam Li and Mark Drew, Fundamentals of Multimedia, Pearson, 2004.
2.	Khalid Sayood, Data Compression, PHI

Sr.		Institute Course	Details of Course from SWAYAM/NPTEL
No.			
	Course Code	Title of the Course	
1.	PEC-AI-506	Multimedia System Applications	

PEC-AI-507	Cybe	r Security	
Teaching scheme		•	Examination scheme:
Lecture		3 hrs /week	Theory
Tutorial			In Semester Evaluation : 20 Marks
Practical		2 hrs/week	Mid Semester Examination: 30 Marks
Credit		4	End Semester Examination: 50 Marks
Course Objective	5:		
1.	Understand	concepts of Cyber Se	curity
2.	Gain in dep	th knowledge of the fl	exible and versatile frameworks on the Security.
3.	To analyze	Cyber Attacks and its	Impact.
4.	To apply kn	owledge of Internal S	ecurity.
5.	Analyze W	eb Cyber Security Mo	dels.
6.	Gain know	edge of Cryptography	and Crypto Currencies.
7.	To evaluate	Network Security.	
Course Outcome	s: On success	sful completion of this	s course, students will be able to
1.	To master f	undamentals of secret	and public cryptography.
2.	To master u	inderstanding external	and internal threats to an organization
3.	To be famil	iar with network secu	rity threats and countermeasures
4.	Scaling and	deploying Cyber Seco	urity
5.	Create Secu	rity models for email,	data, cloud etc security
6.	Project han	dling for sectors like e	e-learning, banking, entertainment, telecom etc
7.	Be employa	able as Cyber Security	Engineer.

PO/PSO ➡	PO	PSO	PSO	PSO											
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	1	2	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	2	3	2	-	-	-	-	-	-	-	3	3	2
CO4	2	2	3	2	2	-	-	-	-	-	-	-	3	3	2
CO5	3	3	2	3	2	-	-	-	-	-	-	-	3	2	2
CO6	3	2	2	2	2	-	-	-	-	-		-	2	3	3
CO7	2	2	3	2	2	-	-		-	-	-	-	2	2	3
CO	17	15	15	16	14	-	-	-	-	-	-	-	19	18	16
(total)															
CO(avg)	2	2	2	2	2	I	I	-	-	-	-	-	3	3	2

Syllabus	
	Cyber Security Basics – Overview, what is Cyber Security? What does it matter to us?
Unit 1	Where do we use every day? How does it impact you? Your society? Your Country?
Unit 2	Cyber Attacks and Impact of Cyber Attacks : External, Internal, and End Point Cyber Attacks and Exploits Hackers and Hacking System Level Memory/Integer/ Operating system level attacks, Cyber Security, Protection Methods: NSA Security, Framework Mode Detection, Identification, and Protection Risk Mitigation
Unit 3	Internal Security: Enterprise Internal Security, Internal Security Access Control, MFA, and SSO Operating System Level Security, Security Codes: Signatures, Sandboxes, and Patterns Detection & Isolation Security Mechanisms based on Signatures, Security Mechanisms based on Sandboxes, Security Mechanisms based on Legacy and Patterns Detection, Identification and Isolation Security Exploitation Techniques, Hackers and hacking methods, Exploiting Wireless Devices, Multiple Exploitation Mechanisms and impact on Systems.
Unit 4	Web Cyber Security Models and Challenges : NSA based Web Cyber Security Model, Frame work, Browser Security Architecture, Browser Security impact and challenges, Web Application Cyber Security Challenges, SQL Injection, attacks on the Web Servers, Web Application Security Design and Implementation – Case Study, Internal Security, Identity Access Control Management (IAM), Single Sign On (SSO), Multi Factor Authentication (MFA), Internal Data Integrity and Data protection, Security & Regulatory Compliance, HIPPA, PCI-DSS, FISMA, SOX, CDI
Unit 5	Cryptography and Crypto Currencies: Cryptography Security Methods, Hash Keys and Security protection methods, Data Breach attacks due to internal loopholes, Crypto Currencies and Security impact – Case Study of Bit Coins
Unit 6	Network Security: External Security Threats and Challenges, Routers, Switches, and Gateways etc, Data Traffic Irregularities and DDOS Attacks, Network Security Vulnerabilities: Ingress and Egress Traffic Security Management, Firewalls, VPN's, and Other Security Solutions, How do you protect the network? Various data breach types and network security impact assessment. Dynamic Threat Intelligence: Threat Intelligence Prediction, Risk Mitigation, Mobile Devices and Platform Security, Mobile Operating Systems & Security Overview, Android and IOS security challenges, Mobile Threats and Malware challenges
Text/Reference B	ooks:
1.	Matt Bishop, "Computer Security Art and Science", Pearson/PHI, 2002.
2.	Corey Schou, Steven Hernandez, "Information Assurance Handbook: Effective Computer Security and Risk Management Strategies"

Sr. No.		Institute Course	Details of Course from SWAYAM/NPTEL
110.	Course Code	Title of the Course	Cyber Security
1.	PEC-AI-507	Cyber Security	https://swayam.gov.in/nd2_cec20_cs15/preview

PEC-AI-508	Speed	h Processing					
Teaching scheme			Examination scheme:				
Lecture		3 hrs /week	Theory				
Tutorial			In Semester Evaluation : 20 Marks				
Practical		2 hrs/week	Mid Semester Examination: 30 Marks				
Credit		4	End Semester Examination: 50 Marks				
Course Objective							
1.	To understa	nd Digitization and R	ecording of speech signal.				
2.	To understa	nd human speech pro	duction.				
3.	To evaluate modelling of speech production.						
4.	To apply tir	ne domain methods in	n speech processing.				
5.	To analyze	features extraction te	ques in speech processing.				
6.	To explore	speech prosody.					
7.	Develop spe	ech-based applications					
Course Outcome	s: On success	ful completion of this	course, students will be able to				
1.	Work in spe	eech based biometric sy	/stem.				
2.	Interface computer with speech.						
3.	Develop time and frequency domain methods for speech processing.						
4.	Work in spo	Work in spoken language acquisition system.					
5.	To do speed	ch prosody modeling.					

PO/PSO ➡	PO	РО	PSO	PSO	PSO										
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	1	2	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	2	3	2	-	-	-	-	-	-	-	3	3	2
CO4	2	2	3	2	2	-	-	-	-	-	-	-	3	3	2
CO5	3	3	2	3	2	-	-	-	-	-	-	-	3	2	2
CO	12	11	10	11	10	-	-	-	-	-	-	-	15	13	10
(total)															
CO(avg)	2	2	2	2	2	-	-	-	-	-	-	-	3	3	2

Syllabus	
Unit 1	Introduction to speech processing, Digitization and Recording of speech signal, Review of Digital Signal Processing Concepts
Unit 2	Human Speech production, Acoustic Phonetics and Articulatory Phonetics, Different categories speech sounds and Location of sounds in the acoustic waveform and spectrograms.
Unit 3	Uniform Tube Modeling of Speech Production, Speech Perception.
Unit 4	Time Domain Methods in Speech Processing, Analysis and Synthesis of Pole-Zero Speech Model
Unit 5	Short-Time Fourier Transform, Analysis: - FT view and Filtering view, Synthesis: -Filter bank summation (FBS) Method and OLA Method.
Unit 6	Features Extraction, Extraction of Fundamental frequency
Unit 7	Speech Prosody, Speech Prosody Modeling (Fujisaki Model)
Unit 8	Speech based Applications (TTS, ASR and spoken language acquisition)
Text/Reference I	Books:
1.	Lawrence R Rabiner and Ronald W Schafer, Introduction to Digital Speech Processing (Foundations and Trends in Signal Processing).
2.	Sadaoki Furui, Digital Speech Processing: Synthesis, and recognition, Second Edition

Sr. No.		Institute Course	Details of Course from SWAYAM/NPTEL
	Course Code	Title of the Course	Digital Speech Processing (IIT Kharagpur)
1.	PEC-AI-508	Speech Processing	https://nptel.ac.in/courses/117/105/117105145/

PEC-AI-509	Big D	ata Analytics					
Teaching scheme	8	•	Examination scheme:				
Lecture		3 hrs /week	Theory				
Tutorial			In Semester Evaluation : 20 Marks				
Practical		2 hrs/week	Mid Semester Examination: 30 Marks				
Credit		4	End Semester Examination: 50 Marks				
Course Objective	s:						
1.	To underst	tand terminologies and	the core concepts behind big data problems,				
	**	s, systems, and the techn	*				
2.	•		non frameworks such as Apache Spark, Hadoop,				
	MapReduc						
3.		-	age technologies such as in-memory key/value				
-			l databases, Apache Cassandra, HBase.				
4.	To understa	and Big Data Streaming l	Platforms such as Apache Spark Streaming.				
5.	To apply A	Apache Kafka Streams for	r big data analysis.				
Course Outcome	s: On success	sful completion of this cour	se, students will be able to				
1.	Scaling and	deploying multi clustering					
2.	Work with	clusters					
3.	Create Data	Models, data interfaces, ad	lvanced architectures etc				
4.							
	Kafka Architecture.						
5.		-	ing, banking, entertainment, telecom etc				
6.	Employable	e as Data Architect, data lea	id, Big Data Developer				

PO/PSO ➡	РО	PO	РО	PSO	PSO	PSO									
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	1	2	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	2	3	2	-	-	-	-	-	-	-	3	3	2
CO4	2	2	3	2	2	-	-	-	-	-	-	-	3	3	2
CO5	3	3	2	3	2	-	-	-	-	-	-	-	3	2	2
CO6	3	2	2	2	2	-	-	-	-	-		-	2	3	3
CO	15	13	12	14	12	-	-	-	-	-	-	-	17	16	13
(total)															
CO(avg)	2	2	2	2	2	-	-	-	-	-	-	-	3	3	2

Syllabus	
Unit 1	Introduction to Big Data: Why Big Data and Where did it come from?, Characteristics of Big Data- Volume, Variety, Velocity, Veracity, Valence, Value, Challenges and applications of Big Data.
Unit 2	Enabling Technologies for Big Data, Introduction to Big Data Stack, Introduction to some Big Data distribution packages
Unit 3	Big Data Platforms, Overview of Apache Spark, HDFS, YARN, Introduction to MapReduce, MapReduce Programming Model with Spark, MapReduce Example: Word Count, Page Rank etc.
Unit 4	Big Data Storage Platforms for Large Scale Data Storage, CAP Theorem, Eventual Consistency, Consistency Trade-Offs, ACID and BASE, Introduction to Zookeeper and Paxos, Introduction to Cassandra, Cassandra Internals, Introduction to HBase, HBase Internals
Unit 5	Big Data Streaming Platforms for Fast Data, Introduction to Big Data Streaming Systems, Big Data Pipelines for Real-Time computing, Introduction to Spark Streaming, Kafka, Streaming Ecosystem
Unit 6	Big Data Applications (Machine Learning), Overview of Big Data Machine Learning, Ma-hout Introduction, Big Data Machine Learning Algorithms in Mahout- kmeans, Naïve Bayes etc.
Unit 6	Big data Machine learning with Spark, Big Data Machine Learning Algorithms in Spark- Introduction to Spark MLlib, Introduction to Deep Learning for Big Data
Unit 8	Introduction to Big Data Applications (Graph Processing), Introduction to Pregel, Introduction to Giraph, Introduction to Spark GraphX
Text/Reference B	ooks:
1.	Dirk Deroos et al., Hadoop for Dummies, Dreamtech Press, 2014.
2.	Chuck Lam, Hadoop in Action, December, 2010.
3.	Leskovec, Rajaraman, Ullman, Mining of Massive Datasets, Cambridge University Press
4.	I.H. Witten and E. Frank, Data Mining: Practical Machine learning tools and techniques.
5.	Erik Brynjolfsson et al., The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies, W. W. Norton & Company, 2014.

Sr.		Institute Course	Details of Course from SWAYAM/NPTEL
No.			
	Course Code	Title of the Course	Big Data Computing -IIT Patna
1.	PEC-AI-509	Big Data Analytics	https://swayam.gov.in/nd1_noc20_cs92/preview

PEC-AI-510	Embe	dded System Design				
Teaching scheme			Examination scheme:			
Lecture		3 hrs /week	Theory			
Tutorial			In Semester Evaluation : 20 Marks			
Practical		2 hrs/week	Mid Semester Examination: 30 Marks			
Credit		4	End Semester Examination: 50 Marks			
Course Objective	s:					
1.	Understand	l design and developm	nent of an embedded system			
2.	Evaluate an	chitecture of ARM/A	RM Cortex and embedded programming			
3.	Develop an	d Implement interfaci	ng with external devices and programming			
4.	Apply cond	cept of RTOS and its i	mportance in embedded application			
5.	Analyze en	gineering applications	sing ARM Cortex and RTOS			
Course Outcome	s: On success	ful completion of this c	ourse, students will be able to			
1.	Explain A	RM Cortex based mic	rocontroller architecture			
2.	Write emb	edded C programs for	ARM Cortex based microcontroller			
3.	Identify bu	ilt-in peripherals and	develop programs for activating I/O devices			
4.	To understand and use different services provided by RTOS					
5.	To create applications using services of RTOS inter-task communication.					
6.	Design rea	l world applications u	sing the ARM Cortex and RTOS.			

PO/PSO	РО	PO	PSO	PSO	PSO										
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	1	2	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	2	3	2	-	-	-	-	-	-	-	3	3	2
CO4	2	2	3	2	2	-	-	-	-	-	-	-	3	3	2
CO5	3	3	2	3	2	-	-	-	-	-	-	-	3	2	2
CO6	3	2	2	2	2	-	-	-	-	-		-	2	3	3
CO	15	13	12	14	12	-	-	-	-	-	-	-	17	16	13
(total)															
CO(avg)	2	2	2	2	2	-	-	-	-	-	-	-	3	3	2

Syllabus	
Unit 1	Introduction to Embedded System: Embedded system definition, Examples, Design metrics, Processor Technologies, IC Technologies, Design Technologies, Custom Single Purpose Processor design: Basic architecture, FSM and FSMD with example, GPP-architecture, Classification-GPP, ASIP, DSP, Architecture of Embedded systems, Recent trends in ES.
Unit 2	Embedded Firmware Design and Development: Super Loop based Approach, Embedded Operating System based Approach, Embedded Firmware development Languages-Assembly Level based development, High Level Language based Development, Integrated Development Environment, Editor, Assembler, Liker, Loader, Compiler, Cross compiler, Review of Embedded C-Data types, Arithmetic and Logical operations, Brach and Loop operations, Array and Pointers, Character and string, Functions, Pre-processor and Macros, Coding ISRs, Recursive and Re- entrant functions.
Unit 3	ARM Processor Architecture and Interfacing: Introduction to ARM/ARM Cortex series, Design philosophy, processors series, versions, features and applications, CMIS standard for ARM Cortex M3/M4 based controllers, LPC1768: Features, architecture, system control, clock & power control, GPIO, Pin connect block, Inter-facing with LED/Seven segment LED and switch
Unit 4	External Interfacing: ARM Cortex M3/M4 Microcontroller interfacing: On chip devices like-Timer/Counter, Watchdog Timer, PWM, ADC, DAC, UART, Interfacing of Keypad, Relays and Stepper Motor.
Unit 5	Basics of Real Time Operating Systems: Hard Real time and soft Real-time, Differences between General purpose and OS and RTOS, Basic architecture of RTOs, Multitasking, Kernel structure, Task Management system, TCB, Scheduling Algorithms, Inter-process communication, Introduction of MUCOS-II.
Unit 6	Case study of open source RTOS: Detail study of any one RTOS like MuCOS- II/Free RTOS etc: Features, kernel structure, Kernel Function, Initialization, Task creation and Management services, Time Management services, Task Scheduling, Inter-process communication (mailbox, queue, events, pipes, etc), porting of Mucos- II poting on ARM7/cortex (M3/M4 architecture).
Unit 7	Embedded Linux: Linux for Embedded system, Embedded Linux development system, kernel architecture and configuration, file system, porting on ARM architecture, boot loaders, tool utilities such as Minicomp, Busybox, Redboot, Libc, device drivers-concept, architecture, types, sample character device driver.
Text/Reference B	ooks:
1.	Sloss, Symes, Wright, ARM System Developers Guide, Elsevier Morgan Kaufman, 2005.
2.	Joseph Yiu, Thee Definitive Guide to the ARM Cortex-M3, Elsevier 2010.
<u> </u>	Frank Vahid, Embedded System, Wiley India, 2002. Shibu K. V, Introduction to Embedded System, TMH, 2017.
5.	Rajkamal, Embedded Systems, TMH, 2008.
6.	Prasad: Embedded/Real Time Systems, Wiley-DreamTech India, 2005.
7.	Cortex-M3 series User Manuals and data sheets

Sr. No.		Institute Course	Details of Course from SWAYAM/NPTEL
	Course Code	Title of the Course	
1.	PEC-AI-510	Embedded System Design	

PEC-AI-511	GPU	Architecture and Pr	ogramming			
Teaching scheme	8		Examination scheme:			
Lecture		3 hrs /week	Theory			
Tutorial			In Semester Evaluation : 20 Marks			
Practical		2 hrs/week	Mid Semester Examination: 30 Marks			
Credit		4	End Semester Examination: 50 Marks			
Course Objective	s:					
1.	To understa	nd Computer organizati	on and Architecture			
2.	To evaluate	GPU architectures.				
3.	To analyze	Data Parallel Comput	ng.			
4.	To underst	and Scalable parallel l	Execution.			
5.	To explore	Memory and data loca	ılity.			
6.	To apply pe	erformance measures i	n GPU architecture.			
Course Outcome	s: On success	sful completion of this c	ourse, students will be able to			
1.	Understand	GPU architecture.				
2.	Create prog	ramme for GPU.				
3.	Know CUDA C Program Structure.					
4.	Gain knowl	edge of data parallel con	nputing.			
5.	Develop po	ogramming efficiently	for Neural Network Training/Inferencing.			

PO/PSO	PO	PSO	PSO	PSO											
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	1	2	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	2	3	2	-	-	-	-	-	-	-	3	3	2
CO4	2	2	3	2	2	-	-	-	-	-	-	-	3	3	2
CO5	3	3	2	3	2	-	-	-	-	-	-	-	3	2	2
CO	12	11	10	12	10	-	-	-	-	-	-	-	15	13	10
(total)															
CO(avg)	2	2	2	2	2	-	-	-	-	-	-	-	3	3	2

Syllabus	
Unit 1	Computer organization and Architecture: Review of basic computer organization and architecture, pipelining, structural hazard, data hazard, control hazard. Memory hierarchy, multi-level arrangements, principle of locality, cache mapping, cache blocks, cache write policy. Cache replacement policy, Instruction Level Parallelism (ILP), actual pipeline CPI, Compiler Techniques for ILP, unrolling algorithm, Branch Prediction assisted ILP, hierarchical prediction, Dynamic scheduling for ILP, static scheduling.
Unit 2	Introduction to GPU architectures: Handling data level parallelism, Vector processors, introduction to GPUs, Tesla GPU architecture, shader programs, multi-threading in GPUs, first generation GPUs, trade-off between Tesla and GeForce GPUs, graphics in tesla, GPGPU, single instruction multiple thread (SIMT), Warp execution, register file, fermi GTX 480 GPU, fermi streaming microprocessor, fermi memory hierarchy, parallel thread execution (PTX) instruction, GPUs as mobile workload accelerators, NVIDIA driver series of systems.
Unit 3	Data Parallel Computing: Data Parallelism, CUDA C Program Structure, A Vector Addition Kernel, Device Global Memory and Data Transfer, Kernel Functions and Threading, Kernel Launch.
Unit 4	Scalable parallel Execution: CUDA Thread Organization, Mapping Threads to Multidimensional Data, Image Blur: A More Complex Kernel, Synchronization and Transparent Scalability, Resource Assignment, Querying Device Properties, Thread Scheduling and Latency Tolerance.
Unit 5	Memory and data locality: Importance of Memory Access Efficiency, Matrix Multiplication, CUDA Memory Type, Tiling for Reduced Memory Traffic, A Tiled Matrix Multiplication Kernel, Boundary Checks, Memory as a Limiting Factor to Parallelism.
Unit 6	Performance Considerations : Global Memory Bandwidth, More on Memory Parallelism, Warps and SIMD Hardware Dynamic Partitioning of Resources, Thread Granularity, Floating-Point Data Representation, Representable Numbers, Special Bit Patterns and Precision in IEEE Format, Arithmetic Accuracy and Rounding, Algorithm Considerations, Linear Solvers and Numerical Stability.
Unit 7	Application Design : Efficient Neural Network Training/Inferencing , Application Case Study: MRI, Molecular Visualization and Analysis, Machine learning.
Text/Reference H	Books:
1.	David B. Kirk, Wen-mei W. Hwu, " <i>Programming Massively Parallel Processors: A Hands-on Approach</i> ", Third Edition.
2.	https://www.tutorialspoint.com/cuda/index.htm.
3.	https://cuda-tutorial.readthedocs.io/en/latest/tutorials/tutorial01/

Sr. No.		Institute Course	Details of Course from SWAYAM/NPTEL
	Course Code	Title of the Course	
1.	PEC-AI-511	GPU Architecture and Programming	

PEC-AI-512	Data	Structure and Algorith	m				
Teaching scheme	•		Examination scheme:				
Lecture		3 hrs /week	Theory				
Tutorial			In Semester Evaluation : 20 Marks				
Practical		2 hrs/week	Mid Semester Examination: 30 Marks				
Credit		4	End Semester Examination: 50 Marks				
Course Objective	s:						
1.	Understand	l basic analysis technique	es.				
2.	Evaluate ba	asic design techniques					
3.	Analyze in	duction, recursion, and p	roof techniques.				
4.	Evaluate re	now they are used in analysis of algorithms.					
5.		l advanced data structure	es: Priority queues, heaps, hash tables, and search				
	trees.		1 1				
6.	Analyze so	rting algorithms and the	ir complexities				
7.	Apply basi	c graph algorithms.					
Course Outcome	s: On success	ful completion of this cour	rse, students will be able to				
1.	Do worst-o	case and average-case an	alysis.				
2.	Know indu	ction, recursion, recurren	nce relations.				
3.	Design efficient algorithms.						
4.	Learn differ	ent sorting algorithms.					
5.	Learn desig graph algor		reedy-method and dynamic-programming, and				

PO/PSO ➡	РО	РО	РО	РО	РО	PO	PO	РО	PO	РО	РО	РО	PSO	PSO	PSO
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	1	2	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	2	3	2	-	-	-	-	-	-	-	3	3	2
CO4	2	2	3	2	2	-	-	-	-	-	-	-	3	3	2
CO5	3	3	2	3	2	-	-	-	-	-	-	-	3	2	2
CO	12	11	10	12	10	-	-	-	-	-	-	-	15	13	10
(total)															
CO(avg)	2	2	2	2	2	-	-	-	-	-	-	-	3	3	2

Syllabus	
Unit 1	Algorithm Analysis: Methodologies for Analyzing Algorithms, Asymptotic Notation, A Quick Mathematical Review, Case Studies in Algorithm Analysis, Amortization, Experimentation.
Unit 2	Basic Data Structures: Stack sand Queues, Vectors, Lists, and Sequences, Trees, Priority Queues and Heaps, Dictionaries and Hash Tables.
Unit 3	Search Trees and Skip Lists: Ordered Dictionaries and Binary Search Trees, AVL Trees, Bounded-Depth Search Trees, Splay Trees, Skip Lists
Unit 4	Sorting, Sets, and Selection: Merge-Sort, The Set Abstract Data Type, Quick -Sort, A Lower Bound on Comparison-Based Sorting, Buck et-Sort and Radix-Sort, Comparison of Sorting Algorithms.
Unit 5	Algorithms Design Techniques: The Greedy Method, Divide-and-Conquer, Dynamic Programming.
Unit 6	Graph Algorithms: The Graph Abstract Data Type, Data Structures for Graphs, Graph Traversal, Directed Graphs, Single-Source Shortest Paths, All-Pairs Shortest Paths, Minimum Spanning Trees
Text/Reference B	Books:
1.	Michael Goodrich and Roberto Tamassia, Algorithm Design: Foundations, Analysis, and Internet Examples, Wiley, 2002. ISBN: 0-471-38365-1
2.	S. Sahni, Data Structures, Algorithms, and Applications in C++, Silicon Press, 2/e, 2005.
3.	T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, MIT Press, 3/e, 2009
4.	A. M. Tenenbaum, Y. Langsam, and M. J. Augenstein, Data Structures Using C and C++, Prentice Hall, 2/e, 1995.

Sr. No.		Institute Course	Details of Course from SWAYAM/NPTEL
	Course Code	Title of the Course	Data Structure and Algorithm (IIT Delhi)
1.	PEC-AI-512	Data Structure and Algorithm	https://nptel.ac.in/courses/106/102/106102064/#

MCC-59	00	Research Methodology and I	PR					
Teachin	g scheme:		Examination scheme:					
Lecture		2 hrs /week	Respective Course coordinator will inform evaluation					
Tutorial			scheme at the beginning of the course.					
Practical		0 hrs/week						
Credit		2						
Course	Objectives:							
1.	To explain	formulation and analysis of research	arch problem.					
2.	To describe	research ethics and technical w	riting.					
3.	To understa	and IPR and patent rights.						
4.	To demonst	trate new developments in IPR w	vith the help of case studies.					
Course	Outcomes:	On successful completion of this	course, students will be able to					
1.	Understand	l research problem formulation.						
2.	Analyze res	search related information and fo	llow research ethics.					
3.	Understand	that today's world is controlled b	by Computer, Information Technology, but tomorrow world					
	will be rule	d by ideas, concept, and creativi	ty.					
4.	Understand	ing that when IPR would take su	uch important place in growth of individuals and nation, it					
	is needless	to emphasis the need of informat	ion about Intellectual Property Right to be promoted among					
	students in	general and engineering.						
5.	Understand	that IPR protection provides	an incentive to inventors for further research work and					
	investment	in R and D, which leads to crea	eation of new and better products, and in turn brings about,					
	economic g	rowth and social benefits.						

PO/PSO ➡	PO	РО	РО	PSO	PSO	PSO									
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	1	2	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	2	3	2	-	-	-	-	-	-	-	3	3	2
CO4	2	2	3	2	2	-	-	-	-	-	-	-	3	3	2
CO5	3	3	2	3	2	-	-	-	-	-	-	-	3	2	2
CO (total)	12	11	10	12	10	-	-	-	-	-	-	-	15	13	10
CO(avg)	2	2	2	2	2	-	-	-	-	-	-	-	3	3	2

Syllabus	
Unit 1	Meaning of research problem, sources of research problem, criteria characteristics of a good research problem, errors in selecting a research problem, scope and objectives of research problem. approaches of investigation of solutions for research problem, data collection, analysis, interpretation, necessary instrumentations.
Unit 2	Effective literature studies approaches, analysis plagiarism, research ethics.
Unit 3	Effective technical writing, how to write report, paper developing a research proposal, format of research proposal, a presentation and assessment by a review committee.
Unit 4	Nature of intellectual property: Patents, designs, trade and copyright. process of patenting and development: technological research, innovation, patenting, development. international scenario: international cooperation on intellectual property. procedure for grants of patents, patenting under PCT.
Unit 5	Patent rights: Scope of patent rights. licensing and transfer of technology. patent information and databases. geographical indications.
Unit 6	New developments in IPR: administration of patent system. new developments in IPR; IPR of biological systems, computer software etc. traditional knowledge case studies, IPR and IITs.
Text/Reference B	ooks:
1.	Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science and engineering students".
2.	Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction".
3.	Ranjit Kumar, 2 nd Edition, "Research Methodology: A Step by Step Guide for beginners".
4.	Halbert, "Resisting Intellectual Property", Taylor and Francis Ltd ,2007.
5.	Mayall, "Industrial Design", McGraw Hill, 1992.
6.	Niebel, "Product Design", McGraw Hill, 1974.
7.	Asimov, "Introduction to Design", Prentice Hall, 1962.
8.	Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.
9.	T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008.

Sr. No.		Institute Course	Details of Course from SWAYAM/NPTEL
	Course Code	Title of the Course	
1.	MCC-590	Research Methodology and IPR	

MAC-59	91	English for Research Paper V	Vriting			
Teachin	g scheme:		Examination scheme:			
Lecture		2 hrs /week	Respective Course coordinator will inform evaluation			
Tutorial			scheme at the beginning of the course.			
Practical		0 hrs/week				
Credit						
Course	Objectives:					
1.	To understa	and that how to improve your write	iting skills and level of readability.			
2.	To learn about what to write in each section.					
3.	To understa	and the skills needed when writin	g a title.			
4.	To ensure t	he good quality of paper at very	first-time submission.			
Course	Outcomes:	On successful completion of this	course, students will be able to			
1.	Understand	how to plan and prepare con-	cise writings by using appropriate words and structured			
	paragraphs					
2.	Explain ho	w to write different sections suc	h as abstracts, introduction, survey, methodology, results,			
	conclusions, etc. in paper and reports.					
3.	Describe ke	ey skills needed for writing title of	of a paper or report			

PO/PSO ➡	РО	PO	PSO	PSO	PSO										
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	1	2	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	2	3	2	-	-	-	-	-	-	-	3	3	2
CO (total)	07	06	05	07	06	-	-	-	-	-	-	-	09	08	06
CO(avg)	2	2	2	2	2	-	-	-	-	-	-	-	3	3	2

Syllabus	
Unit 1	Planning and preparation, word order, breaking up long sentences, structuring paragraphs and sentences, being concise and removing redundancy, avoiding ambiguity and vagueness.
Unit 2	Clarifying who did what, highlighting your findings, hedging and criticizing, paraphrasing and plagiarism, sections of a paper, abstracts. Introduction.
Unit 3	Review of the literature, methods, results, discussion, conclusions, the final check.
Unit 4	Key skills are needed when writing a title, key skills are needed when writing an abstract, key skills are needed when writing an introduction, skills needed when writing a review of the literature.
Unit 5	Skills are needed when writing the methods, skills needed when writing the results, skills are needed when writing the discussion, skills are needed when writing the conclusions.
Unit 6	Useful phrases, how to ensure paper is as good as it could possibly be the first- time submission.
Text/Reference B	ooks:
1.	Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books).
2.	Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press
3.	Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman's book.
4.	Adrian Wallwork , English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011.

Sr.		Institute Course	Details of Course from SWAYAM/NPTEL
No.			
	Course Code	Title of the Course	
1.	MAC-591	English for Research Paper Writing	

PCC-AI-513	Deep	Learning						
Teaching scheme			Examination scheme:					
Lecture		3 hrs /week	Theory					
Tutorial			In Semester Evaluation : 20 Marks					
Practical		2 hrs/week	Mid Semester Examination: 30 Marks					
Credit		4	End Semester Examination: 50 Marks					
Course Objective	s:							
1.	To underst	and basic concepts in (Convolutional Neural Network (CNN) and deep					
	learning							
2.	To evaluate	e various practical aspec	ts in training deep neural networks					
3.	To apply knowledge of regularization techniques for effective training							
4.	To unders	tand field of image	classification, object detection and semantic					
	segmentati	on with CNN						
5.	Analyzing	and applying deep learn	ing algorithms in practical problems					
Course Outcome	s: On success	ful completion of this cour	rse, students will be able to					
1.	Understand	the fundamentals of CN	IN and deep learning.					
2.	Explore tec	hniques in deep learning	g and the main research in this field.					
3.	Create and	Create and implement deep neural network systems.						
4.	Implement CNN for image classification, detection and Segmentation							
5.	Identify ne	Identify new application requirements in the field of computer vision.						
6.	Estimate th	e resources required to a	chieve the objectives with Deep learning					

PO/PSO ➡	PO	PSO	PSO	PSO											
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	1	2	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	2	3	2	-	-	-	-	-	-	-	3	3	2
CO4	2	2	3	2	2	-	-	-	-	-	-	-	3	3	2
CO5	3	3	2	3	2	I	-	-	-	-	-	-	3	2	2
CO6	3	2	2	2	2	-	-	-	-	-		-	2	3	3
CO	15	13	12	14	12	-	-	-	-	-	-	-	17	16	13
(total)															
CO(avg)	2	2	2	2	2	-	-	-	-	-	-	-	3	3	2

Syllabus	
Unit 1	Introduction to Convolutional Neural Network (CNN) Review of ANN, History of Deep Learning, Convolution layer, Activation function, Pooling Layer, Dense Layer, Data processing, Transfer learning, Understanding software and hardware requirement for deep learning, CPU vs. GPU.
Unit 2	Training Deep CNN architectures Feedforward Neural Networks, Backpropagation, Loss functions, Study of optimizers, Weight initialization methods, Mini batch gradient descent, Train/Val/Test dataset distributions, Performance matrix, Introduction to programming frameworks like Keras, Theano, TensorFlow and PyTorch.
Unit 3	Hyperparameter tuning and Regularization Introduction to various hyper parameters in CNN, Importance of hyper parameter tuning, Bias Variance trade-off, Problem of overfitting, Dropout regularization, L2 regularization, Batch normalization, Early stopping, Dataset augmentation.
Unit 4	Image Classification with CNN Simple CNN Example, Understanding 1x1 convolution, Concept of depth wise separable convolution, Vanishing and Exploding Gradients, Skip connections in CNN, Study of various CNN architectures for image classification: LeNet, AlexNet, VGGNet, GoogLeNet, ResNet, MobileNet etc.
Unit 5	Object Detection and Recognition with CNN Introduction to object detection and recognition, Convolutional Implementation of sliding windows, understanding region proposals anchor boxes, Bounding box predictions, Non-max suppression, Region based convolutional neural network for object detection, Face recognition case study.
Unit 6	Semantic Segmentation with CNN Understanding image segmentation and semantic segmentation, Encoder-decoder architectures, Upsampling, Transpose convolution, Fully convolutional neural networks, Instance segmentation, Applications of semantic segmentation
Unit 7	Advancement in Deep Learning Visualizing and understanding convolutional neural network, Introduction to various other applications and era of dep learning like Recurrent Neural Networks (RNN), Generative Adversarial Networks (GAN), Reinforcement learning etc.
Text/Reference B	
1.	Ian Goodfellow, Yoshua Bengio and Aaron Courville, "Deep Learning", An MIT Press book, 2016
2.	Charu C. Aggarwal, "Neural Networks and Deep Learning", Springer, 2018
3.	François Chollet, "Deep Learning with Python", Manning Publications, 1st edition
4.	Adrian Rosebrock, "Deep Learning for Computer Vision", Pyimagesearch, 3 rd edition
5.	Shantanu Pattanyak "Pro Deep Learning with tensorflow" (2017).
6.	http://cs231n.github.io/neural-networks-1/
7.	http://cs231n.github.io/neural-networks-2/
8.	http://cs231n.github.io/neural-networks-3/

Sr. No.		Institute Course	Details of Course from SWAYAM/NPTEL
	Course Code	Title of the Course	
1.	PCC-AI-513	Deep Learning	

PCC-AI-514	Natur	al Language Processin	g						
Teaching scheme	·		Examination scheme:						
Lecture		3 hrs /week	Theory						
Tutorial			In Semester Evaluation : 20 Marks						
Practical		2 hrs/week	Mid Semester Examination: 30 Marks						
Credit		4	End Semester Examination: 50 Marks						
Course Objective	s:								
1.	To understa	nd the need natural langua	ge processing (NLP) and their representation.						
2.	To understa	nd the Mathematical found	lation, Linguistic essentials for NLP.						
3.	To apply th	e syntax analysis and parsi	ng that is essential for NLP.						
4.	To analyze	knowledge about the appli	cation of NLP.						
5.	To evaluate	basic programming tools	for NLP.						
6.	To understa	nd basic NLP problems, ta	sks and method						
Course Outcome	: On success	ful completion of this cour	rse, students will be able to						
1.	Identify dif	ferent linguistic componen	ts of natural language.						
2.	Design the	various methodologies	for supervised, unsupervised and dictionary-based						
	disambigua	tion.							
3.	Design new	tagset and a tagger for a g	iven natural language.						
4.	Design app	lications and techniques in	volving natural language like clustering, information						
	retrieval etc								
5.	Define an N	NLP problem and find a sui	table solution to it.						
6.	Demonstrat	e own program solution							

PO/PSO	РО	PO	РО	PO	РО	PSO	PSO	PSO							
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	1	2	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	2	3	2	-	-	-	-	-	-	-	3	3	2
CO4	2	2	3	2	2	-	-	-	-	-	-	-	3	3	2
CO5	3	3	2	3	2	-	-	-	-	-	-	-	3	2	2
CO6	3	2	2	2	2	-	-	-	-	I		-	2	3	3
CO (total)	15	13	12	14	12	-	-	-	-	I	I	-	17	16	13
CO(avg)	2	2	2	2	2	-	-	-	-	I	I	-	3	3	2

Syllabus	
Unit 1	Introduction to Natural Language Processing (NLP) : NLP, Task of NLP, Traditional approach to NLP, Deep learning approach to NLP, Introduction to technical tools. Mathematical foundation, Linguistic essentials, Corpus based work.
Unit 2	Words: Collocations: Frequency, Mean and variance, Hypothesis testing, Mutual Information Statistical Inference: n-gram models, building n-gram models, Maximum likelihood estimation (MLE), Held out estimation, Deleted estimation, Good turing estimation.
Unit 3	Word Sense Disambiguation: Methodological Preliminaries: Supervised and unsupervised learning, Pseudowords, Upper and lower bounds on performance. Supervised Disambiguation: Bayesian classification, An information- theoretic approach. Dictionary based Disambiguation, Unsupervised Disambiguation.
Unit 4	Grammar: Markov Models: Hidden Markov Models, HMM implementation, properties and variants. Part-of-speech tagging: Markov Model Taggers, Hidden Markov Model Taggers. Transformation based learning of tags. Other methods and languages. Tagging accuracy and uses of taggers.
Unit 5	Deep Learning for NLP: Introduction to deep learning for NLP, Basic perceptron model, Keras basic, Text generation with LSTM with keras and python, Overview of chat boat, Creating chat boat with python.
Unit 6	Application of NLP: Introduction to information retrieval, Vector Space Model, Term Distribution Models, Latent Semantic Indexing, Machine Translation: Language similarities and differences.
Text/Reference	Books:
1.	C. D. Manning and H. Schutze, "Foundation of Statistical Natural Language Processing", The MIT Press
2.	Daniel Jurafsky & James H. Martin, "Speech and Language Processing", Pearson Education (Singapore) Pte. Ltd.
3.	James Allen, "Natural Language Understanding", Pearson Education
4.	Steven Bird, Ewan Klein, and Edward Loper, "Natural Language Processing with Python, Shroff, 2009

Sr.		Institute Course	Details of Course from SWAYAM/NPTEL
No.			
	Course Code	Title of the Course	
1.	PCC-AI-514	Natural Language Processing	https://swayam.gov.in/nd1_noc19_cs56/preview

PCC-AI-515	Intell	igent System						
Teaching scheme			Examination scheme:					
Lecture		3 hrs /week	Theory					
Tutorial			In Semester Evaluation : 20 Marks					
Practical		2 hrs/week	Mid Semester Examination: 30 Marks					
Credit		4	End Semester Examination: 50 Marks					
Course Objective	s:							
1.			telligence (AI) with emphasis on its use to solve					
			ions are difficult to express using the traditional					
	algorithmic							
2.		•	ind methodologies for developing systems that					
		0	luding dealing with uncertainty, learning from					
			solving strategies found in nature.					
3.	Analyze inte	elligent systems						
4.	Apply AI in	n industry, defense, healt	hcare, agriculture and many other areas.					
5.			ts a rigorous, advanced and professional post-					
	0	vel foundation in Artifici	<u> </u>					
Course Outcome	s: On success	ful completion of this cour	se, students will be able to					
1.	Solve AI p	roblems through program	ming with Python					
2.	Learning o	ptimization and inference	e algorithms for model learning					
3.	Design an	d develop programs fo	or an agent to learn and act in a structured					
	environment.							
4.	4. Build intelligent agents for search and games.							
5.	Demonstra	te knowledge of the fun	damental principles of intelligent systems and					
		• •	re the relative merits of a variety of AI problem					
	solving tec	hniques.						

PO/PSO ➡	РО	PO	PSO	PSO	PSO										
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	1	2	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	2	3	2	-	-	-	-	-	-	-	3	3	2
CO4	2	2	3	2	2	-	-	-	-	-	-	-	3	3	2
CO5	3	3	2	3	2	-	-	-	-	-	-	-	3	2	2
CO	12	11	10	12	10	-	-	-	-	-	-	-	15	13	10
(total)															
CO(avg)	2	2	2	2	2	-	-	-	-	-	-	-	3	3	2

Syllabus	
Unit 1	Introduction: what is AI? Foundations of Artificial Intelligence, History of AI, The-State-of-the-art, Risks and Benefits of AI,
Unit 2	Intelligent Agents: Agents and Environments, Good behavior: the concept of rationality, The Nature of Environments, The Structure of Agents.
Unit 3	Problem Solving: Problem-Solving Agents, Search Algorithms, Uninformed Search Strategies, Informed (Heuristic) Search Strategies, Heuristic Functions, Local Search and Optimization Problems, Local Search in Continuous Spaces, Search with Nondeterministic Actions, Game Theory, Optimal Decisions in Games, Heuristic AlphaBeta Tree Search.
Unit 4	Knowledge and Reasoning: Knowledge-Based Agents, The Wumpus World, Logic, Propositional Logic, Agents Based on Propositional Logic, Syntax and Semantics of First-Order Logic, Knowledge Engineering in First-Order Logic,
	Unification and First-Order Inference, Forward Chaining, Backward Chaining, Ontological Engineering, Categories and Objects, Events, Mental Objects and Modal Logic, Reasoning Systems for Categories
Unit 5	Uncertain Knowledge and Reasoning: Representing Knowledge in an Uncertain Domain, The Semantics of Bayesian Networks, Exact Inference in Bayesian Networks, Approximate Inference for Bayesian Networks, Causal Networks, Time and Uncertainty, Inference in Temporal Models, Hidden Markov Models.
Unit 6	Multiagent Decision Making: Properties of Multiagent Environments, Non-Cooperative Game Theory, Cooperative Game Theory, Making Collective Decisions.
Text/Reference B	ooks:
1.	Russell S. and Norvig P. (2009). Artificial Intelligence: A Modern Approach. Prentice-Hall, 3rd edition.
2.	Luger G.F. and Stubblefield W.A. (2008). Artificial Intelligence: Structures and strategies for Complex Problem Solving. Addison Wesley, 6th edition.

Sr. No.		Institute Course	Details of Course from SWAYAM/NPTEL
	Course Code	Title of the Course	
1.	PCC-AI-515	Intelligent System	https://nptel.ac.in/courses/106/105/106105077/

PEC-4	AI-516		Data	Ware	housi	ng and	l Data	Mini	ng						
Teaching s	cheme:							Ex	amina	ation s	cheme	:			
Lecture			3 ł	nrs /we	ek			The	eory						
Tutorial			h	rs/wee	k			In	Semes	ter Ev	aluatio	n :	20 Mark	S	
Practical		2 hrs/week Mid Semester Examination: 30 Marks													
Credit	4 End Semester Examination: 50 Marks														
Course Ob	jectives	5:						J							
1.	To un	derstar	nd the s	cope a	nd ess	entialit	y of Da	ata Wa	rehou	sing ar	nd Mini	ing.			
2.	To an	alyze d	lata, ch	oose re	elevant	model	s and a	algorith	nms fo	or respe	ective a	pplicat	ions.		
3.	To eva	aluate	spatial	and we	eb data	minin	g.								
4.	To de	velop r	esearc	h intere	est tow	ards ad	lvance	s in dat	a min	ing.					
Course Ou	tcomes	: On su	uccessf	ul com	pletion	ı of thi	s cours	se, stud	lents v	vill be	able to				
1.	Under	stand	Data W	arehou	ıse fun	damen	tals, D	ata Mi	ning P	rincip	es.				
2.	Desig	n data	wareho	ouse wi	ith dim	ension	al mod	elling	and ap	oply O	LAP of	peration	ns.		
3.	Identi	fy appi	ropriate	e data r	nining	algorit	thms to	solve	real w	orld p	roblem	s.			
4.			d evalud asso				mining	techn	iques	like c	lassific	ation, j	predictio	n,	
Cours	e Artic	ulatio	n Matı	rix: Ma	apping	of Cou	irse ou	tcome	and P	rogram	outco	me			
PO/PSO CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO
CO1	3	3	3	2	2	-	2	-	-	2	-	-	2	2	2
CO2	3	2	2	2	2	2	-	-	2	-	-	-	3	3	3
CO3	3	3	1	2	3	2	-	-	2	2	-	2	3	3	2
CO4	3	2	2	2	2	-	2	2	2	2	2	3	2	2	3
CO (total)	12	10	8	8	9	4	4	2	6	6	1	5	10	10	10
CO (avg)	3	3	2	2	3	1	1	1	2	2	-	2	3	3	3

Syllabus

Unit 1	Data Warehouse: Introduction, a Multi-dimensional data model, Data Warehouse Architecture, Data Warehouse Implementation.
Unit 2	Data Mining: Introduction, Data Mining, on what kind of Data, Data Mining Functionalities, Classification of Data Mining Systems, Major issues in Data Mining.
Unit 3	Data Preprocessing: Data cleaning, Data Integration & Transformation, Data Reduction, Discretization & Concept Hierarchy Generation, Data Mining Primitives.
Unit 4	Mining Association roles in large databases: Association rule mining, mining single-dimensional Boolean Association rules from Transactional Databases, Mining Multi-dimensional Association rules from relational databases & Data Warehouses.
Unit 5	Classification & Prediction: Introduction, Classification by Decision tree induction, Bayesian Classification.
Unit 6	Other Classification Methods, Classification by Back propagation, Prediction, Classifier accuracy.
Unit 7	Cluster Analysis: Introduction, Types of data in Cluster analysis, A categorization of major clustering methods, partitioning methods, Hierarchical methods, Density- Based Methods: DBSCAN, Gridbased Method: STING; Model-based Clustering Method: Statistical approach, Outlier analysis.
Text/Reference	Books:
1.	Data Mining Concepts & Techniques, Jiawei Han Micheline Kamber, Morgan Kaufmann Publishers.
2.	Data Warehouse Toolkit, Ralph Kinball, John Wiley Publishers.
3.	Data Mining, Introductory and Advanced Topics, Margaret H.Dunham, Pearson Education.
4.	Data warehousing in the real world, A Practical guide for Building decision support systems, Sam Anahory, Dennis Murray, Pearson Education.

Sr.		Institute Course	Details of Course from SWAYAM/NPTEL
No.			
	Course Code	Title of the Course	
1.	PEC-AI-516	Data Warehousing and Data Mining	https://nptel.ac.in/courses/106/105/106105174/

PEC-AI-517	Com	outer Vision						
Teaching scheme			Examination scheme:					
Lecture		3 hrs /week	Theory					
Tutorial			In Semester Evaluation : 20 Marks					
Practical		2 hrs/week	Mid Semester Examination: 30 Marks					
Credit		4	End Semester Examination: 50 Marks					
Course Objective								
1.	To understa	nd human vision vs co	omputer vision and relevant aspects.					
2.	To evaluate	low level Computer V	Vision					
3.	To analyze	mid-level Computer V	Vision					
4.	To apply hig	gh level Computer Vis	sion					
5.	To understa	nd dynamic scene ana	lysis.					
6.	To learn 3-	D vision system.						
Course Outcome	s: On success	ful completion of this	course, students will be able to					
1.	Understand	different types of Con	nputer Vision systems and basics of image and video.					
2.	Understand	feature extractions of	image and video.					
3.	Analyze dif	ferent computer Visio	n Systems.					
4.	Analyze and implement different motion detection methods for video analysis.							
5.	5. Understand the 2 D- 3D Vision system.							
6. Design Computer Vision System.								
7.	Solve real w	vorld problems using o	computer vision.					

PO/PSO	РО	PO	PO	PO	PO	PO	PO	РО	PO	РО	PO	РО	PSO	PSO	PSO
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	1	2	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	2	3	2	-	-	-	-	-	-	-	3	3	2
CO4	2	2	3	2	2	-	-	-	-	-	-	-	3	3	2
CO5	3	3	2	3	2	-	-	-	-	-	-	-	3	2	2
CO6	3	2	2	2	2	-	-	-	-	-		-	2	3	3
CO7	2	2	3	2	2	-	-		-	-	-	-	2	2	3
CO	17	15	15	16	14	-	-	-	-	-	-	-	19	18	16
(total)															
CO(avg)	2	2	2	2	2	-	-	-	-	-	-	-	3	3	3

Syllabus	
Unit 1	Introduction of Computer Vision Human Vision Vs Computer Vision, Limitations of Human Vision System, Types of Computer Vision, Computer Vision Pipeline, History of Computer Vision, Computer Vision Applications.
Unit 2	Preprocessing and Low-Level Computer Vision Image preprocessing, review of linear and non-linear filtering, 2-D Convolution, scale space approach, LoG and DoG, Canny edge detection, edge in multi spectral image, other local preprocessing operators, line, and corner detection.
Unit 3	Mid-Level Computer Vision: Feature representation and Description Colour and Texture Features, Shape Feature representation: Region identification, contour- based shape representation and description, region-based shape representation and description, shape classes.
Unit 4	High-Level Computer Vision: Object Recognition Knowledge representation, review of statistical object recognition, Bays classifier, KNN classifier, hierarchical and non-hierarchical approach, clustering syntactic object recognition, recognition as a graph matching.
Unit 5	 High-Level Computer Vision: Image Understanding and 3-D Vision Image understanding, control strategies, top-down and bottom up approach, active contour models –shapes, semantic image segmentation and understanding. Basics of projective geometry, the single view, stereoscopic, and Multiview geometry.
Unit 6	High-Level Computer Vision: Dynamic Scene Analysis Estimating motion vectors using sequential search algorithm, logarithmic search algorithm, and hierarchical search, motion analysis, differential motion analysis methods, trajectory detection, optical flow analysis based on correspondence of interest points, Kalman filters.
Text/Reference E	600KS:
1.	Milan Sonka, V. Hlavac and Roger Boyle, "Image Processing, Analysis and Machine Vision" –Second edition, Thomson Asia Pvt. Ltd., ISBN -981 -240- 061 -3.
2.	Forsyth and Ponce, "Computer Vision: A modern vision" –PHI.
3.	R. Jain, "Computer Vision" – TMH.

Sr.		Institute Course	Details of Course from SWAYAM/NPTEL
No.			
	Course Code	Title of the Course	
1.	PEC-AI-517	Computer Vision	

PEC-AI-518	Wave	lets and Applications								
Teaching scheme	- -		Examination scheme:							
Lecture		3 hrs /week	Theory							
Tutorial			In Semester Evaluation : 20 Marks							
Practical		2 hrs/week	Mid Semester Examination: 30 Marks							
Credit		4	End Semester Examination: 50 Marks							
Course Objective	Course Objectives:									
1. To understand the terminology that are used in the wavelet's literature.										
2.	To understand the concepts, theory, and algorithms behind wavelets from an interdisciplinary perspective that unifies harmonic analysis (mathematics), filter banks (signal processing), and multiresolution analysis (computer vision).									
3.		the modern signal proce	essing tools using signal spaces, bases, operators, and							
4.		vavelets, filter banks, and wavelets provide the right	multiresolution techniques to a problem at hand, and at tool.							
5.	To evaluate	critically, ask questions,	and apply problem-solving techniques							
Course Outcome	s: On success	sful completion of this co	urse, students will be able to							
1.	Introduce T	ransforms in signal proce	essing.							
2.	Understand	Time -Frequency Analys	sis and Multi-resolution Analysis.							
3.	Study of W	avelets and its Applicatio	ns							

PO/PSO	РО	PO	PSO	PSO	PSO										
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	1	2	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	2	3	2	-	-	-	-	-	-	-	3	3	2
CO (total)	7	6	5	7	6	-	-	-	-	-	-	-	9	8	6
CO(avg)	2	2	2	2	2	-	-	-	-	-	-	-	3	3	2

Syllabus	
Unit 1	Introduction and fundamentals of linear algebra: the origins of wavelets-are they fundamentally new? other transforms. why wavelets? the concept of scale and resolution, uncertainty, history of wavelet from morlet to daubechies via mallat, different communities and family of wavelets. fundamentals of linear algebra: vector spaces, bases, orthogonality, orthonormality, projection, functions and function spaces, orthogonal functions, orthogonal basis functions.
Unit 2	Signal representation in Fourier domain: Fourier series, orthogonality, orthonormality and the method of finding the Fourier coefficients Complex Fourier series, orthogonality of complex exponential bases, Mathematical preliminaries for continuous and discrete Fourier transform, limitations of Fourier domain signal processing.
Unit 3	Discrete wavelet transform and relation to filter banks: Haar scaling functions and function spaces, translation and scaling of $\phi(t)$, orthogonality of translates of $\phi(t)$, function space V_0 , Finer Haar scaling functions, Concepts of nested vector spaces, Haar wavelet function, Scaled and translated Haar wavelet functions, Orthogonality of $\phi(t)$ and $\psi(t)$, Normalization of Haar bases at different scales, Refinement relation with respect to normalized bases, Support of a wavelet system. relation to filter banks: signal decomposition (analysis), relation with filter banks fragments are spaced as a space of the space
	relation with filter banks, frequency response, signal reconstruction: synthesis from coarse scale to fine scale, upsampling and filtering, perfect reconstruction filters, QMF conditions, Computing initial s_{j+1} coefficients, concepts of multi-resolution analysis (MRA) and Multi-rate signal processing. perfect reconstruction: alice cancellation and perfect reconstruction with 2-channel filter bank (perfect reconstruction filter banks)
Unit 4	Designing orthogonal wavelet systems and time-frequency analysis -A frequency domain approach: Designing 4-tap and 6-tap Daubechies wavelet coefficients. compact support, regularity, vanishing moments, conjugate quadrature filter banks (CQF). time-frequency analysis: time-frequency - a joint perspective, ideal time frequency behavior, the uncertainty principle the concept of time-bandwidth product, uncertainty bound, evaluating the lower bound on TBP. time frequency plane and its tiling, STFT and WT: STFT and wavelet transform in general, reconstruction and admissibility, discretization of scale.
Unit 5	Variants of the MRA: biorthogonal wavelets, biorthogonality in vector space, biorthogonal wavelet systems, signal representation using biorthogonal wavelet system, design of JPEG 2000 5 by 3 Filter Bank, The wave packet transform, NOBLE Identities and the relation to Haar WPT, M-band Filter Banks.
Unit 6	JTFA Applications: Scalograms, time-frequency distributions: fundamental ideas, an exploration of applications (this will be a joint effort between the instructor and the class): speech, audio, image and video compression; signal estimation / denoising, feature extraction, etc.
Text/Reference	
1.	K. P. Soman, K. I. Rmachandran, N. G. Resmi, "Insight into Wavelets: From Theory to Practice, (Third Edition)", PHI Learning Pvt. Ltd., 2010.
2.	S. Mallat, "A Wavelet Tour of Signal Processing," 2 nd Edition, Academic Press, 1999.
3.	L. Cohen, "Time-frequency analysis", 1 st Edition, Prentice Hall, 1995.
4.	G.Strang and T. Q. Nguyen, "Wavelets and Filter Banks",2 nd Edition, Wellesley Cambridge Press, 1998.
5.	I. Daubechies, "Ten Lectures on Wavelets", SIAM, 1992.
6.	P. P. Vaidyanathan, "Multirate Systems and Filter Banks", Prentice Hall, 1993.
7.	M. Vetterli and J. Kovacevic, "Wavelets and Subband Coding", Prentice Hall, 1995.
8.	Rafael C. Gonzalez, Richard E. Woods "Digital Image Processing (Third Edition)", Pearson International Edition, 2009.
9.	C. S. Burrus, Ramose and A. Gopinath, Introduction to Wavelets and Wavelet Transform, Prentice Hall Inc.

Wavelet Links:	
	http://users.rowan.edu/~polikar/WAVELETS/WTtutorial.html
_	http://www.wavelet.org/
	http://www.math.hawaii.edu/~dave/Web/Amara's%20Wavelet%20Page.htm
Additional Read	ling:
1.	Barbara Burke Hubbard, "The World according to Wavelets - A Story of a Mathematical
	Technique in the making", Second Edition, Universities Press (Private) India Limited
	2003, Mathematics, Copyright 1998, ISBN 81-7371-450-9, Published by Universities
	Press (India) Private Limited, 3-5-819, Hyderguda, Hyderabad 500 029 (AP), India.
2.	Stephen Welstead, Fractal and Wavelet Image Compression Techniques, Prentice Hall of
	India, New Delhi "Eastern Economy Edition, ISBN 81-203-2827-2, c 1999 by Society of
	Photo-Optical Instrumentation Engineers (SPIE).
3.	George Bachman, Lawrence Narici, Edward Beckenstein, Fourier and Wavelet Analysis,
	Springer International Edition (SIE), c 2000, Indian Edition, ISBN 81-8128-276-0.

Sr.		Institute Course	Details of Course from SWAYAM/NPTEL
No.			
	Course Code	Title of the Course	Prof V M Gadre (IIT Bombay)
1.	PEC-AI-518	Wavelets and Applications	http://www.nptelvideos.in/2012/12/advanced-
			digital-signal-processing.html

PEC-AI-519	Quan	tum Computing							
Teaching scheme	8		Examination scheme:						
Lecture		3 hrs /week	Theory						
Tutorial			In Semester Evaluation : 20 Marks						
Practical		2 hrs/week	Mid Semester Examination: 30 Marks						
Credit		4	End Semester Examination: 50 Marks						
Course Objective	Course Objectives:								
1.	Understan	Understand necessary knowledge in quantum computing to the learner.							
2.	To apply k	To apply knowledge of Architecture of a Quantum Computing platform.							
3.	To impart knowledge of Programming model for a Quantum Computing Program								
4.	To evaluat	e various quantum alg	orithms.						
5.	To apply q	uantum computing in	industries.						
Course Outcome	s: On success	sful completion of this co	ourse, students will be able to						
1.	Explain the	e working of a Quantur	m Computing program, its architecture and program						
	model.								
2.	Develop q	uantum logic gate circ	uits.						
3.	Develop q	uantum algorithm							
4.	Program q	uantum algorithm on r	najor toolkits.						

PO/PSO→	РО	PO	РО	PSO	PSO	PSO									
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	1	2	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	2	3	2	-	-	-	-	-	-	-	3	3	2
CO4	2	2	3	2	2	-	-	-	-	-	-	-	3	3	2
CO (total)	9	8	8	9	8	-	-	-	-	-	-	-	12	11	8
CO(avg)	2	2	2	2	2	-	-	-	-	-	-	-	3	3	2

Unit 1Introduction to Quantum Computing: Motivation, Major players in the indust Origin of Quantum Computing, Overview of major concepts in Quantu Computing- Qubits and multi-qubits states, Bra-ket notation, Bloch Spherepresentation, Quantum Superposition, Quantum Entanglement.Unit 2Math Foundation for Quantum Computing: Matrix Algebra: basis vectors a orthogonality, inner product and Hilbert spaces, matrices and tensors, unita operators and projectors, Dirac notation, Eigen values and Eigen vectors.Unit 3Building Blocks for Quantum Program: Architecture of a Quantum Computi platform, Details of q-bit system of information representation-Block Sphe Multi-qubits States, Quantum superposition of qubits (valid and inva superposition), Quantum Entanglement, Useful states from quantum algorithm perceptive e.g. Bell State, Operation on qubits: Measuring and transforming usi gates, Ising, Deutsch, swap etc; Programming model for a Quantum Computing Program- Steps performed	Syllabus 	Introduction to Quantum Computing : Motivation, Major players in the industry,
Unit 1Origin of Quantum Computing, Overview of major concepts in Quantum Computing- Qubits and multi-qubits states, Bra-ket notation, Bloch Sphere representation, Quantum Superposition, Quantum Entanglement.Unit 2Math Foundation for Quantum Computing: Matrix Algebra: basis vectors a orthogonality, inner product and Hilbert spaces, matrices and tensors, unita 	IInit 1	
Unit 1Origin of Quantum Computing, Overview of major concepts in Quantum Computing- Qubits and multi-qubits states, Bra-ket notation, Bloch Sphere representation, Quantum Superposition, Quantum Entanglement.Unit 2Math Foundation for Quantum Computing: Matrix Algebra: basis vectors a orthogonality, inner product and Hilbert spaces, matrices and tensors, unita operators and projectors, Dirac notation, Eigen values and Eigen vectors.Unit 3Building Blocks for Quantum Program: Architecture of a Quantum Computi platform, Details of q-bit system of information representation-Block Sphe Multi-qubits States, Quantum superposition of qubits (valid and inva superposition), Quantum Entanglement, Useful states from quantum algorithm perceptive e.g. Bell State, Operation on qubits: Measuring and transforming usi gates, Ising, Deutsch, swap etc; Programming model for a Quantum Computing Program- Steps performed	Unit 1	
Unit 1Computing- Qubits and multi-qubits states, Bra-ket notation, Bloch Spherepresentation, Quantum Superposition, Quantum Entanglement.Unit 2Math Foundation for Quantum Computing: Matrix Algebra: basis vectors and orthogonality, inner product and Hilbert spaces, matrices and tensors, unitation operators and projectors, Dirac notation, Eigen values and Eigen vectors.Unit 3Building Blocks for Quantum Program: Architecture of a Quantum Computing platform, Details of q-bit system of information representation-Block Sphere Multi-qubits States, Quantum superposition of qubits (valid and invasion superposition), Quantum Entanglement, Useful states from quantum algorithm perceptive e.g. Bell State, Operation on qubits: Measuring and transforming using ates, Ising, Deutsch, swap etc; Programming model for a Quantum Computing Program- Steps performed	Unit 1	I Urigin of Ullantim Computing Uverview of major concepts in Ullantim
 representation, Quantum Superposition, Quantum Entanglement. Math Foundation for Quantum Computing: Matrix Algebra: basis vectors a orthogonality, inner product and Hilbert spaces, matrices and tensors, unita operators and projectors, Dirac notation, Eigen values and Eigen vectors. Building Blocks for Quantum Program: Architecture of a Quantum Computing platform, Details of q-bit system of information representation-Block Sphe Multi-qubits States, Quantum superposition of qubits (valid and inva superposition), Quantum Entanglement, Useful states from quantum algorithm perceptive e.g. Bell State, Operation on qubits: Measuring and transforming usi gates, Quantum Logic gates and Circuit: Pauli, Hadamard, phase shift, controll gates, Ising, Deutsch, swap etc; Programming model for a Quantum Computing Program- Steps performed 		
Unit 2Math Foundation for Quantum Computing: Matrix Algebra: basis vectors a orthogonality, inner product and Hilbert spaces, matrices and tensors, unita operators and projectors, Dirac notation, Eigen values and Eigen vectors.Building Blocks for Quantum Program: Architecture of a Quantum Computi platform, Details of q-bit system of information representation-Block Sphe Multi-qubits States, Quantum superposition of qubits (valid and inva superposition), Quantum Entanglement, Useful states from quantum algorithm perceptive e.g. Bell State, Operation on qubits: Measuring and transforming usi gates, Ising, Deutsch, swap etc; Programming model for a Quantum Computing Program- Steps performed	cint I	
Unit 2orthogonality, inner product and Hilbert spaces, matrices and tensors, unita operators and projectors, Dirac notation, Eigen values and Eigen vectors.Building Blocks for Quantum Program: Architecture of a Quantum Computi platform, Details of q-bit system of information representation-Block Sphe Multi-qubits States, Quantum superposition of qubits (valid and inva superposition), Quantum Entanglement, Useful states from quantum algorithm perceptive e.g. Bell State, Operation on qubits: Measuring and transforming usi gates, Quantum Logic gates and Circuit: Pauli, Hadamard, phase shift, controll gates, Ising, Deutsch, swap etc; Programming model for a Quantum Computing Program- Steps performed		
operators and projectors, Dirac notation, Eigen values and Eigen vectors.Building Blocks for Quantum Program: Architecture of a Quantum Computi platform, Details of q-bit system of information representation-Block Sphe Multi-qubits States, Quantum superposition of qubits (valid and inva superposition), Quantum Entanglement, Useful states from quantum algorithm perceptive e.g. Bell State, Operation on qubits: Measuring and transforming usi gates, Quantum Logic gates and Circuit: Pauli, Hadamard, phase shift, controll gates, Ising, Deutsch, swap etc; Programming model for a Quantum Computing Program- Steps performed	Unit 2	
Building Blocks for Quantum Program: Architecture of a Quantum Computi platform, Details of q-bit system of information representation-Block Sphe Multi-qubits States, Quantum superposition of qubits (valid and inva superposition), Quantum Entanglement, Useful states from quantum algorithm perceptive e.g. Bell State, Operation on qubits: Measuring and transforming usi gates, Quantum Logic gates and Circuit: Pauli, Hadamard, phase shift, controll gates, Ising, Deutsch, swap etc; Programming model for a Quantum Computing Program- Steps performed		
 Unit 3 platform, Details of q-bit system of information representation-Block Sphe Multi-qubits States, Quantum superposition of qubits (valid and inva superposition), Quantum Entanglement, Useful states from quantum algorithm perceptive e.g. Bell State, Operation on qubits: Measuring and transforming usi gates, Quantum Logic gates and Circuit: Pauli, Hadamard, phase shift, controll gates, Ising, Deutsch, swap etc; Programming model for a Quantum Computing Program- Steps performed 		
 Unit 3 Multi-qubits States, Quantum superposition of qubits (valid and inva superposition), Quantum Entanglement, Useful states from quantum algorithm perceptive e.g. Bell State, Operation on qubits: Measuring and transforming usi gates, Quantum Logic gates and Circuit: Pauli, Hadamard, phase shift, controll gates, Ising, Deutsch, swap etc; Programming model for a Quantum Computing Program- Steps performed 		
superposition), Quantum Entanglement, Useful states from quantum algorithm perceptive e.g. Bell State, Operation on qubits: Measuring and transforming usi gates, Quantum Logic gates and Circuit: Pauli, Hadamard, phase shift, controll gates, Ising, Deutsch, swap etc; Programming model for a Quantum Computing Program- Steps performed	Unit 3	
gates, Quantum Logic gates and Circuit: Pauli, Hadamard, phase shift, controll gates, Ising, Deutsch, swap etc; Programming model for a Quantum Computing Program- Steps performed		superposition), Quantum Entanglement, Useful states from quantum algorithmic
gates, Ising, Deutsch, swap etc; Programming model for a Quantum Computing Program- Steps performed		perceptive e.g. Bell State, Operation on qubits: Measuring and transforming using
Programming model for a Quantum Computing Program- Steps performed		gates, Quantum Logic gates and Circuit: Pauli, Hadamard, phase shift, controlled
classical computer. Steps performed on Ouantum Computer. Moving data betwee		
		classical computer, Steps performed on Quantum Computer, Moving data between
bits and qubits		*
	TT •/ 4	Quantum Algorithms: Basic techniques exploited by quantum algorithms-
	Unit 4	Amplitude amplification, Quantum Fourier Transform, Phase Kick-back, Quantum
		Phase estimation, Quantum Walks; Major Algorithms - Shor's Algorithm, Grover's
		Algorithm, Deutsch's Algorithm, Deutsch -Jozsa Algorithm; OSS Toolkits for implementing Quantum program- IBM quantum experience, Microsoft Q, Rigetti
PyQuil (QPU/QVM)		
ext/Reference Books:		
1 Misteria Mister "Orantan Connectation on December Information"	1	Miller 1 A. Niller "Occurrent time of Occurrent Life metics"
1. Michael A. Nielsen, "Quantum Computation and Quantum Information",	1.	
Cambridge University Press.		Cambridge University Press.
2. David McMahon, "Quantum Computing Explained", Wiley	2.	David McMahon, "Quantum Computing Explained", Wiley
3. IBM Experience: <u>https://quantumexperience,ng,bluemix.net</u>	1	IBM Experience: <u>https://quantumexperience,ng,bluemix.net</u>
4. Microsoft Quantum Development Kithttps://www.microsoft.com/en-	3.	
us/quantum/development-kit		Microsoft Quantum Development Kithttps://www.microsoft.com/en-
5 Ecrect SDK DyOuil: https://pyouil.readthadoog.ic/or/stable/		
5. Forest SDK PyQuil: <u>https://pyquil.readthedocs.io/en/stable/</u>	4.	us/quantum/development-kit

Sr. No.		Institute Course	Details of Course from SWAYAM/NPTEL
	Course Code	Title of the Course	
1.	PEC-AI-519	Quantum Computing	

PEC-	AI-520	IoT and Applications									
Teaching s	cheme:		Examination scheme:								
Lecture		3 hrs /week	Theory								
Tutorial		hrs/week	In Semester Evaluation : 20 Marks								
Practical		2 hrs/week	Mid Semester Examination: 30 Marks								
Credit		4	End Semester Examination: 50 Marks								
Course Ob	jectives:	1	1								
1.	To understa	To understand the architectural overview of IoT									
2.	To exposure various sensors, actuators, and embedded platforms										
3.	To analyze various Internet protocols for IoT										
4.	To impart k	nowledge of different cloud platforr	n services								
5.	To evaluate	real world IoT Applications and des	sign constraints								
Course Ou	tcomes: On s	uccessful completion of this course,	students will be able to								
1.	Recognize v	various devices, sensors and IoT app	lications								
2.	Apply desig	n concept to IoT Solutions and IoT	architectures								
3.	Analyze bas	ic protocols in wireless sensor netw	ork								
4.	Design IoT	applications in different domain and	able to analyse their performance								
5.	Design and	implementation of IoT solutions usi	ng embedded boards, sensors, actuators								

	РО	PO	РО	РО	РО	PSO1	PSO2	PSO3							
PO/PSO	1	2	3	4	5	6	7	8	9	10	11	12			
СО	1														
CO1	3	3	3	2	2	-	2	-	-	2	-	-	2	2	2
CO2	3	2	2	2	2	2	-	-	2	-	-	-	3	3	3
CO3	3	3	1	2	3	2	-	-	2	2	-	2	3	3	2
CO4	3	2	2	2	2	-	2	2	2	2	2	3	2	2	3
CO5	3	3	2	2	2	-	-	-	-	-	-	-	3	3	2
CO (total)	15	13	10	10	10	4	4	2	6	6	2	5	13	13	12
CO (avg)	3	3	2	2	3	1	1	1	2	2	-	2	3	3	3

Syllabus	
Unit 1	Introduction to IoT: Introduction, Definition and characteristics of IoT, IoT Architecture, Physical and Logical Design of IoT, Enabling Technologies in IoT, History of IoT, About Things in IoT, The identification of Iot, About the Internet in IoT, IoT framework
Unit 2	M2M to IoT: Machine to Machine, Difference between IoT and M2M, Software defined Networks
Unit 3	Internet Communication: TCP/IP protocol suit, IP addresses, Static IP address assignment, MAC addresses, TCP/UDP ports, Application Layer protocol: HTTP
Unit 4	Sensor Networks: Definition, Types of sensors, Sensor characteristics, Types of actuators, Examples and working, RFID principles and components, Wireless Sensor networks: History and context, The node, connecting node, Networking nodes, WSN and IoT
Unit 5	Communication Protocols: WPAN Technologies for IoT: IEEE 802.15.4, Zigbee, 6Low PAN, Wireless HART, NFC, Z-Wave, BLE, Bacnet, Modbus CAN, I2C, USB
Unit 6	IP based Protocols for IoT: IPV6, RPL, REST, MQTT, SMQTT, CoAP, AMQP
Unit 7	Interoperability in IoT: Introduction to Arduino Programming, Integration of Sensors and Actuators with Arduino, Introduction to Python programming, Introduction to Raspberry pi board, Implementation of IoT with Raspberry Pi/Beagle Black board.
Unit 8	Introduction to SDN: SDN for IoT, Data Handling and Analytics, Cloud Computing, Sensor-Cloud, Fog computing, Fog Computing
Text/Reference	Books:
1.	Vijay Madisetti, Arshdeep Bahga, "Internet of Things: A Handbook-on Approach, VPT, 2014
2.	Waltenegus Dargie, Chistain Poellabauer: Fundamnetals of Wireless Sensor Network: Theory and Practice
3.	Francis daCosta, Rethinking the Internet of Things: A Scalable Approach to Connecting Everything, Apress Pub, 2013

Sr. No.		Institute Course	Details of Course from SWAYAM/NPTEL
	Course Code	Title of the Course	
1.	PEC-AI-520	IoT and Applications	

PCC-AI-521	Soft (Computing and Ap	plications		
Teaching scheme			Examination scheme:		
Lecture		3 hrs /week	Theory		
Tutorial			In Semester Evaluation : 20 Marks		
Practical		2 hrs/week	Mid Semester Examination: 30 Marks		
Credit		4	End Semester Examination: 50 Marks		
Course Objective					
1.		l soft computing conce ng soft computing bas	epts and techniques and develop abilities in designing and sed.		
2.	Apply fuzzy	y systems and fuzzy lo	gic for problem solving.		
3.	Introduce st	udents to genetic algo	rithm and its applications.		
4.	Evalaute th	e possible hybridization of Neural Networks, Fuzzy Logic and Genetic			
	Algorithm				
Course Outcome	s: On success	sful completion of this	course, students will be able to		
1.	Identify and	d describe soft computing techniques and their roles in building intelligent			
	machines				
2.	Apply fuzz	y logic and reasoning	to handle uncertainty and solve engineering problems		
3.	Apply gene	etic algorithms to com	binatorial optimization problems		
4.	Understand	l soft computing techr	iques and their role in problem solving.		
5.	Analyze an	d integrate various so	ft computing techniques to solve problems effectively and		
	efficiently.				

PO/PSO ➡	РО	PO	РО	РО	РО	PSO	PSO	PSO							
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	1	2	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	2	3	2	-	-	-	-	-	-	-	3	3	2
CO4	2	2	3	2	2	-	-	-	-	-	-	-	3	3	2
CO5	3	3	2	3	2	-	-	-	-	I	I	I	3	2	2
CO (total)	12	11	10	12	10	-	-	-	-	-	-	-	15	13	10
CO(avg)	2	2	2	2	2	-	-	-	-	I	I	I	3	3	2

Syllabus						
Unit 1	Soft Computing: Introduction, requirement, different tools and techniques, usefulness and applications.					
Unit 2	Fuzzy sets and Fuzzy logic: Introduction, Fuzzy sets versus crisp sets, operations on fuzzy sets, Extension principle, Fuzzy relations and relation equations, Fuzzy numbers, Linguistic variables, Fuzzy logic, Linguistic hedges, Applications, fuzzy controllers, fuzzy pattern recognition, fuzzy image processing, fuzzy database.					
Unit 3	Fuzzy inference and decision-making natural language, linguistic hedges, rule-based systems, decomposition of compound rules, likelihood and truth quantification, aggregation of fuzzy rules, synthetic evaluation, preferences and consequences, multi-objective decision making.					
Unit 4	Genetic Algorithm: Solving optimization problems, Concept of GA, GA Operators: Crossover, Mutation.					
Unit 5	Hybrid Systems: Neural-Network-Based Fuzzy Systems, Fuzzy Logic-Based Neural Networks, Application of soft computing in pattern recognition. New trends in Soft Computing.					
Text/Reference B	ooks:					
1.	Klir & Yuan, Fuzzy Sets and Fuzzy Logic, PHI, 1997.					
2.	JS. R. Jang, CT. Sun, E. Mizutani: Neuro- Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, PHI, 2005.					
3.	An Introduction to Genetic Algorithm Melanic Mitchell -MIT Press,1999					
4.	Timothy J Ross: Fuzzy logic with engineering applications, TMH, 2000.					
5.	Soft Computing: Fundamentals and Applications by D.K.Pratihar, Narosa Publishing House, New-Delhi, 2014					

Sr.		Institute Course	Details of Course from SWAYAM/NPTEL
No.			
	Course Code	Title of the Course	Introduction To Soft Computing
			By Prof. Debasis Samanta
1.	PEC-AI-521	Soft Computing and Applications	https://swayam.gov.in/nd1_noc20_cs17/preview

PEC-	AI-522	Bio Image Analytics						
Teaching s	cheme:		Examination scheme:					
Lecture		3 hrs /week	Theory					
Tutorial		hrs/week	In Semester Evaluation : 20 Marks					
Practical		2 hrs/week	Mid Semester Examination: 30 Marks					
Credit		4	End Semester Examination: 50 Marks					
Course Ob	jectives:							
1.	To underst modalities	tand the importance and a	cquisition of various medical imaging					
2.	To understa	and medical imaging formats	with visualization tools.					
3.	To evaluat matrices	te the significance of vario	us quantitative performance evaluation					
4.	-	0	sification, segmentation and registration anced deep CNN architectures.					
5.	To apply al	bove mentioned algorithms or	n real world patient data					
Course Ou	tcomes: On s	uccessful completion of this cou	rse, students will be able to					
1.	Use medica	Use medical imaging modalities for specified diagnostics						
2.	Understand and use various performance evaluation metrics with bioimages							
3.	Apply textural statistical feature with different BioImages							
4.	Implement	Implement CNN architecture for Bio-Image classification, detection.						
5.	Design and	implement CNN architecture	e for BioImage segmentation					
£								

	PO	РО	PSO1	PSO2	PSO3										
PO/PSO	1	2	3	4	5	6	7	8	9	10	11	12			
СО	1														
CO1	3	3	3	2	2	-	2	-	-	2	-	-	2	2	2
CO2	3	2	2	2	2	2	-	-	2	-	-	-	3	3	3
CO3	3	3	1	2	3	2	-	-	2	2	-	2	3	3	2
CO4	3	2	2	2	2	-	2	2	2	2	2	3	2	2	3
CO5	3	2	2	2	2	-	-	-	-	-	-	-	3	2	2
CO (total)	15	12	10	10	11	4	4	2	6	6	2	5	13	12	12
CO (avg)	3	3	2	2	2	2	2	2	2	2	2	2	3	3	2

Tomography, Magnetic Resonance Imaging, Ultrasound, Retinal Images, Optical Coherent Tomography, Positron Emission Tomography etc. Advantages and disadvantages of each imaging modality. Image acquisition protocols for CT and MRI. Significance of multimodal MRI data. Staining in histopathology images, Hematoxylin and Eosin stain for comprehensive picture of the microanatomy of organs and tissues Unit 2 Study of various medical image analysis tools like 3D slicer, ITK-Snap, MIPAV, Radiant, CaPTk etc. Quantitative and qualitative performance evaluation. Understanding various performance evaluation metrics like Sensitivity, Specificity, Accuracy, Precision, Recall, ROC, Dice, Jaccard, Hausdorff distance, Kapa, COX- regression etc. Medical image annotation. Various pre-processing and post processing techniques like z-score normalization, min-max normalization, stain normalization, 3D connected component analysis, Conditional Random Forests Unit 3 Textures in biomedical image annotation. Various pre-processing and post processing techniques like z-score normalization, min-max normalization, stain normalization, 3D connected component analysis, Conditional Random Forests Unit 4 Need of medical image classification. Review of popular conventional machine learning classifiers like SVM, MPL etc. Study of advanced deep convolutional neural network based classification approaches like AlexNet, VGG, ResNet, Inception, MobileNet etc. Unit 5 Need of medical image segmentation. Conventional segmentation algorithms like K- means, Fuzzy C-means and Gaussian Mixture Models Challenges in medical image segmentation of various skin cancer diseases Unit 5 Need of medical image segmentation approaches like U-Net, SegNet, FCN, FPN etc. Class imbalance problem for u	Syllabus	
 etc. Study of medical image analysis tools like 3D slicer, ITK-Snap, MIPAV, Radiant, CaPTk etc. Quantitative and qualitative performance evaluation. Understanding various performance evaluation metrics like Sensitivity, Specificity, Accuracy, Precision, Recall, ROC, Dice, Jaccard, Hausdorff distance, Kappa, COX- regression etc. Medical image annotation. Various pre-processing and post processing techniques like z-score normalization, min-max normalization, stain normalization, 3D connected component analysis, Conditional Random Forests Unit 3 Textures in biomedical images, Models for the Generation of Texture, Statistical Analysis of Texture with the gray level cooccurrence matrix, Haralick's measures of texture, Fourier domain Analysis of Texture, Case Study - Analysis of Breast Masses Using Texture and Gradient Measures. Unit 4 Need of medical image classification. Review of popular conventional machine learning classifiers like SVM, MPL etc. Study of advanced deep convolutional neural network based classification approaches like AlexNet, VGG, ResNet, Inception, MobileNet etc. Medical image classification case studies: Classification of preinal intumous nito benign or malignant and High Grade or Low Grade 3. Classification of main tumours into benign or malignant and High Grade or Low Grade 3. Classification of avious skin cancer diseases Unit 5 Need of medical image segmentation. Conventional segmentation algorithms like K- means, Fuzzy C-means and Gaussian Mixture Models Challenges in medical image segmentation. Study of state-of-the-art segmentation approaches like U-Net, SegNet, FCN, FPN etc. Class imbalance problem for under-represented labels. Abnormality Localization and Segmentation case studies Localisation of Noules in lung CT images Brain tumor segmentation Skin lesion Segmentation Need of Re	Unit 1	images. Introduction to medical imaging modalities like X-Ray, Computed Tomography, Magnetic Resonance Imaging, Ultrasound, Retinal Images, Optical Coherent Tomography, Positron Emission Tomography etc. Advantages and disadvantages of each imaging modality. Image acquisition protocols for CT and MRI. Significance of multimodal MRI data. Staining in histopathology images, Hematoxylin and Eosin stain for comprehensive picture of the microanatomy of
Analysis of Texture with the gray level cooccurrence matrix, Haralick's measures of texture, Fourier domain Analysis of Texture, Case Study - Analysis of Breast Masses Using Texture and Gradient Measures. Unit 4 Need of medical image classification. Review of popular conventional machine learning classification approaches like AlexNet, VGG, ResNet, Inception, MobileNet etc. Medical image classification case studies: 1. Classification of retinal images with and without pathological myopia 2. Classification of brain tumours into being or malignant and High Grade or Low Grade 3. Classification of incroscopy pathology images into different tumour types. 4. Classification of various skin cancer diseases Need of medical image segmentation. Conventional segmentation algorithms like K-means, Fuzzy C-means and Gaussian Mixture Models Challenges in medical image segmentation. Study of state-of-the-art segmentation approaches like U-Net, SegNet, FCN, FPN etc. Class imbalance problem for under-represented labels. Abnormality Localization and Segmentation case studies 1. Localisation of Nodules in lung CT images 3. Brain tumor segmentation 4. Skin lesion Segmentation 4. Skin lesion Segmentation 4. Skin lesion of multimodal radiographic images for medical image fusion applications. 2. Registration of histology images to create a 3D reconstruction from scanned 2D thin slices. Generative adversarial networks to address the class imbalance problem in medical image fusion applications. 3. Registration of histology images to create a 3D reconstruction from scanned 2D thin slices. G	Unit 2	etc. Study of medical image analysis tools like 3D slicer, ITK-Snap, MIPAV, Radiant, CaPTk etc. Quantitative and qualitative performance evaluation. Understanding various performance evaluation metrics like Sensitivity, Specificity, Accuracy, Precision, Recall, ROC, Dice, Jaccard, Hausdorff distance, Kappa, COX- regression etc. Medical image annotation. Various pre-processing and post processing techniques like z-score normalization, min-max normalization, stain
Unit 4 Need of medical image classification. Review of popular conventional machine learning classifiers like SVM, MPL etc. Study of advanced deep convolutional neural network based classification approaches like AlexNet, VGG, ResNet, Inception, MobileNet etc. Medical image classification case studies: 1. Classification of retinal images with and without pathological myopia 2. Classification of brain tumours into benign or malignant and High Grade or Low Grade 3. Classification of brain tumours into benign or malignant and High Grade or Low Grade 3. Classification of various skin cancer diseases 4. Classification of various skin cancer diseases Unit 5 Need of medical image segmentation. Conventional segmentation algorithms like K-means, Fuzzy C-means and Gaussian Mixture Models Challenges in medical image segmentation. Study of state-of-the-art segmentation approaches like U-Net, SegNet, FCN, FPN etc. Class imbalance problem for under-represented labels. Abnormality Localization and Segmentation case studies 1. Localisation of Nodules in lung CT images 2. Brain tumor segmentation in multi modal MR images 3. Lung field segmentation 4. Skin lesion Segmentation 4. Skin lesion of multimodal radiographic images for medical image fusion applications. 2. Registration of multiple pathology images to create a 3D reconstruction from scanned 2D thin slices. 3. Generative adversarial networks to address the class imbalance problem in medical images. Unsupervised and semi-supervised learning for weakly annotated medical datasets	Unit 3	
Unit 5 Need of medical image segmentation. Conventional segmentation algorithms like K-means, Fuzzy C-means and Gaussian Mixture Models Challenges in medical image segmentation. Study of state-of-the-art segmentation approaches like U-Net, SegNet, FCN, FPN etc. Class imbalance problem for under-represented labels. Abnormality Localization and Segmentation case studies Localisation of Nodules in lung CT images Brain tumor segmentation Skin lesion Segmentation Unit 6 Need of Registration in multi-modal medical images like MRI and CT. Registration of multiple pathology images for a single specimen which is taken out by biopsy. Registration of histology images to create a 3D reconstruction from scanned 2D thin slices. Generative adversarial networks to address the class imbalance problem in medical images. Unsupervised and semi-supervised learning for weakly annotated medical datasets 	Unit 4	 Need of medical image classification. Review of popular conventional machine learning classifiers like SVM, MPL etc. Study of advanced deep convolutional neural network based classification approaches like AlexNet, VGG, ResNet, Inception, MobileNet etc. Medical image classification case studies: Classification of retinal images with and without pathological myopia Classification of brain tumours into benign or malignant and High Grade or Low Grade Classification of microscopy pathology images into different tumour types.
Unit 6 Need of Registration in multi-modal medical images like MRI and CT. 1.Registration of multimodal radiographic images for medical image fusion applications. 2.Registration of multiple pathology images for a single specimen which is taken out by biopsy. Registration of histology images to create a 3D reconstruction from scanned 2D thin slices. Generative adversarial networks to address the class imbalance problem in medical images. Unsupervised and semi-supervised learning for weakly annotated medical datasets Text/Reference Books:	Unit 5	 Need of medical image segmentation. Conventional segmentation algorithms like K-means, Fuzzy C-means and Gaussian Mixture Models Challenges in medical image segmentation. Study of state-of-the-art segmentation approaches like U-Net, SegNet, FCN, FPN etc. Class imbalance problem for under-represented labels. Abnormality Localization and Segmentation case studies Localisation of Nodules in lung CT images Brain tumor segmentation in multi modal MR images Lung field segmentation
	Unit 6	 Need of Registration in multi-modal medical images like MRI and CT. 1. Registration of multimodal radiographic images for medical image fusion applications. 2. Registration of multiple pathology images for a single specimen which is taken out by biopsy. Registration of histology images to create a 3D reconstruction from scanned 2D thin slices. Generative adversarial networks to address the class imbalance problem in medical images. Unsupervised and semi-supervised learning for weakly
1. Biomedical Image Analysis by Rangarai Rangayan CRC Press 2005	Text/Reference	Books:
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.	Biomedical Image Analysis by Rangaraj Rangayan, CRC Press, 2005

2.	Medical Image Processing, Techniques and Applications by Geoff Dougherty, Springer, 2011				
3.	Digital Image Processing for Medical Applications by Geoff Dougherty, Cambridge University press, 2009				
4.	Squire's fundamentals of radiology, by R. Novelline, Harvard University Press, 2018				
5.	https://refuge.grand-challenge.org/				
6.	https://www.med.upenn.edu/cbica/brats2020/				
7.	https://www.med.upenn.edu/cbica/cpm-rad-path-2019/				
8.	https://challenge2020.isic-archive.com/				
9.	https://luna16.grand-challenge.org/				
10.	https://lndb.grand-challenge.org/				
11.	https://anhir.grand-challenge.org/				

Sr. No.		Institute Course	Details of Course from SWAYAM/NPTEL
	Course Code	Title of the Course	
1.	PEC-AI-522	Bio Image Analytics	

PEC-Al	[-523	Foundation of Cognitive Robotics					
Teaching s	cheme:		Examination scheme:				
Lecture		3 hrs /week	Theory				
Tutorial		hrs/week	In Semester Evaluation : 20 Marks				
Practical		2 hrs/week	Mid Semester Examination: 30 Marks				
Credit		4	End Semester Examination: 50 Marks				
Course Ob	jectives:	I					
1.		and human sensorimotor and c erstanding.	ognitive abilities with a focus on action execution				
2.	The imp	plementation of sensorimotor an	d cognitive abilities.				
3.	of robo	6	lleviate sensory disabilities and the implementation a special attention on user requirements and strict				
4.	Apply n	nodelling as a method and know	v about different types of cognitive models.				
5.	Evaluat solution	U I	biological solutions and implement new technical				
Course Ou	tcomes:	On successful completion of thi	s course, students will be able to				
1.	Applica Robotic	0	Neural Networks and Reinforcement learning in				
2.	Design	of robotic systems for new appl	ications.				
3.		and how our psychology an ence informs the design of robot	id neuroscience understanding of behavior and ics models and applications.				
4.	• Compare, select and apply different machine learning methods for intelligent behavior i robots.						
5.	Analyze applicat		nardware technologies for robotics research and				

	РО	PO	PSO1	PSO2	PSO3										
PO/PSO	1	2	3	4	5	6	7	8	9	10	11	12			
СО															
CO1	3	3	3	2	2	-	2	-	-	2	-	-	2	2	2
CO2	3	2	2	2	2	2	-	-	2	-	-	-	3	3	3
CO3	3	3	1	2	3	2	-	-	2	2	-	2	3	3	2
CO4	3	2	2	2	2	-	2	2	2	2	2	3	2	2	3
CO5	3	2	2	2	2	-	-		-	-	-	-	3	3	2
CO (total)	15	12	10	10	11	4	4	2	6	6	2	5	13	13	12
CO (avg)	3	3	2	2	3	2	2	2	2	2	-	2	3	3	2

Syllabus	
Unit 1	Introduction
Unit 2	Neural Signaling & Sensory System
	Anatomy of human brain, Robot and Human Robot Interaction, Mechanisms of neural excitability and propagation: Classical Model, New Concepts in Axonal Excitation, Functioning of Sensory system.
Unit 3	Intelligence, Thinking, Artificial Intelligence and Theory of Intelligence
	Thinking, Cognition, and Intelligence, Defining Intelligence - Embodiment and Its Implications, Role of Neuroscience and Bio robotics, Synthetic Methodology for Intelligence.
Unit 4	Intelligent System Design and Cognition Development
	Properties of Complete Agents, Agent Design Principle, Developmental Robot Design, Matching brain and Body Dynamics
Unit 5	Control of Intelligent Systems- AI based Approach
	Artificial Neural Networks (ANN), Fuzzy Logic, Genetic Algorithms and Other Nature Inspired Methods, Optimal Control using ANN
Text/Reference	Books:
1.	Neuroscience, edited by Dale Purves, et al., published by Sinauer Associates.
2.	How the body shapes the way we think-A New View of Intelligence, by Rolf Pfeifer and Josh Bongard, MIT Press.
3.	Control Systems: Classical, Modern, and AI-Based Approaches, by Jitendra R. Raol, Ramakalyan Ayyagari, CRC Press.

Sr.		Institute Course	Details of Course from SWAYAM/NPTEL
No.			
	Course Code	Title of the Course	https://swayam.gov.in/nd1_noc20_me92/preview
1.	PEC-AI-523	Foundation of Cognitive Robotics	https://nptel.ac.in/noc/courses/noc20/SEM2/noc20-
		C C	<u>me92/</u>

OEC-80	1	Business Analytics			
Teachin	g scheme:		Examination scheme:		
Lecture		3 hrs /week	Theory		
Tutorial			In Semester Evaluation : 20 Marks		
Practical		0 hrs/week	Mid Semester Examination: 30 Marks		
Credit	Credit		End Semester Examination: 50 Marks		
Course	Objectives:				
1.	To understa	and the role of business analytics	s within an organization.		
2.	To analyze	data using statistical and data m	nining techniques and understand relationships between the		
	underlying	business processes of an organiz	zation.		
3.		understanding of how manage nd to support managerial decision	rs use business analytics to formulate and solve business on making		
4.			to develop, report, and analyze business data.		
5.	To use deci	sion-making tools/Operations re	esearch techniques.		
6.	To mange b	ousiness process using analytical	and management tools.		
7.		and solve problems from differen d finance, sports, pharmaceutica	nt industries such as manufacturing, service, retail, software, l, aerospace etc.		
Course			s course, students will be able to		
1.	Demonstra	te knowledge of data analytics.			
2.	2. Demonstrate the ability of think critically in making decisions based on data and deep analytics.				
3.	Demonstrat	kills in predicative and prescriptive modeling to support			
	business decision-making.				
4.	Demonstrat	e the ability to translate data int	o clear, actionable insights.		

PO/PSO ➡	РО	РО	PO	РО	PO	РО	PO	РО	PO	PO	РО	РО	PSO	PSO	PSO
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	1	2	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	2	3	2	-	-	-	-	-	-	-	3	3	2
CO4	2	2	3	2	2	-	-	-	-	-	-	-	3	3	2
CO	9	8	8	9	8	-	-	-	-	-	-	-	12	11	8
(total)															
CO(avg)	2	2	2	2	2	-	-	-	-	-	-	-	3	3	2

Syllabus	
Unit 1	Business analytics: Overview of business analytics, scope of business analytics, business analytics process, relationship of business analytics process and organization, competitive advantages of business analytics. statistical tools: statistical notation, descriptive statistical methods, review of probability distribution and data modeling, sampling and estimation methods overview.
Unit 2	Trendiness and regression analysis : Modeling relationships and trends in data, simple linear regression. important resources, business analytics personnel, data and models for business analytics, problem solving, visualizing and exploring data, business analytics technology.
Unit 3	Organization structures of business analytics; team management, management issues, designing information policy, outsourcing, ensuring data quality, measuring contribution of business analytics, managing changes. descriptive analytics, predictive analytics, predictive modeling, predictive analytics analysis, data mining, data mining methodologies, prescriptive analytics and its step in the business analytics process, prescriptive modeling, nonlinear optimization.
Unit 4	Forecasting techniques: Qualitative and judgmental forecasting, statistical forecasting models, forecasting models for stationary time series, forecasting models for time series with a linear trend, forecasting time series with seasonality, regression forecasting with casual variables, selecting appropriate forecasting models. monte carlo simulation and risk analysis: monte carle simulation using analytic solver platform, new-product development model, newsvendor model, overbooking model, cash budget model.
Unit 5	Decision analysis: Formulating decision problems, decision strategies with the without outcome probabilities, decision trees, the value of information, utility and decision making.
Unit 6	Recent trends in: Embedded and collaborative business intelligence, visual data recovery, data storytelling and data journalism
Text/Reference B	Books:
1.	Business analytics Principles, Concepts, and Applications by Marc J. Schniederjans, Dara G. Schniederjans, Christopher M. Starkey, Pearson FT Press.
2.	Business Analytics by James Evans, persons Education.

Sr. No.		Institute Course	Details of Course from SWAYAM/NPTEL
	Course Code	Title of the Course	
1.	OEC-801	Business Analytics	

OEC-80	2	Industrial Safety						
Teachin	g scheme:		Examination scheme:					
Lecture		3 hrs /week	Theory					
Tutorial			In Semester Evaluation : 20 Marks					
Practical		0 hrs/week	Mid Semester Examination: 30 Marks					
Credit			End Semester Examination: 50 Marks					
Course	Objectives:							
1.	To study In	ndustrial Safety						
2.	To understa	and fundamentals of maintenance	e engineering.					
3.	To understa	and Wear and corrosion and their	prevention					
4.	To study Fa	ult tracing.						
5.	To know pr	inciples of periodic and preventi	ve maintenance.					
Course	Outcomes:	On successful completion of this	course, students will be able to					
1.	Know safe	ty measures in Industry.						
2.	Analyze wear and corrosions and their prevention of different machines.							
3.	Know how preventive maintenance is carried out in industry.							
4.	Analyze fau	Analyze fault tracing techniques.						

PO/PSO	РО	PO	PSO	PSO	PSO										
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	1	2	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	2	3	2	-	-	-	-	-	-	-	3	3	2
CO4	2	2	3	2	2	-	-	-	-	-	-	-	3	3	2
CO (total)	9	8	8	9	8	-	-	-	-	_	-	-	12	11	8
CO(avg)	2	2	2	2	2	-	-	-	-	-	-	-	3	3	2

Syllabus	
Unit 1	Industrial safety: accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, wash rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, safety color codes. fire prevention and firefighting, equipment and methods.
Unit 2	Fundamentals of maintenance engineering: Definition and aim of maintenance engineering, primary and secondary functions and responsibility of maintenance department, types of maintenance, types and applications of tools used for maintenance, maintenance cost and its relation with replacement economy, service life of equipment.
Unit 3	Wear and corrosion and their prevention: wear- types, causes, effects, wear reduction methods, lubricants-types and applications, lubrication methods, general sketch, working and applications, i. screw down grease cup, ii. pressure grease gun, iii. splash lubrication, iv. gravity lubrication, v. wick feed lubrication vi. side feed lubrication, vii. ring lubrication, definition, principle and factors affecting the corrosion. types of corrosion, corrosion prevention methods
Unit 4	Fault tracing: fault tracing-concept and importance, decision tree concept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment's like, i. any one machine tool, ii. pump iii. air compressor, iv. internal combustion engine, v. boiler, vi. electrical motors, types of faults in machine tools and their general causes
Unit 5	Periodic and preventive maintenance: periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. steps/procedure for periodic and preventive maintenance of: i. machine tools, ii. pumps, iii. air compressors, iv. diesel generating (DG) sets, program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. repair cycle concept and importance.
Text/Reference B	
1.	Maintenance Engineering Handbook, Higgins and Morrow, Da Information Services.
2.	Maintenance Engineering, H. P. Garg, S. Chand and Company
3.	Pump-hydraulic Compressors, Audels, Mcgrew Hill Publication.
4.	Foundation Engineering Handbook, Winterkorn, Hans, Chapman and Hall London.

Sr.		Institute Course	Details of Course from SWAYAM/NPTEL
No.			
	Course Code	Title of the Course	
1.	OEC-802	Industrial Safety	

OEC-80	3	Operations Research					
Teachin	g scheme:		Examination scheme:				
Lecture		3 hrs /week	Theory				
Tutorial			In Semester Evaluation : 20 Marks				
Practical		0 hrs/week	Mid Semester Examination: 30 Marks				
Credit			End Semester Examination: 50 Marks				
Course	Objectives:						
1.	To study op	ptimization techniques.					
2.	To study he	ow to formulate an LPP - graphic	cal solution for the problem.				
3.	To study no	onlinear programming problem.					
4.	To understa	and Scheduling and sequencing.					
5.	To understa	and competitive models.					
Course	Outcomes:	On successful completion of this	course, students will be able to				
1.	Apply the	dynamic programming to solve p	problems of discreet and continuous variables.				
2.	Apply the concept of non-linear programming.						
3.	Carry out sensitivity analysis.						
4.	Model the 1	eal world problem and simulate	it.				

PO/PSO ➡	РО	PO	PSO	PSO	PSO										
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	1	2	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	2	3	2	-	-	-	-	-	-	-	3	3	2
CO4	2	2	3	2	2	-	-	-	-	-	-	-	3	3	2
CO (total)	9	8	8	9	8	-	-	-	-	-	-	-	12	11	8
CO(avg)	2	2	2	2	2	-	-	-	-	-	-	-	3	3	2

Syllabus						
Unit 1	Optimization techniques, model formulation, models, general L.R formulation, simplex techniques, sensitivity analysis, inventory control models.					
Unit 2	Formulation of a LPP - graphical solution revised simplex method - duality theory - dual simplex method - sensitivity analysis - parametric programming.					
Unit 3	Nonlinear programming problem - Kuhn-Tucker conditions min cost flow problem - max flow problem - CPM/PERT					
Unit 4	Scheduling and sequencing - single server and multiple server models - deterministic inventory models - probabilistic inventory control models - geometric programming					
Unit 5	Competitive models, single and multi-channel problems, sequencing models, dynamic programming, flow in networks, elementary graph theory, game theory simulation					
Text/Reference B	ooks:					
1.	H.A. Taha, Operations Research, An Introduction, PHI, 2008					
2.	H.M. Wagner, Principles of Operations Research, PHI, Delhi, 1982					
3.	J.C. Pant, Introduction to Optimisation: Operations Research, Jain Brothers, Delhi, 2008					
4.	Hitler Libermann Operations Research: McGraw Hill Pub. 2009					
5.	Pannerselvam, Operations Research: Prentice Hall of India 2010					
6.	Harvey M Wagner, Principles of Operations Research: Prentice Hall of India 2010					

Sr. No.		Institute Course	Details of Course from SWAYAM/NPTEL
	Course Code	Title of the Course	
1.	OEC-803	Operations Research	

OEC-80)4	Cost Management of Engine	eering Projects			
Teachin	g scheme:		Examination scheme:			
Lecture		3 hrs /week	Theory			
Tutorial			In Semester Evaluation : 20 Marks			
Practical	1	0 hrs/week	Mid Semester Examination: 30 Marks			
Credit			End Semester Examination: 50 Marks			
Course	Objectives:					
1.	Understand	ling strategic cost management	process.			
2.	Learning co	Learning cost concepts in decision-making.				
3.	Understanding cost behavior and profit planning marginal costing.					
4.	Learning qu	Learning quantitative techniques for cost management.				
5.	Learning lin	near programming.				
6.	Understand	ing PERT/CPM.				
Course	Outcomes:	On successful completion of thi	is course, students will be able to			
1.	Find strate	gic cost of the project.				
2.	Make decis	Make decision related to projects.				
3.	Predict cost	Predict cost behavior of the project.				
4.	Find time r	equired for the project using PE	ERT/CPM.			
L						

PO/PSO ➡	PO	РО	PO	PO	PO	РО	PSO	PSO	PSO						
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	1	2	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	2	3	2	-	-	-	-	-	-	-	3	3	2
CO4	2	2	3	2	2	-	-	-	-	-	-	-	3	3	2
CO (total)	9	8	8	9	8	-	-	-	-	-	-	-	12	11	8
CO(avg)	2	2	2	2	2	-	-	-	-	-	-	-	3	3	2

Syllabus	
Unit 1	Introduction and overview of the strategic cost management process.
Unit 2	Cost concepts in decision-making; relevant cost, differential cost, incremental cost and opportunity cost. objectives of a costing system; inventory valuation; creation of a database for operational control; provision of data for decision-making. project: meaning, different types, why to manage, cost overruns centres, various stages of project execution: conception to commissioning. project execution as conglomeration of technical and nontechnical activities. detailed engineering activities. pre project execution main clearances and documents project team: role of each member. importance project site: data required with significance. project contracts. types and contents. project execution project cost control. bar charts and network diagram. project commissioning: mechanical and process.
Unit 3	Cost behavior and profit planning marginal costing; distinction between marginal costing and absorption costing; break-even analysis, cost-volume-profit analysis. various decision- making problems. standard costing and variance analysis. pricing strategies: pareto analysis. target costing, life cycle costing. costing of service sector. just-in-time approach, material requirement planning, enterprise resource planning, total quality management and theory of constraints. activity-based cost management, bench marking; balanced score card and value-chain analysis. budgetary control; flexible budgets; performance budgets; zero- based budgets. measurement of divisional profitability pricing decisions including transfer pricing.
	Quantitative techniques for cost management, linear programming, PERT/CPM,
Unit 4	transportation problems, assignment problems, simulation, learning curve theory.
Text/Reference B	ooks: Cost Accounting A Managerial Emphasis, Prentice Hall of India, New Delhi.
2.	Charles T. Horngren and George Foster, Advanced Management Accounting.
3.	Robert S Kaplan Anthony A. Alkinson, Management and Cost Accounting.
4.	Ashish K. Bhattacharya, Principles and Practices of Cost Accounting A. H. Wheeler publisher.
5.	N.D. Vohra, Quantitative Techniques in Management, Tata McGraw Hill Book Co. Ltd.

Sr.		Institute Course	Details of Course from SWAYAM/NPTEL
No.			
	Course Code	Title of the Course	
1.	OEC-804	Cost Management of Engineering	
		Projects	

OEC-80)5	Composite Materials					
Teachin	g scheme:		Examination scheme:				
Lecture		3 hrs /week	Theory				
Tutorial			In Semester Evaluation : 20 Marks				
Practical	l	0 hrs/week	Mid Semester Examination: 30 Marks				
Credit			End Semester Examination: 50 Marks				
Course	Objectives:						
1.	To study ch	naracteristics of composite mater	rial.				
2.	To learn Reinforcements of composite material.						
3.	To study process of manufacturing of metal matrix composites.						
4.	To learn process of manufacturing of polymer matrix composites.						
5.	To study va	arious techniques for estimating	strength of composite material.				
6.	To study st	ress concentrations.					
Course	Outcomes:	On successful completion of thi	s course, students will be able to				
1.	Categorize	various composite materials ba	sed on their properties.				
2.	Gain knowledge in manufacturing of metal matrix composites.						
3.	Get knowle	Get knowledge of injection and moulding of composite material.					
4.	To estimate	To estimate strength of composite material.					

PO/PSO ➡	РО	PO	РО	PO	PSO	PSO	PSO								
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	1	2	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	2	3	2	-	-	-	-	-	-	-	3	3	2
CO4	2	2	3	2	2	-	-	-	-	-	-	-	3	3	2
CO (total)	9	8	8	9	8	-	-	-	-	-	-	-	12	11	8
CO(avg)	2	2	2	2	2	-	-	-	-	-	-	-	3	3	2

Syllabus	
Unit 1	Introduction: definition – classification and characteristics of composite materials. advantages and application of composites. functional requirements of reinforcement and matrix. effect of reinforcement (size, shape, distribution, volume fraction) on overall composite performance
Unit 2	Reinforcements: Preparation-layup, curing, properties and applications of glass fibers, carbon fibers, kevlar fibers and boron fibers. properties and applications of whiskers, particle reinforcements. mechanical behavior of composites: rule of mixtures, inverse rule of mixtures. isostrain and isostress conditions
Unit 3	Manufacturing of metal matrix composites: casting – solid state diffusion technique, cladding – hot isostatic pressing. properties and applications. manufacturing of ceramic matrix composites: liquid metal infiltration – liquid phase sintering. manufacturing of carbon – carbon composites: knitting, braiding, weaving. properties and applications
Unit 4	Manufacturing of polymer matrix composites : preparation of moulding compounds and prepregs – hand layup method – autoclave method – filament winding method – compression moulding – reaction injection moulding. properties and applications
Unit 5	Strength: Laminar failure criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hygrothermal failure. laminate first play failure-insight strength; laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations
Text/Reference B	ooks:
1.	Material Science and Technology – Vol 13 – Composites by R.W.Cahn – VCH, West Germany.
2.	Materials Science and Engineering, An introduction. WD Callister, Jr., Adapted by R. Balasubramaniam, John Wiley and Sons, NY, Indian edition, 2007
3.	Hand Book of Composite Materials-ed-Lubin
4.	Composite Materials – K.K.Chawla
5.	Composite Materials Science and Applications – Deborah D.L. Chung
6.	Composite Materials Design and Applications – Danial Gay, Suong V. Hoa, and Stephen W. Tasi

Sr. No.		Institute Course	Details of Course from SWAYAM/NPTEL
	Course Code	Title of the Course	
1.	OEC-805	Composite Materials	

OEC-80	6	Waste to Energy					
Teachin	g scheme:		Examination scheme:				
Lecture		3 hrs /week	Theory				
Tutorial			In Semester Evaluation : 20 Marks				
Practical	[0 hrs/week	Mid Semester Examination: 30 Marks				
Credit			End Semester Examination: 50 Marks				
Course	Objectives:						
1.	To learn cla	assification of waste as fuel.					
2.	To learn Bi	omass pyrolysis.					
3.	To understa	To understand Biomass gasification.					
4.	To learn Bi	To learn Biomass combustion.					
5.	To understa	and Biogas.					
6.	To understa	and urban waste to energy conv	ersion.				
Course	Outcomes:	On successful completion of the	is course, students will be able to				
1.	Know was	te as fuel.					
2.	Learn slow	Learn slow fast – manufacture of charcoal, pyrolytic oils and gases.					
3.	Design, cor	Design, construction, and operation of biomass gasification.					
4.	Learn opera	Learn operation of biomass combustors.					
5.	Learn bio d	iesel production and urban was	te to energy conversion.				

PO/PSO	РО	РО	РО	PO	PSO	PSO	PSO								
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	1	2	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	2	3	2	-	-	-	-	-	-	-	3	3	2
CO4	2	2	3	2	2	-	-	-	-	-	-	-	3	3	2
CO5	3	3	2	3	2	I	I	-	-	-	I	-	3	2	2
CO	12	11	10	12	10	-	-	-	-	-	-	-	15	13	10
(total)															
CO(avg)	2	2	2	2	2	-	-	-	-	-	-	-	3	3	2

Syllabus	
Unit 1	Introduction to energy from waste: classification of waste as fuel – agro based, forest residue, industrial waste - MSW – conversion devices – incinerators, gasifiers, digestors.
Unit 2	Biomass pyrolysis: pyrolysis – types, slow fast – manufacture of charcoal – methods - yields and application – manufacture of pyrolytic oils and gases, yields and applications.
Unit 3	Biomass gasification: Gasifiers – fixed bed system – downdraft and updraft gasifiers – fluidized bed gasifiers – design, construction and operation – gasifier burner arrangement for thermal heating – gasifier engine arrangement and electrical power – equilibrium and kinetic consideration in gasifier operation.
Unit 4	Biomass combustion: biomass stoves – improved chullahs, types, some exotic designs, fixed bed combustors, types, inclined grate combustors, fluidized bed combustors, design, construction, and operation - operation of all the above biomass combustors.
Unit 5	Biogas: properties of biogas (calorific value and composition) - biogas plant technology and status - bio energy system - design and constructional features - biomass resources and their classification - biomass conversion processes - thermo chemical conversion - direct combustion - biomass gasification - pyrolysis and liquefaction - biochemical conversion - anaerobic digestion - types of biogas plants – applications - alcohol production from biomass - bio diesel production - urban waste to energy conversion - biomass energy programme in India.
Text/Reference E	Books:
1.	Non-Conventional Energy, Desai, Ashok V., Wiley Eastern Ltd., 1990
2.	Biogas Technology - A Practical Hand Book - Khandelwal, K. C. and Mahdi, S. S., Vol. I and II, Tata McGraw Hill Publishing Co. Ltd., 1983.
3.	Food, Feed and Fuel from Biomass, Challal, D. S., IBH Publishing Co. Pvt. Ltd., 1991.
4.	Biomass Conversion and Technology, C. Y. WereKo-Brobby and E. B. Hagan, John Wiley and Sons, 1996.

Sr.		Institute Course	Details of Course from SWAYAM/NPTEL
No.			
	Course Code	Title of the Course	
1.	OEC-806	Waste to Energy	

SEM-AI-524		Mini Project and Seminar								
Teachin	g scheme:		Examination scheme:							
Lecture		0 hrs /week	He/She must deliver two presentations and demonstration							
Tutorial			of mini project during the semester. First one immediately							
Practical		4 hrs/week	after Mid Semester and second at the end of semester.							
Credit		2								
Course	Course Objectives:									
1.	To know va	arious standard journals and conf	erences in related field.							
2.	To know state-of-the -art research happenings in the field of interest.									
3.	Opportunity	y to study and implement earlier	technique.							
4.	To present	research work.								
Course	Outcomes:	On successful completion of this	course, students will be able to							
1.	Gain primary knowledge in related field.									
2.	Get hands of	on experience by implementing n	nini project.							
3.	Present research work carried out.									

PO/PSO ➡	PO	PSO	PSO	PSO											
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	1	2	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	2	3	2	-	-	-	-	-	-	-	3	3	2
CO (total)	7	6	5	7	6	-	-	-	-	-	-	-	9	8	6
CO(avg)	2	2	2	2	2	-	-	-	-	-	-	-	3	3	2

Structure/Syllabus:

Every student will be given mini project at the start of semester. He/she must work on the completion of the same under supervisor(s) allotted. Every student has to select the topic of seminar at the start of semester through searching of IEEE/IET/Springer/Elsevier/Other resources from latest publications in the field of Artificial Intelligence systems. He/She has to deliver two presentations during the semester I immediately after Mid Semester and second at the end of semester. A student may write a review paper based on the study that he performs during a semester.

AUD-901		Project Management							
Teachin	g scheme:		Examination scheme:						
Lecture		2 hrs /week	Theory						
Tutorial		0	In Semester Evaluation : 20 Marks						
Practical	l	0 hrs/week	Mid Semester Examination: 30 Marks						
Credit		0	End Semester Examination: 50 Marks						
Course	Objectives:								
1.	Understan	d the fundamental principles of	of Project management and have a good knowledge of						
	responsibi	lities of project manager and h	now to handle these.						
2.	To do the Project Scheduling, tracking, Risk analysis, Quality management and Project Cos								
	estimation	using different techniques							
3.	To highlig	ht different techniques for sof	tware cost estimation and activity planning						
Course	Outcomes:	On successful completion of this	course, students will be able to						
1.	Understan	d the concepts and functions of	of project management						
2.	Apply the	Apply the project plan planning and monitoring techniques.							
3.	Analyze th	e project value, risk and quali	ty.						
4.	Design and	d develop projects at each stag	ge of the software development life cycle (SDLC).						

PO/PSO ➡	РО	PO	РО	PSO	PSO	PSO									
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	1	2	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	2	3	2	-	-	-	-	-	-	-	3	3	2
CO4	2	2	3	2	2	-	-	-	-	-	-	-	3	3	2
CO	9	8	8	9	8	-	-	-	-	-	-	-	12	11	8
(total)															
CO(avg)	2	2	2	2	2	-	-	-	-	-	I	-	3	3	2

Syllabus	
Unit 1	Project Management: Concept of Project Management, Principles of Project Management, Functions of Project Management: Planning, Organizing, Staffing, Directing & Controlling, Project Scope Verification, Functional & Matrix Organization Structure.
Unit 2	Project Network Analysis: Project Network Diagram: Precedence Diagramming Method (PDM), Activity-on-Node (AON) & Arrow Diagramming Method (ADM), Work Breakdown Structure (WBS), Gantt Chart, Milestone Chart, Project Network Analysis (Critical Path Method and PERT), Cost Analysis of Project, Resource Allocation, Resource Smoothening & Leveling, Resource Histograms, Use of Computer Software (PRIMAVERA & MICROSOFT PROJECT) in Project Network Analysis.
Unit 3	Project Network Case Studies: Thermal Power Project, Fertilizer Project, Turnkey Construction Project, Software Creation & Installation Project, Project Related to Mechanical Industry, Projects Related to Electronic & Communication Industry.
Unit 4	Project Economics & Project Value Analysis: Project Formulation, Project Plan, Project Appraisal Techniques: Net Present Value, Internal Rate of Return, Payback Period, Benefit Cost Ratio, Value Engineering job plan, Project Life Cycle Costs.
Unit 5	Project Quality , Risk & Procurement Management: Project Quality Planning, Assurance & Control, Project Quality Management Techniques: Kaizen & Just-inTime, Total Quality Management, Risk-Management Plan, Uncertainty, Risk Factors and Risk Tolerances, Project Quantitative Risk Analysis (Monte Carlo Analysis & Decision Tree), Project Risk Monitoring & Control, Procurement Management Plan, Project Contract Administration.
Unit 6	Computerized Project Management: Project Information Cell, Management Information System, Software Project Management, Categorization of Software Projects , Project portfolio Management, Software Process and Process Models, Choice of Process Models: Mental Delivery, Rapid Application Development, Agile Methods, Extreme Programming, SCRUM, Software Estimation, Effort and Cost Estimation Techniques, COSMIC Full Function Points, COCOMO II A Parametric Productivity Model, Project Tracking, Software Configuration Management, Staffing Pattern, Methods of staff selection, The Oldham-Hackman job characteristic model.
Text/Referen	ce Books:
1.	Chitkara K.K., Construction Project Management, Tata McGraw Hill Publications.
2.	Barrie D.S. & Paulson B.C, Professional Construction Management, McGraw Hill.
3.	R.Flagnan and G.Norman, Risk Managemnt & Construction, Blackwell Scientific Publishers.
4.	L.W. Zimmwerman and G.D. Hart, Value Engineering, CBS Publishers.
5.	Robert K. Wysocki "Effective Software Project Management" – Wiley Publication, 2011
6.	Walker Royce: "Software Project Management"-Addison-Wesley, 1998

Sr. No.		Institute Course	Details of Course from SWAYAM/NPTEL
	Course Code	Title of the Course	
1.	AUD-901	Project Management	

AUD-90	2	Disaster Management						
Teachin	g scheme:		Examination scheme:					
Lecture		2 hrs /week	Theory					
Tutorial		0	In Semester Evaluation : 20 Marks					
Practical	1	0 hrs/week	Mid Semester Examination: 30 Marks					
Credit		0	End Semester Examination: 50 Marks					
Course	Objectives:							
1.	Learn to c	lemonstrate a critical understa	unding of key concepts in disaster risk reduction and					
		an response.						
2.	•		ad humanitarian response policy and practice from multiple					
	perspective							
3.	^	0	humanitarian response and practical relevance in specific					
-		asters and conflict situations.						
4.	-	e	knesses of disaster management approaches, planning and larly their home country or the countries they working.					
Course		On successful completion of this	· · · · · · · · · · · · · · · · · · ·					
1.	Know man	made and natural disasters.						
2.	Estimate loss of human and animal life.							
3.	3. Identify disaster-prone areas.							
4.	Develop me	ethod for preparedness in disaste	r management.					

PO/PSO ➡	РО	PO	PSO	PSO	PSO										
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	1	2	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	2	3	2	-	-	-	-	-	-	-	3	3	2
CO4	2	2	3	2	2	-	-	-	-	-	-	-	3	3	2
CO	9	8	8	9	8	-	-	-	-	-	-	-	12	11	8
(total)															
CO(avg)	2	2	2	2	2	-	-	I	-	I	I	-	3	3	2

Syllabus	
Unit 1	Introduction: Definition, Factors and Significance; Difference between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.
Unit 2	Repercussions of Disasters and Hazards: Economic Damage, Loss of Human and Animal
	Life, Destruction of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones,
	Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks
	Of Disease And Epidemics, War And Conflicts.
Unit 3	Disaster Prone Areas In India Study Of Seismic Zones ; Areas Prone To Floods And Droughts, Landslides And Avalanches; Areas Prone To Cyclonic And Coastal Hazards With Special Reference To Tsunami; Post-Disaster Diseases And Epidemics.
	Disaster Preparedness and Management Preparedness: Monitoring Of Phenomena
Unit 4	Triggering A Disaster Or Hazard; Evaluation Of Risk: Application Of Remote Sensing, Data From Meteorological And Other Agencies, Media Reports: Governmental And
	Community Preparedness
Unit 5	Risk Assessment Disaster Risk : Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation
	in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival
Unit 6	Disaster Mitigation Meaning, Concept and Strategies of Disaster Mitigation, Emerging Trends in Mitigation. Structural Mitigation and Non-Structural Mitigation, Programs Of Disaster Mitigation in India.
Text/Reference E	Books:
1.	R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "New Royal book Company.
2.	Sahni, PardeepEt.Al. (Eds.)," Disaster Mitigation Experiences and Reflections", Prentice Hall Of India, New Delhi.
3.	Goel S. L. "Disaster Administration and Management Text and Case Studies", Deep & Deep Publication Pvt. Ltd., New Delhi.

Sr. No.		Institute Course	Details of Course from SWAYAM/NPTEL
	Course Code	Title of the Course	
1.	AUD-902	Disaster Management	

AUD-90	3	Sanskrit for Technical Kno	owledge					
Teachin	g scheme:		Examination scheme:					
Lecture		2 hrs /week	Theory					
Tutorial		0	In Semester Evaluation : 20 Marks					
Practical		0 hrs/week	Mid Semester Examination: 30 Marks					
Credit		0	End Semester Examination: 50 Marks					
Course	Objectives:							
1.	To get a working knowledge in illustrious Sanskrit, the scientific language in the world							
2.	•	f Sanskrit to improve brain fun s, science & other subjects enha	actioning 3. Learning of Sanskrit to develop the logic in ncing the memory power.					
3.	The engine ancient liter	0 1 11	anskrit will be able to explore the huge knowledge from					
Course	Outcomes:	On successful completion of this	course, students will be able to					
1.	Understanding basic Sanskrit language.							
2.	Ancient Sar	Ancient Sanskrit literature about science & technology can be understood						
3.	Being a log	Being a logical language will help to develop logic in students						

PO/PSO ➡	РО	PO	PO	РО	РО	PO	PO	PO	PO	PO	РО	РО	PSO	PSO	PSO
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	1	2	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	2	3	2	-	-	-	-	-	-	-	3	3	2
CO (total)	7	6	5	7	6	-	-	-	-	-	-	-	9	8	6
CO(avg)	2	2	2	2	2	-	-	-	-	-	-	-	3	3	2

Syllabus	
Unit 1	Alphabets in Sanskrit.
Unit 2	Past/Present/Future Tense
Unit 3	Simple Sentences, Order
Unit 4	Introduction of roots
Unit 5	Technical information about Sanskrit Literature
Unit 6	Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics
Text/Reference	Books:
1	· "Abhyaspustakam" – Dr. Vishwas, Samskrita-Bharti Publication, New Delhi
2	"Teach Yourself Sanskrit" PrathamaDeeksha-VempatiKutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication.
3	"India's Glorious Scientific Tradition" Suresh Soni, Ocean books (P) Ltd., New Delhi

Sr. No.		Institute Course	Details of Course from SWAYAM/NPTEL
	Course Code	Title of the Course	
1.	AUD-903	Sanskrit for Technical Knowledge	

AUD-90	4	Value Education							
Teachin	g scheme:		Examination scheme:						
Lecture		2 hrs /week	Theory						
Tutorial		0	In Semester Evaluation : 20 Marks						
Practical	Practical 0 hrs/week		Mid Semester Examination: 30 Marks						
Credit	Credit 0		End Semester Examination: 50 Marks						
Course	Objectives:								
1.	Understand	value of education and self- dev	elopment.						
2.	Imbibe goo	d values in students							
3.	Should know	w about the importance of chara	cter						
Course	Outcomes: (On successful completion of this	course, students will be able to						
1.	Have know	ledge of self-development							
2.	Learn the in	Learn the importance of Human values.							
3.	Developing	the overall personality.							

PO/PSO	РО	PO	РО	РО	РО	PSO	PSO	PSO							
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	1	2	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	2	3	2	-	-	-	-	-	-	-	3	3	2
CO (total)	7	6	5	7	6	-	-	-	-	-	-	-	9	8	6
CO(avg)	2	2	2	2	2	-	-	-	-	-	-	-	3	3	2

Syllabus	
Unit 1	Values and self-development –Social values and individual attitudes. Work ethics, Indian vision of humanism. Moral and non- moral valuation. Standards and principles. Value judgements, Importance of cultivation of values.
Unit 2	Sense of duty. Devotion, Self-reliance. Confidence, Concentration. Truthfulness, Cleanliness. Honesty, Humanity. Power of faith, National Unity. Patriotism. Love for nature, Discipline.
Unit 3	Personality and Behavior Development - Soul and Scientific attitude. Positive Thinking. Integrity and discipline. Punctuality, Love and Kindness. Avoid fault Thinking.
Unit 4	Free from anger, Dignity of labor, Universal brotherhood and religious tolerance. True friendship. Happiness Vs suffering, love for truth. Aware of self-destructive habits, Association and Cooperation.
Unit 5	Doing best for saving nature, Character and Competence –Holy books vs Blind faith. Self- management and Good health. Science of reincarnation
Unit 6	Equality, Nonviolence, Humility, Role of Women. All religions and same message, Mind your Mind, Self-control. Honesty, studying effectively
Text/Reference	Books:
1.	Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi.

Sr. No.		Institute Course	Details of Course from SWAYAM/NPTEL
	Course Code	Title of the Course	
1.	AUD-904	Value Education	

AUD-90	5	Constitution of India						
Teachin	g scheme:		Examination scheme:					
Lecture		2 hrs /week	Theory					
Tutorial		0	In Semester Evaluation : 20 Marks					
Practical		0 hrs/week	Mid Semester Examination: 30 Marks					
Credit		0	End Semester Examination: 50 Marks					
Course	Objectives:							
1.	To learn his	story of Indian Constitution.						
2.	To learn ph	ilosophy of the Indian Constituti	on.					
3.	To know co	ontours of Constitutional Rights	& Duties					
4.	To learn or	gans of Indian Governance.						
5.	To learn loo	cal administration in India.						
6.	To learn rig	thts and duties of Election Comm	nission of India.					
Course	Outcomes:	On successful completion of this	course, students will be able to					
1.	Know Indi	an constitution drafting committ	ee composition and working.					
2.	Know fund	amental rights and their duties.						
3.	Know parliament and judiciary system of India.							
4.	Know how	local governance happens in Ind	ia right from village gram panchayat to Parliament.					
5.	Know work	ting and function of Election Co	mmission of India.					

PO/PSO ➡	РО	РО	PO	PSO	PSO	PSO									
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	1	2	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	2	3	2	-	-	-	-	-	-	-	3	3	2
CO4	2	2	3	2	2	-	-	-	-	-	-	-	3	3	2
CO5	3	3	2	3	2	-	-	-	-	-	-	-	3	2	2
CO	12	11	10	12	10	-	-	-	-	-	-	-	15	13	10
(total)															
CO(avg)	2	2	2	2	2	-	-	-	-	-	-	-	3	3	2

Syllabus	
Unit 1	History of Making of the Indian Constitution: History Drafting Committee, (Composition & Working).
Unit 2	Philosophy of the Indian Constitution: Preamble Salient Features.
Unit 3	Contours of Constitutional Rights & Duties: Fundamental Rights, Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy, Fundamental Duties.
Unit 4	Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications, Powers and Functions.
Unit 5	Local Administration: District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation. Pachayati raj: Introduction, PRI: Zila Pachayat. Elected officials and their roles, CEO Zila Pachayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy
Unit 6	Election Commission: Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.
Text/Reference B	
1.	The Constitution of India, 1950 (Bare Act), Government Publication.
2.	Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
3.	M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
4.	D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

Sr. No.		Institute Course	Details of Course from SWAYAM/NPTEL
	Course Code	Title of the Course	
1.	AUD-905	Constitution of India	

AUD-90	6	Pedagogy Studies					
Teachin	g scheme:		Examination scheme:				
Lecture		2 hrs /week	Theory				
Tutorial		0	In Semester Evaluation : 20 Marks				
Practical		0 hrs/week	Mid Semester Examination: 30 Marks				
Credit		0	End Semester Examination: 50 Marks				
Course	Objectives:						
1.	To understa	and theories of learning.					
2.	To learn ev	idence on the effectiveness of p	edagogical practices.				
3.	To learn ali	gnment with classroom practice	s and follow-up support.				
4.	To know he	ow to design Curriculum and do	assessment.				
5.	To learn ho	w to carry out research.					
6.	To learn pe	dagogic theory and pedagogical	approaches				
Course	Outcomes:	On successful completion of this	s course, students will be able to				
1.	Know how	effective learning happens.					
2.	Design curr	riculum and best assessment					
3.	Find research gap and continue research work.						
4.	Adapt best	teaching practices.					
5.	Increase eff	ectiveness in teaching.					

PO/PSO ➡	PO	PSO	PSO	PSO											
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	1	2	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	2	3	2	-	-	-	-	-	-	-	3	3	2
CO4	2	2	3	2	2	-	-	-	-	-	-	-	3	3	2
CO5	3	3	2	3	2	-	-	-	-	-	-	-	3	2	2
CO	12	11	10	12	10	-	-	-	-	-	-	-	15	13	10
(total)															
CO(avg)	2	2	2	2	2	-	-	-	-	-	-	-	3	3	2

Syllabus							
Unit 1	Introduction and Methodology: Aims and rationale, Policy background, Conceptual framework and terminology, Theories of learning, Curriculum, Teacher education. Conceptual framework, Research questions, Overview of methodology and Searching. Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries, Curriculum, Teacher education.						
Unit 2							
Unit 3	Professional development: alignment with classroom practices and follow-up support, Peer support from the head teacher and the community, Curriculum and assessment, Barriers to learning limited resources and large class sizes.						
Unit 4	Research gaps and future directions, Research design, Contexts, Pedagogy, Teacher education, Curriculum and assessment, Dissemination, and research impact.						
Text/Reference B	ooks: Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare,						
2.	31 (2): 245-261Agrawal M (2004) curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379.						
3.	Akyeampong K (2003) Teacher training in Ghana - does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID.						
4.	Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272–282.						
5.	Alexander RJ (2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell						
6.	Chavan M (2003) Read India: A mass scale, rapid, 'learning to read' campaign.						
7.	www.pratham.org/images/resource%20working%20paper%202.pdf.						

Sr. No.		Institute Course	Details of Course from SWAYAM/NPTEL
	Course Code	Title of the Course	
1.	AUD-906	Pedagogy Studies	

AUD-90	7	Stress Management by and	ient Indian Techniques					
Teachin	g scheme:		Examination scheme:					
Lecture		2 hrs /week	Theory					
Tutorial		0	In Semester Evaluation : 20 Marks					
Practical		0 hrs/week	Mid Semester Examination: 30 Marks					
Credit		0	End Semester Examination: 50 Marks					
Course	Objectives:							
1.	To achieve	overall health of body and mind						
2.	To overcome stress.							
3.	To have kn	owledge of theoretical and practi	ical aspect of Yoga.					
4.	To learn va	rious techniques of Asan and Pra	anayam.					
5.	To learn reg	gularization of breathing techniq	ues					
Course	Outcomes:	On successful completion of this	course, students will be able to					
1.	Develop he	ealthy mind in a healthy body the	as improving social health.					
2.	Improve we	Improve working efficiency.						
3.	Get control	over breathing.						
4.	Enjoy diese	es free life after daily practice of	yoga.					

PO/PSO	РО	PO	PSO	PSO	PSO										
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	1	2	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	2	3	2	-	-	-	-	-	-	-	3	3	2
CO4	2	2	3	2	2	-	-	-	-	-	-	-	3	3	2
CO (total)	9	8	8	9	8	-	-	-	-	-	-	-	12	11	8
CO(avg)	2	2	2	2	2	-	-	-	-	-	-	-	3	3	2

Syllabus	
Unit 1	Definitions of Eight parts of yog. (Ashtanga), Yam and Niyam. Do`s and Don't's in life.
Unit 2	Ahinsa, satya, astheya, bramhacharya and aparigraha, Shaucha, Santosh, tapa, swadhyay, ishwarpranidhan.
Unit 3	Asan and Pranayami Various yog poses and their benefits for mind & body.
Unit 4	Regularization of breathing techniques and its effects-Types of pranayama.
Text/Reference	Books:
1.	"Yogic Asanas for Group Tarining-Part-I": Janardan Swami Yogabhyasi Mandal, Nagpur.
2.	"Rajayoga or conquering the Internal Nature" by Swami Vivekananda, Advaita Ashrama (Publication Department), Kolkata

Sr.		Institute Course	Details of Course from SWAYAM/NPTEL
No.			
	Course Code	Title of the Course	
1.	AUD-907	Stress Management by ancient	
		Indian Techniques	

AUD-908		Personality Development through Life Enlightenment Skills				
Teachin	g scheme:		Examination scheme:			
Lecture		2 hrs /week	Theory			
Tutorial		0	In Semester Evaluation : 20 Marks			
Practical		0 hrs/week	Mid Semester Examination: 30 Marks			
Credit		0	End Semester Examination: 50 Marks			
Course	Objectives:					
1.	To learn to achieve the highest goal happiness.					
2.	To become a person with stable mind, pleasing personality, and determination.					
3.	To awaken wisdom in students.					
4.	Study of Shrimad-Bhagwad-Geeta for developing his personality and achieve the highest goal in life					
5.	Study of Neetishatakam for developing versatile personality					
Course Outcomes: On successful completion of this course, students will be able to						
1.	develop his/her personality and achieve the highest goal in life					
2.	lead the nation and mankind to peace and prosperity.					
3.	develop versatile personality.					

PO/PSO ➡	РО	PO	PSO	PSO	PSO										
L CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	1	2	-	-	-	-	-	-	-	3	3	2
CO2	3	2	2	3	2	-	-	-	-	-	-	-	3	2	2
CO3	2	3	2	3	2	-	-	-	-	-	-	-	3	3	2
CO (total)	7	6	5	6	6	-	-	-	-	-	-	-	9	8	6
CO(avg)	2	2	2	2	2	-	-	-	-	-	-	-	3	3	2

Syllabus				
	Neeti satakam-Holistic development of personality.			
Unit 1				
Unit 2	Approach to day to day work and duties.			
Unit 3	Statements of basic knowledge, Personality of Role model.			
Text/Reference	Books:			
1	. "Srimad Bhagavad Gita" by Swami Swarupananda Advaita Ashram (Publication			
	Department), Kolkata.			
2	Bhartrihari's Three Satakam (Niti-sringar-vairagya) by P.Gopinath, Rashtriya Sanskrit			
	Sansthanam, New Delhi.			

Sr.		Institute Course	Details of Course from SWAYAM/NPTEL
No.			
	Course Code	Title of the Course	
1.	AUD-908	Personality Development through	
		Life Enlightenment Skills	

DIS-AI-601	Dissertation Phase-I	
Teaching schen	ne:	Examination scheme:
Lecture	0 hrs /week	1. Candidates need to report weekly progress to his/her
Tutorial	0	supervisor by maintain dairy/notebook for record of
Practical	28 hrs/week	dissertation work.
Credit	4	2. Every candidate should present himself (for about 30
		min.) before the panel of examiners consisting of Head
		of Department, M. Tech. Coordinator or his nominee,
		all supervisors to evaluate the mid-term and end term
		performance of dissertation phase-I

Dissertation shall consist of: Research work done by the candidate in the areas related to the chosen specialization, or Comprehensive and critical review of any recent development in the chosen specialization, or Design and/or development of a product related to the program done by the candidate.

Following shall be the guidelines for evaluation of dissertation phase I

- Project work / Thesis / Dissertation shall be carried out under the supervision of a qualified teacher in the concerned Department.
- A student may however, in certain cases, be permitted to work for the project in an Industrial/Research Organization, on the recommendation of the Head of the Department. In such cases, the project work shall be jointly supervised by a faculty of the Department and an Engineer / Scientist from the organization and the student shall be instructed to meet the faculty periodically and to attend the review committee meetings for evaluating the progress.
- Project work / Thesis / Dissertation shall be pursued for a minimum of 28hrs/week during the semester.
- Dissertation Phase-I shall consist of the following components (whichever applicable) Extensive literature survey, Data collection from R&D organizations, Industries, etc. Study of the viability, applicability and scope of the dissertation Detailed Design (H/W and S/W as applicable), Partial implementation.
- A candidate should prepare the following documents for examination:
 - a. A term paper in the format of any standard journal based on the work.
 - b. A detailed report of the work done by the candidate related to dissertation.
 - c. Every candidate should present himself (for about 30 min.) before the panel of examiners (which will evaluate the dissertation phase-I for TW and Oral marks) consisting of Head of Department, M. Tech. Coordinator or his nominee, all supervisors.

DIS-AI-602	Dissertation Phase-II	
Teaching schem	ie:	Examination scheme:
Lecture	0 hrs /week	1. Candidates need to report weekly progress to his/her
Tutorial	0	supervisor by maintain dairy/notebook for record of
Practical	28 hrs/week	dissertation work.
Credit	4	2. The final examination (viva-voce) shall consist of a defense presented by the candidate on his/her work in the presence of examiners appointed by the University/Institute one of whom will be the supervisor and the other an external examiner.

- Project work / Thesis / Dissertation (Phase II) shall be pursued for a minimum of 28 hrs/week during the final semester, following the preliminary work carried out in Phase-1 during the previous semester.
- The Project Report/Thesis / Dissertation report should be prepared according to approved guidelines and duly signed by the supervisor(s), M. Tech Coordinator and the Head of the Department shall be submitted to the concerned department.
- The candidate shall submit the dissertation in triplicate to the Head of the institution, duly certified that the work has been satisfactorily completed.
- The dissertation shall be assessed internally by a panel of examiners (like the one in dissertation phase- I) before submission.
- The final examination (viva-voce) shall consist of a defense presented by the candidate on his/her work in the presence of examiners appointed by the University/Institute, one of whom will be the supervisor and the other an external examiner.

	Semester- I							
Sr.		Institute Course	Details of Course from SWAYAM/NPTEL					
No.	Course Code	Title of the Course						
1.	PCC-AI-501	Artificial Neural Network and	https://swayam.gov.in/nd1_noc20_cs50/preview					
		Applications						
2.	PCC-AI-502	Digital Image and Video Processing	https://nptel.ac.in/courses/117/105/117105079/					
3.	PCC-AI-503	Statistical Machine Learning	https://nptel.ac.in/courses/106/106/106106139/					
4.	PEC-AI-507	Cyber Security	https://swayam.gov.in/nd2_cec20_cs15/preview					
5.	PEC-AI-508	Speech Processing	https://nptel.ac.in/courses/117/105/117105145/					
6.	PEC-AI-509	Big Data Analytics	https://swayam.gov.in/nd1_noc20_cs92/preview					
7.	PEC-AI-512	Data Structure and Algorithm	https://nptel.ac.in/courses/106/102/106102064/#					
		Semester	:-II					
1.	PCC-AI-514	Natural Language Processing	https://swayam.gov.in/nd1_noc19_cs56/preview					
2.	PCC-AI-515	Intelligent System	https://nptel.ac.in/courses/106/105/106105077/					
3.	PEC-AI-516	Data Warehousing and Data	https://nptel.ac.in/courses/106/105/106105174/					
		Mining						
4.	PEC-AI-518	Wavelets and Applications	http://www.nptelvideos.in/2012/12/advanced-					
			digital-signal-processing.html					
5.	PEC-AI-521	Soft Computing and Applications	https://swayam.gov.in/nd1_noc20_cs17/preview					
6.	PEC-AI-523	Foundation of Cognitive Robotics	https://swayam.gov.in/nd1_noc20_me92/preview					
			https://nptel.ac.in/noc/courses/noc20/SEM2/noc20-					
			<u>me92/</u>					